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On the Dirac Operator 
with an Electromagnetic Potential 

V. V. Kravchenko 

Abstract. A new approach based on the construction of some special biquaternionic projection 
operators is proposed for analysis and solution of the Dirac equation with electromagnetic 
potential. There is given an example of the application of this technique which allows us to 
find the solutions for some class of potentials. 
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1. Introduction 
In this work we consider the Dirac equation with an electromagnetic potential using its 
biquaternionic form:

(D+f(x)I+M0)u(x) =0.	 (1) 
Here D is the Moisil-Theodoresco operator (also sometimes called Dirac operator), D = 
> z k c9, zt are standard basic quaternions, ak = i-, f and u are biquaternion-
valued functions, I is the identity operator, and M° is the operator of multiplication 
from the right-hand side by the biquaternion a. Equation (1) may be obtained from 
the classic Dirac equation 

( 70 -	+
im+ie (_YOO(X)+

	7kAk(X)) ) (x) = 0,	(2) 

by a simple matrix transform introduced in [3] (see also [4] and 15: Section 12]). Equa-
tions (1) and (2) are equivalent, any solution of (1) with the aid of the matrix transform 
may be converted to a solution of (2) and vice versa. 

The simplest case, when the scalar part of the potential f is zero and the vector 
part is the gradient of an abritrary scalar function, was completely studied in [4, 9] due 
to the possible factorization 

1?— 
grad 7)1 M° =(D+Ma)hI,	 (3) 
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and due to the fact that the integral representations as well as the solutions to some 
boundary value problems corresponding to the operator D + M' were obtained in [5]. 
Note that the case Vec(f) 0 seems to be at least of the same level of difficulty as the 
gradient case but up to now it is not clear how to solve it. 

The principal idea of the article is to reduce in some sense equation (1) to the 
gradient case. For this purpose we use some specially constructed projection operators 
based on the algebraic properties of biquaternionic zero divisors. As one of the possible 
applications we show how this technique allows us to obtain the solutions of (1) in 
some special cases. In order to simplify the exposition we consider the operator D + f  
without M because the last constant term as a rule does not represent any considerable 
difficulty. 

2. Preliminaries 

Let us denote by H(C) the algebra of complex quaternions (=biquaternions). Each 
element q of M(C) is represented in the form q =	qkik, where {q,} C C, i 0 is 
the unit and ik (k =	are standard quaternionic imaginary units. We denote the 
imaginary unit in C by i as usual. By definition i commutes with Zk (k =	We will 
use also the vector representation of q E 1111(C): q = Sc(q) + Vec(q), where Sc(q) qo 
and Vec(q) = = A complex quaternion of the form q = will be called 
purely vectorial. We identify them with vectors from C 3 . The quaternion = qo - is 
called conjugated to q. 

Let us denote by 6 the set of zero divisors from H(C). For different equivalent 
descriptions of 6 see, e.g., [5: p. 28). We will use two of them: 

l.aa=0 
aE6 	

2. a2 = 2a0a.	
(4)

 

As usual, zero is not included to 6. 

We will consider 111(C)-valued functions given in a domain Q C R 3 . On the set 
C'(l; IHI(C)) the well-known Moisil-Theodoresco operator is defined by the formula D = 

3=I
k=i zkôk, which was introduced for the first time in [6, 7]. Let us introduce the integral 

operators
(Tf)(x) = 

if 
C(x - y)f(y) dcZ (x e R3 )	 (5) 

(Kf)(x) = - Ir C(x - y)(y)f(y) dI' (x E 1 3 \ 1')	 (6) 

which are the analogs corresponding to D of the complex T-operator and Cauchy-type 
operator, respectively. Here r = aQ is a Liapunov surface, ii = nkik is the 
outward unit normal to r, and AC(x) = -p• 

We will need the following properties of the introduced integral operators (see, e.g.,. 
[2: Chapter 1]).
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Theorem 1. 

1) (Borel-Pompeiu formula): Let f E C' (Q) fl C(). Then 

(Kf)(x) + (TDI)(r) = 1(x) (x E f). 

2) (Cauchy integral formula): Let f E C' () fl C() fl KerD(l). Then 

f=Kf in ft	 (7) 

3) Let I E C'() fl C(). Then 

DTf=f in ft	 (8) 

3. Projection operators for the disturbed Moisil-Theodoresco 
equation 

Let us consider the equation
(D+f)u=O,	 (9) 

where D = zkc9k, f is a given 1111(C)-valued function, and u is also an 1111(C)-valued 
function. First, we will consider the case, when the values of f and of f in all points are 
not zero divisors. Then let us introduce a complex-valued function -y	/7, where it 
is not important which of the roots to select. Then the function -y + f determines a 
zero divisor in all the domain of definition of the function f, we have 

(yj)(y_f)=y2_f2 =0. 

Using the corresponding idempotents	-y ± f) we define the two operators 

P+ = — (-y +J) I	and	P- = 

where I is the identity operator. These operators are mutually complementary, orthog-
onal projection operators on the set of 1111(C)-valued functions. 

We ahve the following 

Proposition 1. The operator D + II can be rewritten in the form 

D + II = P De + + PD = D + P + DP,	 (10) 

where the complex-valued functions ^ and . are defined as	= fo + , . fo - 7

and D =D+I. 

Recall that f2 = f . f -(f,f), where the last term is a scalar product of two vectors.
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Let us verify (10): 

p+	+ PD =	+ f)(D + I) +	- J)(D + I) 

= D +	+ f)(fo + ) + ( - T)(fo - 

= D + {2fo + 27f}I 

= D + II. 

At the same time 

D4+ P+ + DP- =(D+e+)(7+f)I+(D+e4(7 - f)I 

=D± 

=D+ 

=D+ —12yfo +2yf}I 

= D +fI 

Of course, (10) does not signify that D f commute with P. They "commute" only 
"simultaneously". Moreover, 

DPu = (D ++)( + f)u = (Du + D 17lu] +	+r ) , 

and if u E Ker(D + II), then 

D + Pu = (m +(7+fo)u+(7+fo)Lu+D 1-Yi]) 

1 (-yu + fo -f + D ul "L 

For D_ P from (1) we obtain the same but with the sign minus. 

Similar arguments lead to the relations 

	

D - -JI=	+PD = D4- P +D + P,	 (11) 

where J = ía - f . Then from (10) and (11) we obtain the inverse relations 

De+ = P(D + II) + P(D + II) 

D =P(D+ II) +P(D+fI).
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Now let us consider the equation

(12) 

where ff,	gradp, and, in fact, it is an equation for iz. 4.. Equation (12) is very well

known and is called eikonal equation (for its solution see, e.g., [1: Section 2.3] and 18: 
Section 3.1)). Such a vector	exists for any scalar function .. The same for the

function

=,	 (13) 
= grad ju. Then let us introduce pairs of projection operators 

and	R=—(..±g)I 

corresponding to	and , respectively. For the operators D + and D_ we have 

=	+ QD ff =	+ LLffQ 
D = RD + RD = Dg_ R + D R, 

where Dg, = D + gI. For the vectors	we have another representation: 

-	grad 
'l± 

where Y7±(x) = C± e±(x ) with C and C_ complex constants. Then 

Dy = D + grad y±1 = .13 - gradi1. 

In [9] this operator was studied using the factorization 

D— rad11±1.I1 

A similar representation we obtain for D_ ± : D_.± = ic'Dij±I. Thus, for the opera-
tors D, and D_ we have 

	

= QDI + Q;'Dr,+ I =	Q+ + 'D + Q-

D =	 + RDI = D 1 R4 + 1DrR.€

Finally, for the operator D + f  we obtain the representation 

D + II = PQ + D;'I + PQ7+'D7I 

+ PRijDi I + PRr'DI
(14) -	

PD,7;'Q + P'Di7Q-	 - 

+ PqDi:'R + P'Dij.R.
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Now let us concentrate on the case D + , where e Sc() and 

= 

grad z=—% 1 and rj =Ce. Define Q = ( C g)I. Then 

D +eI = QDf+Q-D. 

We obtain that

I QDr 1 u = 0 
uEKer(D+)	 -1 1Q" D71u=0. 

In another form:
QDv =0 
QDw=0 

where v = and w = rl u. It is not difficult to find the general solution of both equations. 
Using Theorem 1 we obtain

v= KO, +TQi 

w = K 2 + TQ,b2 

where Ok and /'k are arbitrary biquaternion- valued functions. The main problem is to 
describe the intersection Ker(Q Di'I)flKer(Q	'Di11) whiuch is exactly Ker(D + 
M.

In the following section we show how all this machinery may give the result in some 
special case which includes an ample class of potential functions .	- 

4. Example of the application of the projectors' technique 
Let us consider the following example. Assume that the function satisfies two condi-
tions:

1) z=0 
2) (grad ) 2 = C2 

where C is an arbitrary complex number. The simplest example of such a function is 
the linear function = ax  + bx 2 + cx 3 + d, where a, b, c, d are complex constants. One 
more example is the function = az" + cx3 + d, where z := x 1 + ix2 . We will construct 
a class of particular solutions for the equation 

(D+e)u=0.	 (15)


Du to condition 2) we can immediately construct the vector ff as 

_1 
g =	grade.
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Then
grad 17 =gradp= —

7) 

where y =	and , =	The projection operators in that case have the form 

± grad it) = ( i ± grade). 

Let us consider the function I = Qe + Qe'1 and apply the operator D to it. 
Consider first 

D[Qe] = D	+ r;P) _] 

= 	grad 1L e - 2C 
grad 	e - (grad,)2 e_0 - 

Using here the definition of the operator Q+ and the fact that (gradp)2 = e2 we obtain


D[Qe] = — eQ e + 
1 e (D -rad) grad y. 

Reasoning along similar lines we obtain an analogous result for the function 
Namely,

D[Qe] =	-	(D - grade) grad y. 

	

2C	 C 
Thus,

D[Qe + Qe] = — e(Q e + Qe) + (e —f' - e')D'gradp. 

Consider

Dç'gradp = 	gradC	 Dgrad = —ze = o. 

We obtain that
D[Q1e + Qe'] + e(Qe + Qe) = o. 

That is, Q+e+Qe L E Ker(D+eI). Moreover, f Q+eCi +QezC2 E Ker(D+ 
I), where C1 and C2 are arbitrary constant complex quaternions. Thus, the following 

proposition is true. 
Proposition 2. Let i. = 0 and (grad C)2 = C 2 in some domain Q C R 3 which 

may coincide with the whole R 3 , C be an arbitrary complex constant different from zero. 
Then the function 

i = (1+ grad) eC 1 + 1- 1 gradC eZC2, 

where C1 and C2 are arbitrary constant complex quaternions, is a solution of equation 
(15) in the domain Q. 

As can be seen immediately, we constructed also a particular solution to the Schrö-
dinger equation with a quaternionic potential (i. + (grade - 2 ))f = 0, where f is an 
H(C)-valued function.
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