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Abstract. The paper contains two results on subordination of stationarily correlated Hilbert-
Schmidt operator-valued stationary processes. First an explicit form of the spectral measure 
of the orthogonal projection of one process onto another is stated. On the basis of this result 
B. Fritzsche's and B. Kirstein's solution of the restricted subordination problem for finite-
dimensional processes is generalized to Hilbert-Schmidt operator-valued processes. 
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1. The class of Hubert-Schmidt operator-valued stationary processes can be identified 
with the class of infinite-dimensional stationary processes (cf. [10: pp. 346 - 347]). 
Thus, results on Hilbert-Schmidt operator-valued processes can be considered as gener-
alizations of results on finite-dimensional stationary processes. The present short note 
deals with two problems of subordination of Hilbert-Schmidt operator-valued processes. 

First results on subordination of stationary processes were obtained by A. N. Kol-
mogorov (cf. [7: Sections 4 - 5]). In the sequel Kolmogorov's results on one-dimensional 
processes were extended and generalized to other classes of stationary processes by sev-
eral authors. In particular, V. Mandrekar and H. Salehi proved that if X and Y are 
stationarily correlated Hubert-Schmidt operator-valued stationary processes, then the 
orthogonal projection of X onto Y is expressible with the aid of a certain stochastic 
integral (cf. [9: Theorem 3.14]). We specify Mandrekar's and Salehi's Theorem stating 
an explicit form of the function occurring in this stochastic integral (see Theorem 5). 
At the same time we generalize [11: Formula (1.9)]. Our second result deals with a re-
stricted subordination problem. Such problems were first studied by D. R. Brillinger. In 
practice they arise if for the transmission of a signal only a limited number of channels is 
available. Brillinger solved the restricted subordination problem for finite-dimensional 
stationary processes under the additional assumption that the spectral density matrix 
has full rank (cf. [1: Section 3) and [2: Chapters 9 - 10]). In [3: Theorem 7] B. 
Fritzsche and B. Kirstein gave a solution to this problem without any additional as-
sumptions. Theorem 8 of our paper generalizes Fritzsche's and Kirstein's result to the 
case of Hilbert-Schmidt operator-valued processes. 
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2. Let 7-i, K;, and 0 be infinite-dimensional separable Hubert spaces over the field of 
complex numbers C, 0('H, ,C) the set of all linear operators from 7-1 into K;, HS(7-1, 0) 
the Hubert space of all Hilbert-Schmidt operators of 71 to 0, and T(7-1) the class of all 
non-negative definite operators in HS(71, 71) of finite trace. The trace of a trace class 
operator X is denoted by trX, and the Hubert-Schmidt norm of a Hubert-Schmidt 
operator X is denoted by JXJ, i.e. XV = tr(XX t ). Moreover, the symbol X stands 
for the generalized inverse of a bounded linear operator which is given, e.g., in [8: 
Definition 2.111, and X denotes the closure of a closable operator X. 

Let G be a locally compact abelian group (under the operation +) and C its dual 
group of characters. A weakly continuous map X : G 9 t - Xt E HS(7-(, 0) is called 
an HS(71, 0)-valued stationary process if the function G x G (s, t) - XXS depends 
only on s - t. 

By 931x we denote the subspace of 0 generated by the elements X(t)x (x E 7-1, t E 
C). An HS(fl, 0)-valued stationary process X and an HS(K;, 0)-valued stationary 
process Y are called siationarily correlated if G x G D ( S ' t) - X* Y., is a function of 
s - t only. We will always assume in the present paper that X and Y are stationarily 
correlated. In this case the processes X and Y have the spectral representations 

X = I(t,.\)E(dA)Xo	and	Yj = J(t,A)E(dA)Yo	(t E G), 

respectively. Here (t, A) denotes the value of the character A on the element t and E is a 
spectral measure on the Borel a-algebra of G, whose values are orthogonal projections 
in 0. Let F : XEX0 , Fy : Y*EY Fyx := Y0 EX0 , Fxy =	and F 

Fx (i 5'). Then F is a T(fleK;)-valued measure on ¶B, which is absolutely continuous 
with respect to the non-negative finite measure r := trF. We remark that the results of 
our paper remain true if we replace the measure r by any non-negative a-finite measure 
z such that F is absolutely continuous with respect to ,u (cf. [8: Lemma 4.5]). Let 
F'	 7) be the Radon-Nikodym derivative of F with respect to T. The 

function F' is a Bochner measurable T(7-I K;)-valued function on G. 
Let L2 (Fx; 7-1, K;) be the Hubert space of (equivalence classes of) measurable (in 

the sense of [8: Definition 2.1]) 0(71,K;)-valued functions 4 on G such that Fx1 /2 
is a Bochner measurable H S(71, K; )-valued function and c Fx"2 (F,'2) is Bochner 
integrable with respect to r (cf. [8: Definition 4.8 and Formula (4.10)]). 

Remark 1. A Hilbert-Schmidt operator-valued or a trace-class operator-valued

function is Bochner measurable if and only if it is weakly measurable (cf. [6: Lemma 

5]). Thus, a measurable 0(7-1, K;)-valued function belongs to L 2 (Fx; 7-1, K;) if and only if


is a weakly measurable HS(7-1,K;)-valued function and fI4(A)F(A)h/2I2T(dA) 
<00. 

For each I' E L2 (Fx;fl,K;), Maridrekar and Salehi defined the stochastic integral 
fa 4dEX0 (cf. [8: Section 6]). (Here and in the following we will often omit the 
integration variable.) 

Remark 2. The reader shold not be confused by the fact that the range of E(B) (B 
E B) is a subset of 0, whereas the domain of definition of I(A) (A E C) is a subset of
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R. The stochastic integral fa qDdEXo is rather to be understood as fa dEX0' and its 
value belongs to HS(, 0). 

Using [8: Theorem 6.9] and some results from [9: pp. 121 - 1221, one obtains that 
the map -+ fa 4dEXo is an isometry from L2 (Fx;fl,K) onto the space HS(K,9Jtx), 
where

(Id 
dEXo) (if Ex0) = if F;1/2(F;1/2) dT. 

3. Let P be the orthogonal projection in 0 onto the subspace 9.fly. The map Xp: C 
t -i PXj is called the orthogonal projection of X onto Y (cf. [9: p. 122] and [10: p. 
348/Definition 5]). The map Xp is an HS(7-I, 0)-valued stationary process and from 
[9: Theorem 3.141 it follows that there exists a function 4p E L2 (Fy; X,fl) such that 

PXi = I (t A)'1p(A)E(dA)Yo	(t E G). 

In order to determine an explicit form of Ip, we need two lemmas. 

Lemma 3. For r-a.a. \ E G, the operator F(A)F.(A)I/2 is densely defined 
and bounded, its closure (F(.X)F.1(A)h/2) belongs to HS(K,7-1) and 

F(.) ^! (1) Y' I ) 

Proof. By [5: Korollar 5) the operator F(A)F.(A)h/2 is densely defined and 
bounded and by [5: Formula (3) of Section 61 the operator F(A)h/2F(A)F.(A)1/2 
is a densely defined contraction. It follows 

(F^(A)1/2F(A)F;+(A)1/2) (F+()1/2F;()F(A)1/2)	I,	(2) 

where I denotes the identity operator in R. If we assume that F)) has a bounded 
inverse, the left-hand side of (2) can be written as 

F(A) h /2 (F()F.(A)1/2) (F(A)F.(A)1/2)' F(.Xyh/2, 

which implies (1). In the general case we obtain from the result just proved 

F) + ci > (F()F(A)h12) 

for each e > 0. Letting c - 0, we get (1). Since F(A) E T(71), (F(A)F.(A)h/2) E 
HS(1C, 71) follows I
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Consider the function

:	 (3) 

Lemma 4. The function 4p belongs to L2(Fy;)C,7). 

Proof. From [6: Corollary 2] the weak measurability of pF/
2 = (FF.1h/2) 

follows and (1) gives 

IPI (D Fj22dr 
= J I(FyFI2)2dT 

< J trFdr = trFx(G) < no. 

In view of Remark 1 the proof is finished U 

Theorem 5. Let p be the function of (3). Then, for all t E G, 

PX = I(tA)P(A)E(dA)Yo. 

Proof. Because of Lemma 4 the stochastic integral fa( t , A)p(.\)E(dA)Yo exists 
and it remains to show that the range of Xj - fa( t ,.X ) 4p ( .)t) E (dA ) Yo is orthogonal to 
My, tEG. But 

(x1 - ft, ) P (A)E(dA)Yo) J(s .X)E(d))Y0 

= 
f ( t - s, A)F(A)r(d) -	- s, a(t

and the assertion follows U 

4. Let F be a separable Hubert space over C, whose dimension d can be finite or infinite. 
If d no, then the symbol N d stands for the set N of positive integers, if d < on, then 
Nd denotes the set of the first d positive integers. 

For E L2 (Fy; )C, F), denote by Fy ; the T(F)-valued measure dFy. Then for 
'I' E L2 (Fy.,; F, ii) the stochastic integral fa 'JidEY0 exists and defines an operator 
of the class HS(?(,9Jty). 

Consider the following restricted subordination problem: 

Calculate 

p := inf{Xo - 
ja

 %Y ^DdEYo 
I :
	E L 2 (Fy;ftC,F), 'P E L2(Fy;;F,7.)}	(4) 

and determine functions	E L2 (Fy;K,F) and 'P 0 e L2(Fy(,;F,H) such that the 
minimum is attained.
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Since the range of Xo - PX0 is orthogonal to My, we have 

I Xo_ Z 1 2= I Xo_ PX0I 2 +IPX0_Z1 2	for ZEHS(7-I,911y).€
Thus p 2 can be written in the form 

p2 = IXo - PX0I2+ 

min {PXo - la dEYO : E L 2 (Fy;,F), E	
(5) 

By Theorem 5, the first summand on the right-hand side of (5) can be calculated and 
it remains to discuss the second summand. 

For A E G, let 11 (A) j be the eigenvalues of (Fy(A)F.(A)h/2) (F(A)F.7A)h/2) 
counted as often as their multiplicities and {vJ (A)} )EN a corresponding orthonormal 
system of eigenvectors. Recall that the functions i (j E N) are measurable (cf. [8: 
Theorem 2.10]). 

Lemma 6. The function v3 (j E N) can be chosen Bochner measurable. 

Proof. Let {xfl}fleN be a countable dense subset of 7-1 and let Q(A) be the or-
thogonal projection onto the eigenspace corresponding to the largest eigenvalue of 
(F(A)F,A)h/2) (F(.x)Ff(A)1/2) According to [8: Theorem 2.10] the function 
Q is strongly measurable. Hence the sets 

B,, :={AEÔ:Q(A)x	0 and Q(A)x =O for j <n, jE N}	(nN) 

belong to B. Since Q) is a bounded linear operator and the set {x,,},, E N is dense in 
7-1, we have UnENBn G. 

Let v i (A) := IIQ( A )xnIhQ( A )x,,, if A E B,,, n E N. Here III denotes the norm in 
71. Clearly, the function v1 is Bochner measurable and for A E G the vector v 1 (A) is an 
eigenvector to the eigenvalue 1 (A). 

Now assume that the functions v 1 , ..., v,, with the desired properties have been con-
structed. To obtain	repeat the considerations above with 

(FY(A)F;+(A)1/2)(F(A)F;^(A)1/z) * 

replaced by

Q,,(A) (F(A)F;+(A)1/2)(F(A)F;^(A)1/2) Q,,() 

where Q,,(A) is the orthoprojector onto the orthogonal complement of the space spanned 
byv1(A),...,v,,(A), AeGI 

Let {ej}jENd be an orthonormal basis in F and let v (j E N) be chosen as in 
Lemma 6. For A € G, let V(A) be the isometric linear operator such that V(A)e3 
v3(A) (j E Nd) . Let

(DO :=	and	W 0 := V, 
where 4p was defined in (3).
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Lemma 7. The function (Do belongs to L2(Fy;)C,.F) and the function To belongs 
to L2(Fy;0;,7). 

Proof. Use [12: Theorem 13.2], the weak measurability of (FF.7''2 ), Lemma 

6, and [6: Lemma 1] to obtain the weak measurability of the functions 0 F 2 and 
'P 0FLj0 . Moreover, by (1), 

ja0
F 2 l 2 dr = J6 IV * (F Y F 2 )I 2 dT <JtrFcdT < 

and
'+1/2 - 2 jj'PoFi;,oI2dT = fI(FFy )•I dr < J

o
trF^d, < 

An appeal to Remark 1 concludes the proof I 

Theorem 8. Let p be the minimum in (4). Then 

2 flxo— Pk'oI 2	 ifd=cc 
p	jIXoPXoI2+a+1fOui1T ifd<c,o. 

The minimum is attained for (Do = Vp and 'Po = V. 

Proof. For 4 E L2 (Fy; IC, J) and 'P E L2 (Fy ; ;.T,fl) we have 

2 

PX0 - JGa'P4dEYo = I(Fcy	
2 

ry	) -I 
dT. 

I   

Moreover, it is not hard to see that 'P 0 (A) ch(A)F. (A)' /2 is equal to the sum of the first 
d summands of the Schmidt expansion of the operator (F(A)F.(A)'/2), if d < oc 
and equal to the Schmidt expansion, if d = oc (cf. 14: Subsection 2.2 of Chapter II]). 
Thus, Theorem 8 follows from [2: Chapter Ill/Lemma 6.1] (compare also [2: Chapter 
Ill/Theorem 7.11)1 
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