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Oscillation Theorems for Certain Class of

Nonlinear Difference Equations 

E. Thandapani and L. Ramuppillai 

Abstract. Some new oscillation results for certain class of forced nonlinear difference equations 
of the form

(a	+ pnx,_k)) + q, f(x, i ,) = e	(n € No) 
are established. Examples which dwell upon the importance of the results are also given. 
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1. Introduction 
In recent years there has been an increasing interest in the study of the oscillatory 
and asymptotic behaviour of solutions of difference equations (see, e.g., [1 - 6] and 
the references therein). Numerous results exist for homogeneous difference equations 
with or without delay, however, the work on forced equations is scanty. Therefore, the 
purpose of the present paper is to investigate the oscillatory behaviour of solutions of a 
class of forced nonlinear difference equations of the form 

i.(a /-(n + pn Xn_k)) + qn f(x 1 _,) = e,,	(n E N0 )	( 1) 

where 
LX =	— 
k,l€ No = NU {O} and N,, = {n EN0 : n no} 
{a} (a > 0), {pn}, { qn} (qn	0) and {e} are real sequences 
1: R —* IR is a continuous function with u 1(u) > 0 for u 54 0 
i(a	E) = Cn for some real sequence { En) . 

Let M = max {k, 1) and No E N0 . By a solution of the difference equation (1) we mean 
a real sequence {xfl}'>N0_M which satisfies (1) for n N0 . A solution {Xn}n2:N0_M 
is said to be non-oscillatory if all terms x,, are eventually of fixed sign. Otherwise it is 
said to be oscillatory. 
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Now for each result pertinent to the difference equation (1) that we shall prove, we 
require some of the following conditions: 

(c i ) Op0 A<1 for a constant A. 

(c2) PnPn—k ^! 0 and —1 < —B <Pn <A 1 for positive constants A and B. 

(c3) There are constants 6, 17 > 0 such that J ul > b implies If(u )i > 77. 
( c4 ) .. 00 (n + 1)qn = 00. 

(cs) 00 
nno (n + 1) 0 q = 00 where a < 1. 

( CO	 a = 00. 

00	1	00(c7) q3) = co. 

(c8) f is non-decreasing and superlinear, i.e.	<	and	< 00 for 
every c > 0. 

(c9) I is sublinear, i.e.	<oc and f0_C	
<00 for every C' > 0. 

(c i o) f(uv) ':^ f(u)f(v) for all u > 0 and large v, and	q3f(Rn+i_j) = oo where 
fl1 I 

- L_.sno 
(c ii ) 1im 0 ... 00 E0 = 0. 
(c 12 ) {E} is k-periodic. 

We may note that PnPn—k ^! 0 if {p,,} is k-periodic. 

2. Oscillation of equation (1) when lim.,0 E = 0 
We begin with the following lemma which is needed in the sequel. 

Lemma 1. Let condition (c2 ) hold, and let {E0 } be a real bounded and {x0 } a 
real eventually positive sequence. Then the sequence {z}, z, = x 0 + Pn Xn_k E, is

 bounded if and only if {x0 } is bounded. Further, if {z0 } is of one sign for large n, then 
{x n } is unbounded implies that {z n } is unbounded and z, > 0 for large n. 

Proof. Let x 0 > 0 and x 0 _ k > 0 for n > n 1 > no E N0 . Clearly, {x 0 } is bounded 
implies that {z} is bounded. Next suppose that {z0 } is bounded. Assume {x} is 
unbounded. So there exists a sequence {n,} of natural numbers such that 

lim3 _00n, = oc,	urn XnJ = 00,	Zn, = max{xn: n1 vi < n,}. 
3 00 

Since vi - k n, 

Xn1 _k <max{xn : n 1	< n -k} <max{xn : n 1 5  <n} = 

Thus
Zn. + Enj ^! Z. - BXn1 _k > (1 B)xnj 

leads to a contradiction as j - oc. Hence {Xn } is bounded. 
Next suppose that Zn > 0 or z, <0 for vi> n > n1. Clearly, {x 0 } is unbounded 

implies that (Zn) is unbounded. If z, <0 for n n, then arguing as above, we obtain 
En, > Zn, + En, ^! (1 - B)Xn, which leads to a contradiction as i - oo. Thus z > 0 
for vi ri. This completes the proof of the lemma I
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Theorem 2. Let the conditions (c2),(c3),(c4),(c6) and (cu) hold. In addition, 
assume that the sequence {a} is bounded. Then all bounded solutions of equation (1) 
are either oscillatory or tend to zero as n -	. 

Proof. Let {Xn} be a bounded non-oscillatory solution of equation (1) for n E Nno. 
So there exists an n 1 E Nno such that x,, > 0 or x, <0 for n > n 1 . Let x > 0 for 
n > n 1 . Hence there exists an n2 > n 1 such that Zn_k > 0 and Zn_I > 0 for n n2. 
Letting Zn xn + PnXn_k - En for n n2 , we obtain from equation (1) 

z(anzzn) = —qnf(xn+i_:) 15 0.	 (2) 

Then {Zn} is bounded and Zn >0 or Zn <0 for n n3 n2 . Let Zn >0 for n n3. 
From (2) and condition (c6 ) it follows that anLzn > 0 for n 2 n4 > n3 and hence 
/.Zn > 0 for n n4 . Let lim_ Zn = A, 0 < A < cx. Clearly, there exists an integer 
n5 > n4 such that n - k > n2 for n > n5 and hence, for n n5, 

(1 - A)zn < X + lEn I + En_kI.	 (3) 

For 0 < e < (1 —A)A there exists n5 > n5 such that (1 - A)Zn < X + e for n n6. 
Thus, liminfn_.xn >0. On the other hand, multiplying (2) by (n + 1) and summing 
the resulting equality we obtain 

(s + 1)q3 f(x 3 + i _:) n5a5Z + KZn < 
s=n5 

because an < K (n 2 n5 ) for some constant K. This in turn implies, in view of 
condition (c3 ) and liminfn_. x, Zn > 0, a contradiction to condition (c4 ). Thus Zn < 0 for 
n 2 n3 . Consequently, from the definition of Zn we get 0 (1 - B) "M SUP_ x	0. 
Hence lim n_.,,, x n = 0. The case Zn < 0 for n	n 1 may be proved similarly. This

completes the proof of the theorem I 

Theorem 3. Let the conditions (c i ), (c2 ), (c4 ), (c6 ), (cs) and (c ii ) hold. In addition, 
assume that the sequence {an} is bounded. Then every solution of equation (1) is either 
oscillatory or tends to zero as n -, 00. 

Proof. In view of Theorem 2, it is enough to prove that no non-oscillatory solution 
of equation (1) is unbounded. Let {x) be an unbounded non-oscillatory solution of 
equation (1). Proceeding as in the proof of Theorem 2 and setting y,, = ( 1 - A)Z C, 
we obtain 0 < I/n < Zn, 'Yn > 0, L(anLyn) 0 and 

L(anyn) + (1 - A)qnf(yn i _ j) 0.	 (4)


The rest of the proof is similar to that of Theorem 2 and hence the details are omitted I 
Theorem 4. Let the conditions (c2),(c6),(c7) and (c ii ) hold. In addition, suppose 

that the function I is monotonically increasing and 

lim inf 11(u) I > 0	(/3 > 0). 
u i —on	lu
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Then every solution of equation (1) is oscillatory or tends to zero as n —* 00. 

Proof. Let {x} be a non-oscillatory solution of equation (1) such that x, > 0 for 
n n1 E Nn 0 . Proceeding as in Theorem 2, we obtain z,, > 0 and limn.... 00 Zn = 00 if 
{x} is unbounded. 

Letting I/n as in Theorem 3, we obtain (4) and y,, - 00 as n - cx. Summing (4) 
twice and using If(u )I > Klul' +13 for Jul large and y .— co as n - oo, we have 

n-i	/ 00 1	 I di 
(l — A)K	

< j Tj =	 < \3=) /	1l"5-I 

which is a contradiction to condition (c7 ). Hence the sequence {xn} is bounded. The 
rest of the proof is similar to that of Theorem 2 and hence the details are omitted I 

In the following we obtain a result which holds for sublinear functions 1. 

Theorem 5. Let the conditions (c2),(c6),(c9),(cio) and (c ii ) hold. If 1 > 1 and the 
function f is monotonically increasing, then every solution of equation (1) is oscillatory 
or tends to zero as n —+ 00. 

Proof. Proceeding as in Theorem 4 and defining y,, as in Theorem 3 we have 

I/n>	Y3 > anynRn, where Rn =	- (ri > ri > n4). 
3=n 4	 3=n6 a. 

Now summing from n6 to n - 1, we obtain

anGAYne n-i	 n-i 6(i) <	
di <	

r	di 
(1 — A)	

a6Ay6 

q.,f(R3i _ i ) —	
—	1(1) -	j	f(t) s=n 6	 =n6	 f 

anAYn	 0 

This in view of condition (cg) contradicts condition (CiO). Thus the sequence {xn} is 
bounded. The rest of the proof is similar to that of Theorem 2 and hence the details 
are omitted I 

Finally, in this section we obtain a result subject to the condition an = 1 for all 
n E Nno. 

Theorem 6. Let the conditions (C2), (c5 ) and (c 11 ) hold. If the function f is mono-
tonically increasing and liminf11.....00 Li!i > 0, then every solution of equation (1) is 
oscillatory or tends to zero as n — oo. 

	

Proof. Proceeding as in Theorem 4 and setting v, =	we have 

Vn + ii + (1 — A)q1 'o. 
Yn+ i—i
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Multiplying the above inequality by (n + 1)' and then summing from n5 to n - 1, we 
obtain

0> -n 5 — a	 v3 +	(s + 1)°v + K(1 — A)	(s + 1)nq3 
3fl6	 3=fl5	 3=ns 

	

for s < e < s+1 because, for large I u I,f(u ) > Ku and y,, — oo as n -	. By the

method of completing the squares we obtain 

n-i	 a2(ns + 1)0_1 
K(l-A)>(s+l)"q3<nvn,+ 4(1-a) 

3=n 5 

which is a contradiction to the condition (c5 ). Hence {x,,} is bounded. The rest of the 
proof is similar to that of Theorem 2 and hence the details are omitted I 

Remark. We may note that in Theorems 2 - 6 we obtain limn _ x,, = 0 for a non-
oscillatory solution {xn} of equation (1) in the case z,, <0 for large n. If 0 <Pn < A < 1 
and {E,,} is oscillatory or {En} E 0, Zn < 0 implies that 0 < x,, + on + PnXn_k < En 
which is a contradiction. Hence in Theorems 1 - 6 (Theorem 2) the conclusion would 
read as "Every (every bounded) solution is oscillatory" if the condition (C2) is replaced 
by the condition (c i ) and {E,,} is either oscillatory or {En} E 0. 

In the following we give some examples to illustrate the above results. 

Example 1. Consider the difference equation 

	

2 (Xn + 2( _1)n + 1	\	12(n - 1)2 

4	
1n2) + (n — 2)n(n + 1)(n + 
2	2(-1'(2n2 — 4n + 1) + 1 

n(n+1)(n+2)+	2n(n-1)(n-2)	
(5) 

12 
+ (n-2)(n-1)n(n+1)(n+2)	

23). 

Here an = 1,

+1	1	 1	3 
+	 and	l<^Pnj<1 

n	4(n-2)	n(n-1)(n-2) 

From Theorem 2, it follows that all bounded solutions of equation (5) are either oscil-
latory or tend to zero as n —* oo. In particular, {x,,} = {} is a solution of equation 
(5) tending to zero. 

Example 2. Consider the difference equation 

{
[2n + 2 (Xn + (_1) 

X
2)I +	1) 

2(2n + 3) X3n-i
	

(n 2 4).	(6) 2n+1	n(n-2) -	(n- 
2	 2 

= n(2n + 1) - (n + 1)(2n + 3)
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Here

	

2n+2	 1	 1	1 E,=—,	—l<— < < —p—<1. 

	

2n+1	 n	 15	8 
From Theorem 3 it follows that all solutions of equation (6) are oscillating or tend to 
zero as n - oo. In particular, {x} = {(-1)'n} is an oscillatory solution of equation 
(6). 

3. Oscillation of equation (1) when {E} is periodic 
In this section we obtain conditions for the oscillation of all solutions of equation (1) 
when the sequence {E} is k-periodic. 

Theorem 7. Let the conditions (c 1 ), (c3 ), (c4 ), (c6 ) and ( c 12 ) holds. If the sequence 
{a} is bounded, then every bounded solution of equation (1) is oscillatory. 

Proof. Let {x} be a bounded non-oscillatory solution of equation (1) for n n 1 E 
N 0 . Proceeding as in Theorem 2 we obtain (1 - A)(z + E) x, for n n2 . Since 
{ E,} is k-periodic, there exist real constants b 1 and b2 and sequences {n',} and {n} of 
natural numbers such that 

1imn=limn=oo, E=b 1 ,	Eo=b2,	b1<E<b2. j-00 300	 .7	 .7 

For n > 123 > max{n2 ,n} where n, > n i we have 
0<(1A)(zn.+En.)<(1—A)(zn+bi)<(1—A)(zn+ En) <xn 

Setting y, = (1 - A)(z + b 1 ), we obtain 0 < y, < x,, {y} is bounded, zy > 0 and 
0 for n n3 . If lim_y = A (0< A <oo), then for 0< c <A there 

exists an integer n4 > n3 such that 0 < A - c < Yn+1-1 x+i_, for n n4 . Hence 
f(x+1_1)> A > 0 for n 124. From (2) we get 

0 2 I.(anIyn) + (1 - A)qf(x+ 1 _ 1 ) 2 (a/.y) + (1 - A)A*qn 
for n 2 n4 . The rest of the proof is similar to that of Theorem 2 and hence the details 
are omitted I 

Theorem 8. Let the conditions (ci),(c4),(cs),(cs) and (c i2 ) hold. If the sequence 
{a} is bounded, then every solution of equation (1) is oscillatory. 

Proof. The proof is similar to that of Theorems 3 and 7. Therefore the details are 
omitted I 

Remark. One can obtain further results similar to Theorems 4 - 6. Details are 
omitted. 

Example 3. Consider the difference equation 

	

2(Xn
2	 10	nir


	

 +	\ +x,_ = — --cos - --	(n 2 4) .	 (7) 

Here the sequence {E},
5	nir	1 .3nir
E = sin --- + sin 

is 4-periodic. From Theorem 8 it follows that all solutions of equation (7) are oscillatory. 
In particular, {x} = {sin n ' I is an oscillatory solution of equation (7).
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