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On Strong Closure of Sets of Feasible States

Associated with 

Families of Elliptic Operators 
0. Zaytsev 

Abstract. The closure of sets of feasible states for systems of elliptic equations in the strong 
topology of the Cartesian product [ H ( l )] of Sobolev spaces is considered. For m = 2 and 
ci C R2 , it is shown that there is a family of linear elliptic operators of the type div(xA' + 
(1 - x)A 2 )V, where x belongs to the set of all characteristic functions of measurable subsets 
of ci, such that there does not exist a larger family of operators of the type div AV for which 
the sets of feasible states coincide with the closure of the original ones. 
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1. Introduction 

In [6] there is studied an optimal control problem of the form 

1(u) := f (grad(u - v)) 2 dz	mm	 (1) 

where v E H (Il) is fixed, u is a solution of a diffusion equation in a bounded open 
subset ci of R'

—div(a grad u)=f	inci,uEH(ci) 

with f E H(Q) and a E L(Q) satisfying 

0<A i <a(x)<A 2	for a.e.xci 

a(x) E ((Li,... ,/1,.}	for a.e. x  ci	 (2) 
meas{x E cila(x) = (L q } kq ,	kq ^! measci 

where 1\ 1, A2, /.L,. . . ,/1, k 1 ,... ,k,. are fixed constants. As noted in [6], the problems 
involving gradu non-linearly are more realistic than those which contain only u. We 
refer to [1) for other problems involving grad u non-linearly. 
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Let S denote the set of all functions a satisfying (2). In [6] the equality 

clos3 {u E	- div(a grad u) = f in ci,a E s}
(3) 

={ueH(cz) _div(bgradu)=fincz,bE5} forallfEH1(1) 

is proved where c1 3 denotes the operation of the strong closure in HO(P) and stands 
for the symbol of the closed convex hull in L2 (fl). Here we would like to refer to [4] for 
more general results (see also [3, 5]). 

Equality (3) gives a good basis for further analysis. For instance, one can pass to 
the extended problem with S instead of S and, by using the convexity of ZUS, one can 
derive necessary conditions of optimality as it was done in [6]. In addition, the convex 
set TUS is more preferable from the point of view of further numerical evaluation. 

It is very important to know whether an equality of type (3) holds for other families 
and, especially, for families of linear systems of elliptic operators in which the number m 
of unknown functions is equal to or greater than the number n of independent variables. 
More precisely, for m n 2, let 21 be the family of all elliptic operators A of the type 

A = divAV	 (4) 

where A is a positive definite (inn x rnn)-matrix with entries from LOO(Q) taking its 
values in a finite set {A',. . . , A'} of positive definite (mn x rnn)-matrices A',. . . 

For f E [H — ' ( cl)] m and u E [H01 (Q)j-, define 

Z(21, J) = {u E [H0' ()] Au = 7, A E 211	(set of feasible states) 

and
F(21, ii) = { Au E [H 1 (Q)]- I A E21}. 

Now the question, we are interested in, can be formulated as follows: Does there exist 
a family of operators of the type (4) such that 

clos,Z(2t,f) = Z(B,f)	for all f E [H 1 (ci)]tm? 

Since the operators from 21 are uniformly continuous and coercive, the previous 
question is equivalent to the following: Does there exist a family B of operators of the 
type (4) such that

clos3 F(21,u) = F(B,u)	for all u E [Ho' (Q)]'? 

As it turns out, the answer to this question is, in general, negative. We prove this by 
constructing a corresponding example of the family 21 for the case when r = in = n = 2. 
This example shows that for optimal control problems with non-weakly continuous cost 
functionals (for instance, with functionals of the type (1)) governed by elliptic systems 
of the type (4) possible extensions depend, in general, not only on the family 21 but 
on the functional I and the right-hand side f, too, even if the cost functional and the 
right-hand side do not depend on controls.
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2. Preliminaries and statement of the result 

Let R" denote the n-dimensional Euclidean space. Let ci be a bounded domain in R" 
with Lipschitz boundary. The symbol ci' cc ci means that ci' is a subdomain of ci 
such that dist(ci', Oci) > 0. We will denote by Co— (n) the set of functions with compact 
support in ci having all derivatives of arbitrary order continuous in Q. The notations 
LP (1Z) (p = 2,00) mean the usual Lebesgue spaces. H 1 (Q) is the Sobolev space of 
functions I E L2(Q) such that- e L 2 (ci) (1 <i <n) with the usual norm. axi
is the closure of C°(Q) in H(Q). H -1 (Q) is the dual space of H(Q). We use the 
notation V'(ci) to denote the space of distributions on Q. 

For the sake of brevity, we put V = [H(f2)j' and V* = [H_ I (ci)l m . Let A = 
{aJkj}	 be an (mn x mn)-matrix satisfying the conditions -	 - 

zi1e 2	(A(x),) zi	for a.e. x E ci and all	R' In 

A E [L(ci)]rnnxrnn	
(5)€

where v 1 , v2 > 0. We relate to A the operator A: V - V as 

Au = divAVu	(u E V). 

In what follows, A is an (m x n)-matrix with the components (A) = alJk,kj, (AC, q) 
is a bilinear form such that (AC, q) = aj11 (, 17 E R' In, summation over repeated 
indices is assumed). 

Let A' and A2 satisfy (5). We will also use the following notations: 

"= {x e L0(Q) I x(x) E {0, 11 for a.e.x E ci} 

r = {e E L°°(ci) 0 < 9(x) < 1 for a.e. x E ci} 

A9 = GA' + (1 - 9)A2	(9 e r) 
A 9 = divAgV. 

In [4] the following two theorems are proved. 

Theorem 2.1. Let A', A' be as mentioned above. If m <n — i, then 

closS Z ({ A X } X EA,f) = Z({Ae}oEr,f)	for all I E V*€

Theorem 2.2. Let g E (L2 (ci)] mIn . Suppose that 

rang (A'(x) - A2 (x))g(x) n - 1	for a.e. x E ci. 

Then the set c1s 3 UXEA {divAg} is convex in V.	 - 

It should be noted that in [4] there are proved more general results than Theorems 
2.1 and 2.2.
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Let m = n. In this case A is a fourth order tensor. It is convenient to write the 
tensor A as a block matrix

	

(a l l	...aln) 
A=

	

a,,	... 

where a 1 (1 < i, j < n) are (n x n)-matrices. Let K be the class of all (n 2 x n' )-matrices 
A which are symmetric in the sense 

a13 = a 1	(1 <i,j	ri) 

where at means the transposed matrix of a. Denote by K(1, ui, u.'2 ) the class of all 
(n 2 x n2 )-matrices A which satisfy (5) and belong to K. 

Our goal is to prove the following 

Theorem 2.3. Let m = n = 2. Assume that Q is simply connected. Then there 
exist A', A2 e K(Q, ui, u.'2) such that there does not exist a family {Aa}a of operators 
Aa =divAaV (Aa E K(Q,vi ,v2 ),a E ) satisfying 

cbs3 U {Axu} = U {A0 u}	for all u E V. 
xEA 

3. Proof of Theorem 2.3 

The proof is divided into three steps. 

Step 1. Let

	

'\ (S 0'\\	 (i o'\ (0 0 
I	i)	o o) I	 I	o i)	o 0 

A'=I	 I	and	.42=1 

	

((S 0'\ (1 o\ 1	 1(0 0'\ (1 0 
\o o)	o ')J	 \o o) '.0 1 

where S > 0 is such that A' E K(cl,zi i ,u2 ) for some zi1,v2 > 0. We will denote by 
and a j the block elements of A1 and A2 , respectively, and we set a j = 9a +(1 —0)a,. 

Let us assume that B E K is such that div8Vu E Uocr{Aeu} for all u E V. Then 
for every u E V there exists 9 = 0(u) E F such that 

divBVu = divAoVu	in V.	 (6)€

In particular, for every u E H(Q) there exists 0 = 0(u) E F for which 

divb, 1 Vu = diva 1 Vu	in H'(Il).	 (7)€

For W E Cr(l) and 6 E R2 , let us take the sequence 

ue(x) =	(x)sin(ex . e)	( > 0).
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One can check that

( e2cos(E'x

.i cos(c'x Vue(x)	(x) .
	

+sin('x •)V(x). 

From (7) we obtain

f (b 11 Vu, Vu e )dx = J (a 9 ' , Vu', Vue)dx 

where 8 = O(u e ) . By passing to the limit as c -p 0, we obtain 

f
inf(a 1 (x)) 2 dx 15J(bii)2dx < fn  sup (a1(x))2dx. 
OEF 

	e€i' 

In other words, we have 

inf(a1 ( x )e, )	( b 1 1 (x)6,6)	sup (a (x )e, ) ocr	 ocr 

for a.e. x E ci and all e E R2 By choosing in this inequality as (1, 0), (0, 1) and (1, 1), 
we deduce that b11 = (' O5) for some 81 E r. Similarly, we see that b22 = (	). 

Now, suppose that b12 = (). Using the same reasoning as above, we obtain 

0 < a(x) + (b(x) + C(X))I2 + d(x) 

fora.e. x  ci and all eE R 2 Hence d=0,b=—c and a=82  for some 82 Er. Since 
b12 = l4, we finally have 

( 1 96' (82 8 b 
\oo 1) —b 0 

- 
8—

(828 —b'\ (1 0 
kb o) 0 1

Let us prove that 8 1 = 02 and b = const. First of all, let us establish that b = const. 
It is clear that divb2j Vu = divaVu for all u E H(ci). Consequently, 

a f ôu \	a fau\	5 Su \ 
-- 
(b 

—) - — (-) 
= 8— ((0(u) — 02) —)	 (8) 

for all u E H(Q). We will show that b(x) = b(x 2 ) for a.e. x E Q. To do this, let 
ci' cc ci and u 0 = p1x2 where p ' E C — (Q) with p ' = 1 on ci'. Using (8), we obtain 

f (aX
Su 09W Su 5	L	ac b-- — -- jdx = 8(8(u) — 

Jç1 	Sr2	5x2 Sr1 j 	Sr1 Srj 
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for all W E C°°(ci). By replacing u 0 in this relation, we see that 

I b - --dx = 0	for all W E C(ci'). 
ill ax  

Since ci' CC ci is arbitrary, b(x) = b(x 2 ) for a.e. x E Q. From (8) it follows that 

ObOu	O(	 Ou\ 
= ö-  (9(u) - 92)- 1 Oxi) 

in V'(ci), for all u E C°(ci). Since 

O(Ob '\	ObOu 
- I — u - 
Ox j Ox2 j OZ 5x1 

we have	
Oh	 0 

5
--u =(O(u)-92).---+f(x2)	 (9)€
X 2	 (IX! 

where fu is a function depending on u. 
We will show that ft- = 0 in V'(ci). For this, let us prove that for every point 

( 1 1 , 1 2 ) E ci there exists its neighbourhood U C ci such that - = 0 in V'(U). Let 
(11,12) E Q. Without loss of generality, we can assume that (1 1 ,12 ) = (0,12). Denote 
U = (-W, W ) x (12 - w, x 2 + w). It is clear that U C ci for suitable w > 0. Set 

1 0
exp(-)p2 (x) for x 1 >0 

uc(x)=
	

for x1<0 

where P2 E C000 (1l), P2 = 1 on U and C <- 0. From (9) we have 

x Oh	2  
+ x 1 exp _2. 

fc(x2) =S(Oc-92) (10) 
C0x2	( Xl) 

in V'({x E U1 x i > 0}) where9c = O(uc) and Ic = f . Let us fix C <0. If Ic 0 in 
1Y(1 2 -ce, 12 +), then there exists p E C°°(12 -w, 1 2 +w) such that (Ic, ) 54 0 where 
(.,.) denotes the duality pairing between V' and V. Let { o }o<<, be a sequence of 
functions W 16 such that	= 1 on (, ), 0 <	<1 on (0,13) and	E C00°(0,f3). For 
(x i ,x2 )E{xE U1 x i >0}, define	(x1,x2)=(x1)(x2). From (10) we have 

fOb \ 

-	f	 )^o fl(xi)dxi + (fc)J xexp (xi)dx1 
X1 

0	 0 

=sit
(8c-92)tI'dz 

zEUIz,>0} 

for all 0 < /3 < w. By passing to the limit as /3 - +0, we see that the first integral 
on the left-hand side and the integral on the right-hand side tend to 0, but the second
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integral on the left-hand side tends to +oo. This is a contradiction with Ic 0 0 in 
V'( 2 -w, +L?). Hence fc = 0 in V'( 2 -w, 2 +w)for all  <0. If 

812 0 in 
V'( 2	+w), there exists p E C'°( 2 -w, 2 +w) such that (-,) 54 0. Let 
a E C000(0,w) be a non-vanishing function. Then, by passing to the limit as C - -0, 
we see that

fOb \ 
I —,cp  
0x2	

fxc(xi)dxi = 0. 
\	I

0 

This is a contradiction with	0. Thus, b = const on 
Now let us prove that 9 1 = 82. We have 

(9, - 9)! + (92 - 9)!. (8, - 9)! 
Ao)Vu = ö Ox2	Ox,	 xi 

OUI 
(5 -	

(	
(9 -0)	 0	) 

Since for every v E V there corresponds 9 = 9(v) such that div8Vv = divAoVv, we 
obtain that for every u E H(1) there exists 9 = 8(u) such that 

f(92 - 0) -dx = 0	and	
in(0 ax,

i - 8)-dx = 0.
'9X 1

Therefore,

f(9 - 92)-dx = 0	for all u E
axi 

In other words, 9 1 —92 = 9(x 2 ) on Q. From (6) it follows that for each u = (u,, u2 ) € V 
there exists 9 = 9(u) such that 

a	au,	
U2 ) + " ((O^ 0) au 

5X-1 ((01 — 0) __ 
+	(02 — 0) ^—	 = 0 

a ((02 0) aU 1=•	
(11) 

Ox,	ax, 

Let p = 9 - 9. Then from (11) we see that (p depends on a choice of ) 

Op O' + Op Op 
Ox, 5x 2 Ox2 

Op Oço 
Ox 1 Ox,

= —2pOx 1 Ox2 

= (g(x2)
in V'(cl),	 (12) 

for all W € C'°(l). 
Let l' CC ft Take w = (x, - r)2 P3, with P3 E C00(1Z) and p3 = 1 on Q', where 

r > 0 is such that Q Cc (-r,r) x (-r,r). Hence 

Op — (xi - r) =0 Ox2 	

- I	in (Q'). 
Op —(x i - r) = g(x2 ) p Ox
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Therefore, p = p(x 1 ) and 9(x2) = p(x 1 ) + (x 1 -	in ci'. Thus, g const = C 1 on axj 
Q. Let us prove that C1 = 0. To do this, let ci' CC Q. Set = (xi - r)2 ( X2 - r)p4, 
where p4 E C000(ci) and p. = 1 on ci'. From (12) we derive 

2	0P - r) + 2—(x i - r)(x 2 - r) = —4p(x 1 - r) 
Ox1 	25X2
 

—(x i
 

Op 
ax,	

- r)(x 2 - r) = (Cl - p)(x2 - r) 

Hence we obtain
Op

(X I —r)=Ci—p 1 Ox 
O 2—p (x 2 r) = - Cl -	

in D'(ci').	 (13) 

0X2 

By differentiating these relations, we deduce 

a2 	 Op€(xi—r)=— 5x 2 Oxi	
-- I 

	

0p (	
in 

52p	 3  2	(x2_r)=____J 
ô Ox2 

By multiplying these relations by 2(x 2 - r) and x - r, respectively, and subtracting 
the results, we see that 

	

2(x 2 - i') Op- = 3(x i - r)—	in V'(ci'). 
3x2 

By (13), we obtain

3(x i - r)	= - C1 - 3p 

1	in V'(ci'). 
ap	

ax,

(xi—r)=Ci—p J
Ox 

Hence C1 = 0. 
Thus, we have proved that if div 8Vu E Ue€r{As u } for all u E V and 8 E K, then 

8 = A9 + cT where c is a constant and 

o fo -i\' 
(\ o o) (i ofl - 

- 7	

( (_1(/0

I 0 i \ 0 
 o ( 0

0)
i

It is clear that divTVu = 0 for all u E V. 
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Step 2. Let A9 be such that A 9 u E c1s 3 UXEA { Au } for all u E V. Let us assume 
that there exist a measurable set M C Q with meas M > 0 and a constant e > 0 such 
that e 9(x)	1 — c for a.e. x E M. Straightforward calculations give 

ôtz j	5u2 ott1 

	

(A 1 -A2 )VU =(	
Ott,	

or,

0) 

It is obvious that there is W E [C000 (f2)] 2 such that there exists an open ball 

U c {x E Q det(A' — A 2 )Vo(x) < R < o} 

with meas U fl M > 0. Since A9 p belongs to cbs 3 UXEA {Acp}, there exists a sequence 
{xk} C A for which Ax k p —* A9 p in V. In other words, we have 

(A' — A2 )Vpgrad(x k -9) + (xk — 9)div(A' — A2 )V -* 0	in V*.	(14) 

Without loss of generality, we can assume that Xk- 9 in L°°(). Hence divA 9 V = 
divAV in V. Therefore, (A 9 -A)V = oVv (see 18]) for some v E LH'(c)l 2 where 

is an operator on the set of all (2 x 2)-matrices defined by 

(6: e12 	 12 e
e2 	e221	\22 e21 

Since 'p E [C0°°(1l)12, we can suppose that v belongs to V. Hence 

fa det(Ae — A)V'p dx = 0. 

This yields

f1'
(9 — ) 2 det(A' — A 2 )V'p dx = 0. 

By the assumption on the sign of the determinant, we obtain that 9(x) = (x) for a.e. 
x E U. From this, (14) and compactness of the embedding L2 (U) - H'(U) it follows 
that

(A' — A2 )Vpgrad(x k -9) —* 0	in [H-' (U)12. 

In other words, grad(x k — 9) —* 0 in [H-' (U)]2. Using Neeas's inequality (see [11; cf. 
also [7]), we have

xk — 9 —	 C grad(xk — 

where Mk = (measU)' f(xk — 9)dx. Hence we obtain that 8 is a characteristic 
function on U. This is a contradiction with the assumption on O. Thus, if 9 is not a 
characteristic function, the inclusion A9u E c1s 3 UXEA {Au} can not be satisfied for 
all u E V.
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Step 3. Now we will prove that there exists u E V for which the set UXEA{AXU} 
is not closed in V 4 . Let u = x2 p and 1L2 = 0, with p E C(l) and p = 1 on ' CC Q. 
Then, for u = (ul,u2),

( aul  
+ 

0u2 8u1 
—----	

'. 

	

1	forallxE rang(A' - A2 )Vu = rang
o) = 

Assume that the set UXEA{AXU} is closed in V 4 . Then, by Theorem 2.2, this set contains 
the set

{Aou0E rand 0(x) =OorO(x) = 1 inç\çl'}. 

It means that for every 0 E r there exists x = x( 0) e A satisfying the equality 

	

5 ((X	Oui\	S ((X	5u2	S /	Ou1
  - 0)) + — 	— 0)) + — ((x — 9)) = 0 

Ox 1	49X2	Ox1	Ox1	19x2 

in H(1l'). Taking into account the form of u 1 and u 2 , we obtain that —(x —0) = 0 
in H(1l'). This gives that x —0 fo(x 2 ) for a.e. x € Il'. 

Let 0 = I sin x 1 I where denotes the absolute value. Let M be the intersection of 
Lebesgue sets of x and f. If we consider the cuts of M by the sets T = { xI x2 = c} (c € 
IR), it is evident that there is co for which the set II = M fl T 0 has a positive Lebesgue 
measure on the real line. For points belonging to fl, we have x( x l , co) = I sinx 1 I+fo(co). 
In other words, I sin x i l - IsinxI € {-1,1,0} for all (xi,co),(x,co) € H. But this is 
impossible since the function I sin xil - sin xI takes other values, too, when (xi,co) 
and (x,co) vary in II. Thus, we have shown that the set UXEA{Axu} can not be closed 
in V4. 

Combining the just proved three steps, we obtain the theorem I 
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