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Regularity Properties and Generalized Inverses
of Delta-Related Operators
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Abstract. As a central topic certain relations between operator matrices are investigated
which are called delta relations. The main aim of these relations is to reduce questions about
classes of operators without invertibility symbol to those which admit an invertibility symbol.
Particular attention is devoted to the generalized inversion of such operators. Different kinds of
relations are introduced in order to analyze the “information” contained in the symbols of the
related operators. Several examples are considered and the theory is also applied to singular
integral operators with Carleman shift. Asymptotic solutions of equations characterized by
those operators are presented. The approach simplifies several known results, makes the theory
more rigorous from the operator theoretic point of view, and allows further conclusions in a
very compact form.
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1. Basic definitions and examples

The goal of this paper is to present a relation that is suitable to connect bounded linear
operators with different structures. It will guarantee the transfer of certain properties
between different classes of operators. Because of the needs of applications, we are par-
ticularly interested in the study of regularity properties and the explicit representation
of generalized inverses of the present operators.

Definition 1.1. Let 7 : X; —» X, and W : ¥; — Y; be bounded linear operators
acting between Banach spaces. We shall say that T is A-related to W (briefly T A W) if
there is a bounded linear operator acting between Banach spaces Ta : X;a — X24 and
two invertible bounded linear operators E : Y, — X, @ X34 and F: X, @ Xia - Y
such that [T 0

o TA] = EWF. (1.1)

L. P. Castro: Universidade de Aveiro, Departamento de Matematica, 3810 Aveiro, Portugal
F.-O. Speck: Instituto Superior Técnico, Departamento de Matematica, Av. Rovisco Pais,
1096 Lisboa Codex, Portugal

This research was partly supported by Junta Nacional de Investigagio Cientifica e Tecnolégica
(Portugal) and the Bundesminister fiir Forschung und Technologie (Germany) within the
project ” Singular Operators - New Features and Applications”, and by a PRAXIS XXI project
under the title ” Factorization of Operators and Applications to Mathematical Physics™.

ISSN 0232-2064 / $ 2.50 (@© Heldermann Verlag Berlin



578 L. P. Castro and F.-O. Speck

Definition 1.2. Let 7 : X; — X; and W :Y; — Y, be bounded linear operators
acting between Banach spaces. We shall say that 7 is A-related after eztension to W

(briefly T A W) if there is a bounded linear operator acting between Banach spaces
Ta : X1a — X34 and invertible bounded linear operators

E.n Ep

E:n@Z_*X2®X2A3 E=
E; Ei
F, Fy

F: X,6Xia -1 @2, F=
)y P

such that T o W o
T -e[ O o

where Z is a Banach space.

As an observation we point out that the denomination of A-relation was chosen
because of the presence of three operators T, 75 and W in {1.1). As we shall see the

. *
properties of two operators T A W may be highly dependent on 74, too.

Example 1.1. It is evident that equivalent operators (T = EW F, where E and F
are bijections) are A-related. Also, matricially coupled operators, i.e.

T +]7! *
=) (13)
are A-related after extension, since we know from [2] that (1.3) holds if and only if T

and W are equivalent after extension and this is a particular case of Definition 1.2 where
Ta =1.

Example 1.2. Let o be a (non-identical) function which maps R into itself, has
a Hoélder continuous derivative and fulfills the Carleman condition a(a(£)) = £ (this
yields a’(£) # 0 on R). This function allows the definition of a Carleman shift operator
(1<p<+o0) :

J: [LP(R)™ — [LPR)]?, (Je)(€) = $(£) = w(a(£)) (1.4)
that is supposed to be a bounded linear operator so that
K = JSr + SrJ

will be a compact operator, where Sg is the singular integral operator

1 T
Se: (PRI - PR, (Sxe)©) = = [ Har
RT—§
A concrete example of a function with the above conditions is a(£) = —£. This particular

function and the corresponding reflection operator (1.4) play a fundamental role in the
study of several problems in mathematical physics as it is demonstrated in [18 - 20, 27].
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We will study the singular integral operator with Carleman shift (see [10 - 14])
T:[LP(R)" = [LX(R)]", T = ArPa+BrQg (1.5)
where . :
Br=3(I+5r), Qr=3(I-S5r)
AT =al+bJ, Br =cl+dJ (a,b,¢,d € [L®(R)]**").

The operator T defined in (1.5) is A-related to the paired operator !)
W: [LP(R)]" @ [LP(R)]" — [LP(R)]" @ [LP(R)]"

[ el o

As a matter of fact, by the Gohberg-Krupnik-Litvinchuk identity (see [12] or [14], for
instance) we have
T 9] - pwe (1.7)
0 Ta| ’
where
Ta : [LP(R)" — [LP(R)]", Ta = A7, Pz + B1,Qr
Ar, =al-bJ, Br, =cl—-dJ
1 i@y J
E:[LP(R)" @ [LP(R)]" — [LP(R))" ® [L*(R)]", E = - :
2 [l =7

Remark 1.3. The above example can be generalized to the case of a Carleman
shift of order m > 2 by use of a generalization of the Gohberg-Krupnik-Litvinchuk
identity that can be found in [11, 12].

Example 1.4. Let A,B € L([LP(R)]*) and C be the aperator of complex conju-
gation (Cp)(€) = ¢(€). Then T = A + BC is A-related to

A B
W=
[CBC CAC]

which is a linear and bounded operator acting on [LP(R)J?". This is another consequence
of the Gohberg-Krupnik-Litvinchuk identity, here represented in the form

oo _tHewr € e fuep
0 —iTi c -c |

2
Example 1.5. Let us consider Wiener-Hopf-Hankel operators on a finite interval
 =]0,1{

fir@) ~C

M [LP(Q)]" — [LP(Q)]", H=PaF (0 +9,- J)f,pnx_,

! Note that we use the same notation for the projectors Fr and Qg defined on [L?(R))" or
[LP(R))™.
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where X = [LP(R+)])", Pa is the projector that acts as the characteristic function on
Q, (Jp)(€) = p(—€), and @, and P, are elements of the LP Fourier multiplier algebra.
Several problems of mathematical physics can be reduced to equations characterized by
this kind of operators. Consider for instance boundary/transmission problems for the
Helmholtz equation involving a slit or a strip [9].

We shall prove that H is A-related after extension to the Wiener-Hopf operator
acting on the line

W R(YoYeYeY)-» R(YoYeYeY)

W = RR®w'|m(vorevey)
with Y = [L?(R)]" and

0 e % 0 0
e ®, —e %@, 0
by = L — — .
0 8‘£¢2 —@1 C'E
0 0 e~ 0
In fact,
H O W 0
[ ] = F (1.8)
0 Ha 0 Ioxyrev?)

where E and F are linear invertible bounded operators defined by

E : Y’@(Ya®Y)- [(PaX®Pi100X ®X)®QrY?]0Y?

0 e %J
LB 0 |0 Il ey 0,400
E = = 0 IQny2 0 BPTT T 4
2 0 —e~%J
0 0 |h]| Iy} ey ¢,-0,0
Ipox —PaF Y (@, +92- J)f|f>|,_+x[x 0 W, | Ix - W W_, —1
E, = 0 . Iﬂl tool X 0 [ —Ix I W_, ]}-
0

0 Ifx
(Wap)(€) = Pryw(€ — @) = Pro(§ —a)

F i [((PaX ® Bi 400 X) ® X) ® QrY?) ®Y? - Pa(Y?6Y) @ Qr(Y? o Y?)

PeFy 0 l Iy
F [ Ipnyrieyny | 0 ] -Qr®s-PrFi_Ignys ,
Qr(®W)ipn(viey?) | lan(rey?) JPgFy o,
-JQr®3 - PrF1 JiQny?
o ~FW, (PeF M@y 482 NFix — Ix)  Flx
Flx 0
0 e %
% = [e*‘f <I>1+<I>2J]'

Additionally, the operator Ha is given by
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Ha : Br 4o X @ X @ QrYZBY? = Py 4ou X © X @ QrY? D Y?

’Ip]l’+m[x 0 0 0 o
0 Ix 0 0
HA = 0 0 IQRY’ 0

e'f (1)1 - ¢2J

0 e ¥
0 0 0 4 Pr + Qr
Relation (1.8) was derived with the help of several space decompositions. We
avoided to calculate the factors in a more compact form, bccausc one can see here
directly that E and F are invertible operators. -

Example 1.6. A-relations after extension are transitive, i.e.

AAB .
. = AAC
BAC

and therefore it is possible to relate questions for compositions of operators which are
A-related (after extension). This is very useful if we are working with higher order
operators where certain iteration processes are applied in order to reduce the complexity
of such operators (see [6, 8]).

Example 1.7. Another situation where the transitivity property is useful appears
when we want to change the spaces in which the operators are defined. Consider, for
instance, Wiener-Hopf-Hankel operators defined between Bessel potential spaces (that
is the usual setting in various applications [18 - 20, 27])

M: H*P(Ry) > HYP(Ry), H=rr_g,F (&1 +® J)F ey (19)

where, considering u and v as multi-indices of n components and 1 < p < +o00, ﬁ“"’(R+)
is the Bessel potential space of distributions over R with support contained in Ry and
HUP(R;) denotes the space of generalized functions on R4 which have extensions into
R that belong to the correspondent Bessel potential space over the full line, H*"?(R).
By rr—R, we denote the operator of restriction from H"?(R) to H*»(R+). In addition,
we suppose that ((§ — )" ®,(€)(€ + i)“‘)il and (€ — 1)*®,(€)(€ + 7)™ are LP Fourier
multipliers and (J)(€) = p(—£).

Using Bessel potential operators, we can guarantee an equivalence relation between
‘H and the lifted operator

Ho : (LP(R)" = [LP(RL)]"
Ho= PrF (=)' ®i(E+0)7" - +(E— )" R2(—E+1) 7" - T) Fliremy e
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with Py = Fr, (see [4, 15, 26] where classes of this kind of operators are analyzed).
On the other hand, one can extend and “double” M, in a way that we construct the
operator

W [LP(R4)]" @ [LP(R4)]" — [LP(R4))" @ [LP(R4)]
W =P, F!

(€ —1)" (@1 — B2(81) 71 @2)(E +14)"  —(£ —1)°®y(B;) (=€ - §)~"

(=€ +4)4(31) 7 By(¢ +1) (=€ +i)"(@1) 7} (=€ = i)™
X Fi[Le (R4 )2

so that Ho A W (see [9] in a similar case). Therefore, using the transitivity property
we find that H defined in (1.9) is A-related after extension to W.

2. General aspects of the transfer of properties by delta
relations

Suppose that we have a A-relation after extension 7 A W. In the following table we
characterize various regularity properties of 7 depending on certain properties of W.

Properties . _ . ker W is ker W

of T dimker W =0 dimker W < 00 complemented is closed
codim im W . . right invertible . . . o
=0 invertible and Fredholm right invertible surjective
codim im W left invertible Fredholm right codim im7 < oo
< 00 and Fredholm ® regularizable ker T is closed
imW is . . left generalized -
complemented left invertible regularizable invertible o B
imwW injecti dimker7 < o0 0 n norinally
is closed injective im 7 is closed o solvable

Tab. 1: Regularity classes of an operator 7 in a A-relation after extension 7 A w
For more details of this classification see {16, 24].
Theorem 2.1. Table 1 holds true, i.e. if T A W and W has the property (z,5) (4,7
=1,...,4) in Table 1, then T has the same property.
Proof. Let 7 : X; — X; and W : ¥, — Y; be bounded linear operators acting

between Banach spaces such that 7 A W (see Definition 1.2). Then by (1.2), as E and
F are bounded invertible linear operators, we obtain:

(i) ker ([g TOA]) o~ kerW.
(i1) im ([g TOA]) is closed if and only if imW is closed. In this case, (X2 ® X24)/

im ([T A]) = Ya/imw.
From (i) and (ii) we derive Table 1 il
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Corollary 2.2, Let T : X, — Xz and W : Y] — Y; be bounded linear operators

acting between Banach spaces such that T A W, and let Tp an operator which satisfies
(1.2). Then W is a Fredholm operator if and only if T and Tp are Fredholm operators.

Proof. This is a direct consequence of (i) and (ii) in the proof of Theorem 2.1 B

Remark 2.3. In general Table 1 is not valid in the converse direction, i.e., we can

not change the roles of 7 and W in Table 1 if we still have T A W. This is due to
the non-symmetric character of the A-relation (after extension). For instance, 7 may
be left invertible, 75 right invertible, and W generalized but not one-sided invertible.
Evidently, one can only say: If 7 belongs to the regularity class (i,j) and 74 to the
class (2',7'), then W belongs to the class (max{z,:'}, max{j,j'}).

Theorem 2.4. Let T : X; — Xz and W : Y, — Y, be bounded linear operators
acting between Banach spaces. In addition, suppose that T and W are generalized
invertible operators. If there is a generalized invertible operator Up : Yia — Yoa such

that
ker ([’g UOA]> ~ kerW (2.1)
. T 0 .
(X220 YQA)/Im ([ 0 UA]) ~Y,/imW, (2.2)
then T A wW.

Proof. Let us denote by 7=, W~ and U, some generalized inverses of 7, W and
Ua, respectively. These generalized inverses allow the following decompositions:

X, =im(T"T)® kerT X2 =imT @ ker(TT ) (2.3)
Y) = kerW @ im(W™W) Y2 = ker(WW™) @ imW (2.4)
Yia = im(U; UA) ® kerUa Yoa =1imUp & ker(UA U&) (2.5)

By hypothesis (2.1) there is an invertible bounded linear operator

T 0
Jy : ker ([0 UA]) — kerW.

On the other hand, from the right-side identities of (2.3) and (2.5) we obtain
. T 0 TT- 0
onafim([o )= ("7 0,05))

Y, /imW ~ ker(WW™).

and from (2.4)

Therefore, attending to (2.2), there is an invertible bounded linear operator

TT- 0 -
J2 : ker ([ 0 UAU;]) — kerf(WW™).
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With those invertible operators we construct operators E and F', that are represented
in the sense of decompositions (2.4) and

. -7 0 7 0
X‘”‘Az‘“‘([ 0 Ugva])e“‘“([o UAD

. 7T 0 TT~ 0
XQ@Y“““‘([O UAD‘B““([ 0 UAU;D

E:Y20(X:80Y2n)— (X20Yn)0 Y,

r 0 0 Lin (diag{T.Ua)) 0
- Iker(WW') 0 0 J2
L 0 Iim w 0 0

F : (XieoVa)eYe— Y6 (X260 Y2n)

- 0 Jl | 0 0
-1
Foo | 0 0 0 Winw-w
diag(T, Us)jim (disgi7-T.0z0a) O 0 0
| 0 0o | J3t 0
where

Wiimw-w) 1 im(W™W) — imW, Wlim(W'W)‘P = Wep
diag(T, UA]|im(diag(’r—’r,U; va)  im(diag(7 =T, U Ua]) — im(diag|7,Ua))

. 7 0
diag(7, UA]|im(diag[7"7',U; Ua)? = [0 UA] ¥

are invertible operators, due to (2.3)-(2.5), with inverses denoted by Wli_n]\(W' w) and

diag(7, UA]I?I:\(diag['T' T.UZUal)’ respectively.

Morcover, note that E and F are invertible bounded linear operators with inverses

E-' . (Xg@YQA)®Y2 qu@(Xg@Yza)
r 0 -J2 . | 0 0
I 0 0 0 ITimw
Iim (diag(T,Ua)) 0 . (11 0
L 0 Iker(diag[TT',UAU;]) J2 0
F-bo YIG;(Xz@Yza)—'(Xl@YlA)eY'Z
~ . -1
0 0 } diag(T, UA]g im (diag{7 -7, UZ Us))
~1 :
F-l - Jl 0 0
0 0 0 Ja
L 0 Wimw-w) 0 0

With the operator Ua given by hypothesis and the invertible bounded linear operators
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E and F we obtain

T 0 0
0 Us 0 |=E V(}) IO]F,
0 0 Ig 2

'

where Z; = Y; and Z = X; @ Y,a. Therefore, we have a A-relation after extension
(1.2) with

U, 0
Ta : Y1a®Y, = Yoa Y2, 7a=[ 4 ]

0 Iy,
and E and F given above i

For bounded linear operators acting between Banach spaces

VXieX;-Y oY, V=V

1,2
1,2

we shall denote by R;;(V) the restricted operator of V to the first component spaces,
Rn(V): X1 -1, Ru(V)=Vi.

Theorem 2.5. Let T : X; — X3 and W : Y], — Y, be bounded linear operators
such that T 1s A-related after eztension to W in the sense of Definition 1.2. In this
case:

(i) If W is a generalized invertible operator and W™ : Y, — Y} is a generalized
inverse of it, then T is also generalized invertible and ‘

T : X2 — Xy, 7_=R11'(F_l [M()) IOZ] E_]) ' (2.6)

13 a generalized inverse of T.

(ii) If T and Tao (cf Definition 1.2) are generalized invertible operators, and T~
and T are generalized inverses of T and Ta, respectively, then W is also a generalized
invertible operator and

_ _ T- 0
W- 2Y2—*Y1, W =R11 (F[ 0 TA_]E)
isa generalized inverse of W. '
Proof. (i) If W™ : ¥, — Y is an operator such that WW~W = W, then
WO [w- o][w o] _[wWo
0 Iz 0 Iz 0 Iz| |0 Iz|"

Thus, by (1.2), we have

A P L (A A
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If we write
W~ 0
F! E7'VXo® Xoa — X, ® X0
0 Iz
in the form
w- 0 A *
-1 -1 _
F 0 IZ]E = [* *] (2.8)

(where the right term was abbreviated) and substitute (2.8) into (2.7), then a direct
computation shows that

A Xy =X,  A=R, (P |V g
0 Iy

is a generalized inverse of 7.

Proposition (ii) can be proved in a similar way and therefore is omitted here B

According to the proofs of the above theorems, we can derive similar results for the

special case 7 A W instead of T A W. For instance, about the generalized invertibility
of a A-related operator, we have the following result.

Corollary 2.6. Let T : X; — X, be A-related to W : Y] — Y, in the notation
of Definition 1.1. If W is a generalized invertible operator and W~ : Y, — Y] is a
generalized inverse of W, then T is also a generalized invertible operator and

T X, - Xy, T_=R11(F_1W_E—l)

1s a generalized inverse of T.

Theorem 2.7. Suppose that T : X, — X3 i3 A-related after exztension to W :
Y1 — Y2, If W™ is a generalized inverse of W, we obtain projectors onto the image and
the kernel of T, respectively, in the form

PierT = Ru(F™1) (Iy, = W™W) Ry (F)

WWw- 01 ..,
P,mf-Rn(E[ ’ IZ]E )

Proof. If W~ is a gencralized inverse of W, then by Theorem 2.5 we know already
that 7 is also generalized invertible and additionally we can present a generalized inverse
T~ of T. In this sense, the first part can be proved by a computation of Ix, — 77T,
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with the help of (1.2) and (2.6),

w- 0 w 0
I _ T — _ -1 -1
X\ T T le R“ (F [ 0 Iz] E ) R]] (E 0 IZ] F)

A A T 0
=TIy —
x = R ([Azl An]) R ([0 TAD
An7T AIZT])
=Ix, — R
X ([AHTA AnTa
W~ 0 W 0
_ -1 _ -1 -1
cmien-m(r P Ao l) 2]
- Iy, 0 W-W 0
— 1 1 _
=m (2[5 5[0 2))F)
gl =-WwWwao
=R,,(F‘[Y 0 O]F)'
Therefore,
Be.r = RII(F_!)(IYI - W_W) Rll(F)
The formula for P71 is proved in an analogous way B

Finally, we present an identification of the structure of A-related after extension
operators.

Theorem 2.8. Consider a Banach space X and two bounded linear operators T :

X—oXandW: X-X. If T A W, then there are bounded linear operators A, B, C
and D between Banach spaces such that T and W admit the representations

T =Rn(A-BD7'C) (2.9)
W=R,(D-CA™'B) (2.10)
where A and D are invertible operators with inverses A~ and D!, respectively.

Proof. From the hypotheses there are Banach spaces Z, X, and X;a, a bounded
linear operator 7a : X1a — X2a, and invertible bounded linear operators £ : X Z —
XPXoaand F: X B X4 - XD Z so that

HARS

0 TA 0 IZ
Therefore,
A: XD X1a = X Xaa, A=EF
B:X®Z > X® Xaa, B=E[ngwg]
C:XXia—- X602, C=F
D:X®Z-X®2 p=|x 9
. . . 0 Iz L
are bounded linear operators that fulfill (2.9) and (2.10) with A=! = F-1E-! and

D'=Dsg
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Remark 2.9. The above result is deeply related with systems theory. In particular,
it is well-known that if, for some bounded linear operator U, A = A(z) = zIx —U (where
X is a complex Banach space), then

W(z)=D-CA™'B (2.11)

is a realization [1] of W(z).

In the sense that (2.11) can transform some input data to an output, (2.11) is called
a characteristic operator function or a transfer function. Therefore Theorem 2.8 implies
that A-related operators after extension (acting between the same Banach space) can be
interpreted as restrictions to the first component spaces of some characteristic operators.

On the other hand, the operators A— BD~!C and D~ CA™' B are said to be Schur
coupled (3]. In the finite-dimensional case this notion allows special relations between
matrices (see [3] where a characterization of Schur coupling in terms of Hermitian ma-
trices is presented). Therefore (2.9) and (2.10) tell us that the A-related after extension
operators 7 and W can be seen as restrictions to the first components of Schur coupled
operators. ’

3. On singular integral operators with Carleman shift

In this section we like to present two concrete applications, first the explicit generalized
inversion of certain composed operators and second the asymptotic representation of
solutions of the corresponding equations under sufficient smoothness assumptions.

Let us consider once again the operator 7 with Carleman shlft in (1.5). Suppose
now that detAw # 0 and detByy # 0, where

a(6)  d(E)
Ba(8) clal8))
o(€) ¥
d(a(€))  a(a(8))

Aw(f) =

:I c (Lw(R)]2nx2n

¢ W(f) [ ] € [LOO(R)]QHX2",

We say that : .
G =By, Aw (3.1)

admits a so-called (see [21: Chapter V, §5)) generalized factorization in [LP(R)]?™ (1 <
p < +00), if

G() = G-(E)D(E)G+(6) (€ €R) (3.2)
where
ding [( 22O\ (A=OY™ . oy
b =ans|(535) 1 (558) ] memnw0=e

/\:lG_ € QRILP(R)F"xzn, ’\-:lc"f' € ﬁ.{[Lq(R)]anz" ‘
AFIGIY € RILP(R)™™27, AZIGT! € Qu[LI(R)™ (9= ;B5)

G-PrGZ' € L([LP(R)*").
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We will use the notation

gnx: G124 l gg—il:) g(;il)
1 1
Gs = [ J and Gy = [ (-1) (—n)]
921+ G224 91+ 922+

where gkli,g,(‘,_il) (k,l = 1,2) are n x n blocks. When 7 is a 2n multi-index, 5 =
(7]1,...,172,,), let ’

C')o =diag[(”‘,...,(""] and (M = diag[<'ln+l’”"c'l?n]‘
We also recall that ¢(€) = p(a(€)).

Proposition 3.1. If the mairiz function G (see (3.1)) has a generalized factoriza-
tion in [LP(R)|?", then the operator with Carleman shift T, defined in (1.5), is general-
ized invertible, and a generalized inverse of T is given by

T° =
1 - 5 - -
5 | @108 P + 911-Qr) (A= /04) ™™ Pr + Qr)(ca — db) ™ (¢{; Va — g5 1d)

+ (9374 Pr + 912-Qr) (A= /24) ™" P + Qr) (cd — db) ™" (¢4 M — ¢{51d)

—_—

+(921-(J = Qr — K) + 947 (Qr + K)) (I ~ Qr = K + (A_/33)™* (Qr + K))

T, _ ]

x (cd — db)~ (917 Da - ¢{7Pd) T + (§22(I - Qr — K) + 955 7(Qr + K))
H. _ h

X (I = Qn - K +(N /A1) ™ (O +K))(ci — @)1 (@05 Pa—gVd)  (33)
R 01-00) (30 P+ Q- 7 Gl 0

+ (950 P + 912-Qr) (A= /A4) ™" Pr + Qg)(c — db) (¢85 e — g7 D8) g

—

+ (G22I - Qr = K) + ¢37(Qr + K)) (I — Qr — K + (A_/33) ™" (Qr + X))

-1 e~ —~— —~—

x(ca—db) (9132¢ ~ 017 8) + (9~ - Qr — K) + 953 (@= + K)

x (I = Qr = K + (N /33)"" (Qr + K))(c — db)~1 (9% ¢ — o4 V)

where .
A =E2i  (E€R) (3.4)
and K is the compact operator
1
K= E(JSRJ + Sgr) (3.5)

Proof. The generalized factorization (3.2) of G implies (see [21: Chapter V, §5])
that W is a Fredholm operator. Therefore W is a generalized invertible operator and

W™ = (GI'Pr + G_Qr)(D™' Pr + Qr)GZ' By}, (3.6)



590 L. P. Castro and F.-O. Speck

is a generalized inverse of W (see [21: Chapter V]). Consequently, from (1.7) and Corol-
lary 2.6 we obtain a generalized inverse of T,

¢
1

' 1 - — — -
T~ =Ry (EW E™Y) = §(w}l Y awD +WQT+awin,  (3.7)

where we use the notation
- [wf;> wfy]
Wil Wi
with W,((,_) : [LP(R))® — [LP(R)]". Finally, the formula of a generalized inverse of T
presented in the theorem is obtained by a combination of (3.6), (3.7) and

JPr=(Qr+K)J and  JQr=(Pr—K)J,

where K is defined in (3.5) i

Remark 3.2. Other generalized inverses of 7, for instance a reflexive one.or the
Moore-Penrose inverse, can be obtained if we replace (3.6) by different kinds of gener-
alized inverses of W that can be constructed following the ideas of [25].

Now let us introduce some additional assumptions. We consider the case where
G is an invertible Holder continuous matrix function on R (cf. condition (i) in the
next theorem), with a diagonalizable jump at infinity (see condition (ii) in the following
result). Actually, the last assumption can be replaced by the Jordan form case. This will
imply only a reorganization of the elements in the final representation of a generalized
inverse of T presented below.

Theorem 3.3. Suppose that G (see (3.1)) has the following properties:
(i) G € G[CA(R)]2"*2" for some B €]0, 1].
(ii) There are constant (n x n)-matrices Vi (k,1 = 1,2) and complex numbers
ni (7 =1,...,2n) such that
! 1< R <1 (p €]1,+00])
- en: < — ,
P S p

u V2
G_l(+oo)G(—oo) = [

21 Va2

(iii) 8 > i — minj Rep;. '
(iv) W : [LP(R)]?*" — [LP(R)]?" is a Fredholm operator.

Then the singular integral operator with Carleman shift T (see (1.5)) is generalized
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invertible, and a generalized inverse T~ of T is given by (3.3) with

g = Vidd ™ T (BT, gl = Viad 3T T (B
gy’ = VadT" T (05, ad)) = Va3 4 (B
g11- = [(Gu(-i-OO)Vu + Gia(+00)Vor)AZ™ + (H—)u]’\:x'

g12- = [(Gra(+00)Vaz + Gra(+00)Vaz) A" + (Ho)rg| AT

91— = [(Ga1(+00)Vi1 + Gaa(+00)Var)AZ™ + (H_)y, | A2

g22— = [(021(+00)V12 + G2a(+00) V) A" + (H—)zz]/\:Kf'
gf:) = 922—/(911—922; - 912—@21—), 95;1) = —912—/(911—922— - 912—921—)

( )

-1 -1
921_) = —921—/(911—922- - 912—921—), ggz— = 911-/(911—922— - g12-921-)

where Ky,..., Ky, are the partial indices of a generalized factorization of

G Gn]

G =B;'Aw =
W [Gzl G2

and (Hi)r are n X n elements of

_ [(H—)n- (H-h2
CLHDn (Ho )
(Hi)n  (Hi)iz
(Hi)ar  (Hi)z

J € QR[Lp(lR)]hxen

Hy =

] c HR[Lp(R)]2nx2n

such that
G(+00)V + H_diag[A™,...,A™"]

y N

L® R 2nx2n 3.8
V+H+diag[/\1‘,...,,\1="] } € G[L*(R)] (3.8)

for a constant matriz, with n x n elements Vi,
Vih V2

Var Vo

Proof. From the equality PRGPr + Qr = W(I — QrG PRr), where I — QrG Py is an
invertible operator with inverse given by I + QrG Py, it follows that

W = BywW : [LP(R)?" — [LP(R)™
is a Fredholm operator if and only if

PG gLy : FRILP(R))*™ — Pr[LP(R)]*"



592 L. P. Castro and F.-O. Speck

is a Fredholm operator as well. Therefore, from [7: Theorem 2.2] (see also (23] for some
particular cases) we obtain that G admits a generalized factorization (see (3.2))

6(6) = G-(onieg [(1-E1)" . ()™

G+(€)

with
G- = (G(+00)V + H_diag[A",..., AT ])diag[AZ" "™, ..., AR Tn ]
Gy = diag[ADHe, . AT (V4 Hodiag (AT, A1) 7
where V is a constant matrix, and H; € Pr[LP(R)]?"*2" and H_ € Qg[LP(R)]>"*?" are

such that (3.8) is fulfilled. Now the properties of A-related operators, and in particular
an application of Proposition 3.1, imply the statement B

Corollary 3.4. Let us substitute conditions (ii) and (iv) in Theorem 3.3 by the
following ones:

(ii) There are 2n complezx numbers n; (j =1,...,2n) such that

1 1
— —1<Rep; < - p€|]l,o
> i<y (p €]1,00[)

lim_ding [(i’%) (j+_§g)] = G(2o0).

(iv) W : [LP(R)]?" — [LP(R))?" is an invertible operator.

Then, with the help of the methods ezposed in [7] and (23], we find an inverse of T. Due
to the large size of the formulas we do not present T~! explicitly.

Now we will study the asymptotic behavior of the solution ¢ € [LP(R)]* (1 <p <
0o) of the equation

Te =9 € [LA(R)" (3~9)

where

A7 =a(E)T +b(8)J
Br = o(6)I +d(€)J

and a, b, ¢, d are continuous n x n elements such that

T =ATR + BrQr with {

1
c(§)a(a(§)) — d(a(€))b(€)
a(a(£))a(§) — b(a(€))b(&)  ala(£))d(§) — b(§)e(a(€))

c(©)b(a(§)) — a()d(a(€))  c(a(§))e(€) — d(«(£))d(€)

G() =

X

exists and represents a Holder-continuous (2n x 2n)-matrix function on R, of order v,
admitting (different) limits at fco. In the study of equation (3.9) we will consider the
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case where ¥ is such that there exists

(T + d(eY) !
f(o0) = Jim <(€_i)z [( (1 +d(e) )_,w(é)]
o (5(E) + a(€)T) ™ 9(€)
+ ({ _i)s l:((c(f)[+d(f)J)_l¢(E))l])
(BT + a(€)T) "' u(8))’
and

g1(o0)

B [gz(oo)] '

i [ (O +d©)7) M u(©)
g(o0) = lim 27 .
| S O +a(6)d) T ()
Let us introduce the matrix functions -
Yo.(6) = diag [(6 — i)™ ', ... (6 — i)™ 7]
Zy (E) =diag [(€+)™™(E -7, ..., (E+i)7™(E-i)7"].
By [¥5.(€)]+ and [Z,,(€)]+ we denote the boundary values of the corresponding matrices
Y;.(€) and Z,,(€) on R, respectively. Similar notation is used for 7,. instead of Na-

Theorem 3.5. Consider the above assumptions, and additionally suppose the fol-
lowing:

(i) There is a constant C such that

161 — &)
T+ &)1 + |&))”

for £1,62 < =1 and &,&; > 1, separately (see [22)).

IG(61) - G(€) < C

(ii) The matriz G(+00)G~!(—00) has 2n distinct 2 eigenvalues with logarithmic
values 27 (F =1,...,2n) such that

1 1
lST?éZnRe(nj —nk) <v and o 1 < Re(n;) < >

(iii) There are four constant (n x n)-matrices Ty (k,! = 1,2) such that T =
(Twi]f 1=y 33 an invertible matriz which fulfills

G(+0)G ™} (—c0) = Tdiag[e?™™, ... 2 mn] 771,

We will use the notation

w = min (u - ISI},lka%(Zn Re(n; — nk),1 — ér}z%)én Re(nj)) —-€

) This assumption can be dropped on the price of rather complicated formulas, cf. Theorem
3.3.
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for an arbitrary small e > 0. Let ¢ € [LP(R)]". If there is a solution in [LP(R))*" of
the equation

[%] B [(c(cI+dJ)“ + 5(bI +aJ) 1)y (3.10)

w2| | (d(cI+dJ)' +abIl +aJ) )y’

where W is defined in (1.6), then, for £ — *oo,

p(€) = % [91(00) + (A1T1 + AT ) (A= /A4)™ (= 00) Y. ())+ (1 + O(IEI™™))
+ g2(00) + (Ai1Thz + A2T22) (A-/A4)"** (- 00)[Yy.. (E)]+(c2 + O(I€] ™))
+ T11{Z4. (6))-(c3 + O(IE17*)) + Trz2(Zy.. (§))-(ca + O(I€]™™))
+ (AsTii + AaTa) (A /A4)" (—00)[Yy. (@(ED)]+ (1 + O(la(§) 7))
+ (A3Thz2 + AsTo2) (M- /A4) ™" (—00) Y., (a(§))]+ (e2 + O(l(§)] 7))
+ Ta1[Zn. (a(€)))-(c3 + O(|(EN™™)) + T22( 2., (a(€))]-(ca + O(|a(€)I ™))

is a representation of a solution of equation (3.9), where c1,c2,c3 and ¢4 are constant
(n x 1)-matrices which depend on the coefficients of G and on ¥ and

4, = dolz))e(=o0) - d(~oco)d(a(~00))
a(—00)c(a(—00)) — d(—00)b(a(—00))
4, = delz0))b(=00) - d(—o0)a(a(-o0))
a(—00)c(a(—00)) — d(-o0)b(a(-o0))

_ a(=00)d(a(—00)) — b(a(—00))c(~00)
a(—00)c(e(—00)) — d(—00)b(e(—00))

_ a(—o0)a(a(=00)) — b(a(—00))b(—c0)
7 a(—o00)e(a(—00)) ~ d(~00)b(a(—00))’

Proof. From the equivalence relation

A3

A

ByW=W (=GP +Qr) (3.11)

and the hypotheses we know that there is a solution of the equation

1

w [so,] _ [(e(s) +d(€)J) 7 (€)

_ . (3.12)
P2 (b(€) + a(€)T) ™ %(€)

and this solution is the same as the solution of equation (3.10). Under the assumptions
of the theorem we can apply [22: Theorem 3.1] to equation (3.12) and, consequently,



Delta-Related Operators 595

obtain the following representation of a solution of equation (3.12), for £ — +o0:

(2] - [

w2(§) g2(00)
- T1y (A-/A4)™ (~o0) Tn(/\—//\+)"“(—°°)}
+ G (—o0)
T (A-/A4)"(=0)  Taz (A-/A4)"*(~00)
Y,.(6) 0 J [clw(lsrw)J (3.13)
0 Yo.(€)], Lez+O(lE]™™)

s [Tnzn.(c) Tnzn..(f)J [c3+0(|é|‘"')}
T0120.(6) T22Za. (6)]_ [ea+0O(E]™*) |

where ¢y, ¢z, ¢3 and ¢4 are constant vectors and

[Tn Ty,
T =
Ty Tp

1s a constant invertible matrix so that
G(+00)G ™} (~o0) = Tdiag[e"‘"‘ yene ,ez"‘”’"]T_l.

Further, from the A-relation (1.7) and from (3.11) we obtain that equation (3.12) is
equivalent to

v
[%((c —dl)(c+dI) + (b= al)(b+al) )y |

[ T(301 + 3792) J
Ta(301 — 3792)

Therefore, %tp; + %J(pg is a solution of the equation Ty = 4 and from (3.13) we arrive
at the desired representation B

4. Further aspects about the type of the relation

In brief we present some additional cases for the discussion of properties of operators T
which are related to operator matrices W with a “simpler structure”.

Example 4.1. Let C C £(X) be a class of bounded linear operators on a Banach
space X and algC the subalgebra of £(X) that is finitely generated by operators from
C. Then every T € algC is equivalent after extension to a pure C-operator matrix, more
precisely

7 0
= EWF
0 I{\’m—l
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where m € N, Ixm-1 € L(X™') is the unit operator, E and F are upper/lower
triangular operator matrices whose diagonal elements equal the unity I € £(X), and
W € C™X™ (see [8]). For instance,
I 0
. (4.1)

T, +ToTs 0 I -7,
o 1| lo r T I

T T,
T3 I

Consequently, a generalized inverse W~ of W implies a gencralized inverse T- =
R1,(W™) of T where R), denotes the restriction on the first element of a matrix.

Let us consider the particular case where X = [L?(R4)]" and C denotes a class of
Wiener-Hopf operators with Fourier symbols in [L>°(R)]**", which is a large class for
the applications [17]. We like to study the singularities of the solution of an equation
T = 3 for T € algC without smoothness assumptions on the Fourier symbols of the
operators if ¥ is smooth on Ry and rapidly decreasing (for somplicity). Note that, in
the half-line case, the (Hilbert) Sobolev space setting can always be translated in terms
of the present situation by the use of the lifting procedure {28].

Theorem 4.2. Under the above assumptions and
W=P,F ' FeGL(L*(Ry)™™)
the unique solution ¢ = [pj]j=1,..n of the equation T =1 satisfies
oi(z) = O3 as Ja| =0

where v; are the numbers provided by a bounded operator (or strong) factorization (see
(5,24]) of A = F~'® - F with respect to the intermediate space (7]

Z=H"}R)® ---@ H™*R) (lvjl<}).

Proof. The solution is representable by the first n components of the nm-vector

0 0 I[LZ(R+)]n(m—l) 0

I (R n 0 '(/)
=[[L(+)1 ]WIIW:I[O],

* lewope-n

where W3! = Py A7' are operators on [L%(R4)]"™ generated by a strong factorization
of A,

A=A_Ay,

with respect to the intermediate space Z so that Ay are invertible operators having the
factor properties

A4[PR)™ = ARy @ © H"A(Ry)
A-[H™*(R-) @ © H™*(R-)] = [L*(R-)]™™

Thus a theorem of Abel type yields the same result for ¢ as for the first n components
of the solution of the corresponding Wiener-Hopf system (23]
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Remark 4.3. Other properties which are transferred are, for instance, regularity
properties of the operators; if ® G G[C(R)|Pmxnm then T is Fredholm if and only if

det(;z‘l> +oo) + (1 - p)®(-o0)) #£0 (¢ €]0,1])

otherwise 7 is not normally solvable; if & is continuous but not invertible on R, then 7
is generalized invertible (with infinite defect numbers) if and only if rank q’({) = const
otherwise 7 is not normally solvable.

The spectra and essential spectra of 7 and W are not so directly related We can
modify, e.g., formula (4.1) and obtain

TV-M T
.;Ts

I 0

' TY+TT5-M 0 I
i T3 I

0 I O’I

i.e. T — AI and the middle factor W, satisfy the same relation as 7 and W do. So
at least we obtain explicitly esssp7 = {/\ By is 2-singula.r} where ®, denotes the
Fourier symbol of W,. :
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