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Abstract. As a central topic certain relations between operator matrices are investigated 
which are called delta relations. The main aim of these relations is to reduce questions about 
classes of operators without invertibility symbol to those which admit an invertibility symbol. 
Particular attention is devoted to the generalized inversion of such operators. Different kinds of 
relations are introduced in order to analyze the "information" contained in the symbols of the 
related operators. Several examples are considered and the theory is also applied to singular 
integral operators with Carleman shift. Asymptotic solutions of equations characterized by 
those operators are presented. The approach simplifies several known results, makes the theory 
more rigorous from the operator theoretic point of view, and allows further conclusions in a 
very compact form. 
Keywords: Delta-related operators, factorization theory, generalized inverses, singular integral 

operators with Corleman shift 
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1. Basic definitions and examples 
The goal of this paper is to present a relation that is suitable to connect bounded linear 
operators with different structures. It will guarantee the transfer of certain properties 
between different classes of operators. Because of the needs Of applications, we are par-
ticularly interested in the study of regularity properties and the explicit representation 
of generalized inverses of the present operators. 

Definition 1.1. Let T : X 1 - X2 and W : Y1 - Y2 be bounded linear operators 
acting between Banach spaces. We shall say that T is Li-related to W (briefly T Ls W) if 
there is a bounded linear operator acting between Banach spaces 7, : X 11 . -+ X2r, and 
two invertible bounded linear operators E : Y2 -* X2 e X2A and F : X1 Xi - 
such that

0 TA	
EWF.	 (1.1) 

L. P. Castro: Universidade de Aveiro, Departamento de Matemática, 3810 Aveiro, Portugal 
F.-O. Speck: Instituto Superior Técnico, Departamento de Matemática, Av. Rovisco Pais, 
1096 Lisboa Codex, Portugal 
This research was partly supported by Junta National de Investigação CientIfica e Tecnologica 
(Portugal) and, the Bundesminister für Forschung und Technologie (Germany) within the 
project "Singular Operators - New Features and Applications", and by a PRAXIS XXI project 
under the title "Factorization of Operators and Applications to Mathematical Physics". 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



578	L. P. Castro and F.-O. Speck 

Definition 1.2. Let T X1 -+ X2 and W : Y1 -* Y2 be bounded linear operators 
acting between Banach spaces. We shall say that T is Li-related after extension to VV 

(briefly T W) if there is a bounded linear operator acting between Banach spaces 
TA : X 1 A - X2 and invertible bounded linear operators

1€

	

E:Y2 Z—X2 X2A ,	E= 
E1 E12 

E21 E22 

1 F12

	

F:X I XlA —^YIZ,	F=
F1

F21 F22 

such that
[,]=E[']F,	 (1.2)€

where Z is a Banach space. 
As an observation we point out that the denomination of L-relation was chosen 

because of the presence of three operators T, TA and W in (1.1). As we shall see the 
properties of two operators T A W may be highly dependent on TA , too. 

Example 1.1. It is evident that equivalent operators (T = EWF, where E and F 
are bijections) are s-related. Also, matricially coupled operators, i.e. 

	

1 T * 1 W ' -	1 

[* * j	[* wj'	 (1.3) 

are is-related after extension, since we know from [2] that (1.3) holds if and only if T 
and W are equivalent after extension and this is a particular case of Definition 1.2 where 
TA = I. 

Example 1.2. Let a be a (non-identical) function which maps R into itself, has 
a Holder continuous derivative and fulfills the Carleman condition a (a(e)) = e (this 
yields a'() 0 on R). This function allows the definition of a Carleman shift operator 
(1 <p < +oo)

J LL(1R)I' -4 [L"(R)]'2 ,	(J)()	() = çQ(a())	(1.4) 

that is supposed to be a bounded linear operator so that 

AC = JS + SJ 

will be a compact operator, where SR is the singular integral operator 

SR : [L(R)I'3	[L"(R)]'1 ,	(SR)()	
1 J cL)dT - 

A concrete example of a function with the above conditions is a() = -. This particular 
function and the corresponding reflection operator (1.4) play a fundamental role in the 
study of several problems in mathematical physics as it is demonstrated in [18 - 20, 271.
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We will study the singular integral operator with Carleman shift (see [10 - 14]) 

T: [L'(R) ] Th - [L(R)]',	T = AT Pk + BTQ	 (1.5) 

where
Pii=(I+Sjr{), Qa — ( I — Sii) 
AT = al + bJ, B7 = ci + dJ	(a, b, c, d e [Loo(R)jxhl) 

The operator T defined in (1.5) is /.-related to the paired operator 1) 

W: [L"(R)]'	[L'(R)]'2 - [L"(IR)] Th	[LP(R)1 

w= [	+ ij 
[c bl	 (1.6) 

Qi. 

As a matter of fact, by the Gohberg-Krupnik-Litvinchuk identity (see [121 or [14], for 
instance) we have

	

I
' 0	EWE'	 (1.7) 0 Ta 

where

- [L(R)]', Ti,. = A-3-P, + BT, Q 

AT,,, =aI — bJ, BT,,, =cI — dJ 

	

E [L'3 (lR)]'	[L'(R)]'1 - [LP(R)]'	[LP (R)I n , E= 1 
'[LP(II)J" 

I[LP(a)]" —J 
Remark 1.3. The above example can be generalized to the case of a Carleman 

shift of order in > 2 by use of a generalization of the Gohberg-Krupnik-Litvinchuk 
identity that can be found in [11, 12]. 

Example 1.4. Let A, B E £([LP(R)]') and C be the operator of complex conju-

	

gation (Co)() =	Then T = A + BC is i-related to 

A B€
CBC CAC 

which is a linear and bounded operator acting on [LP (R)J 2 '1 . This is another consequence 
of the Gohberg-Krupnik-Litvinchuk identity, here represented in the form 

T	0- i i( LP (R)J n	C w ['[L'(R) ln i[LP(a)]n 

	

'ILP(I)]	C	C	—C 
Example 1.5. Let us consider Wiener- Hopf- Hankel operators on a finite interval 

Q =jo, i

[LP()]",	N = P1'( 1 +'I'2 

' Note that we use the same notation for the projectors Pnt and QR defined on [ LP (R)I' or 
[L(l)]2'.
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where X [L(R+)], Po is the projector that acts as the characteristic function on 
Q, (Jp)() = (—), and 'I and 2 are elements of the LP Fourier multiplier algebra. 
Several problems of mathematical physics can be reduced to equations characterized by 
this kind of operators. Consider for instance boundary/ transmission problems for the 
Helmholtz equation involving a slit or a strip [9]. 

We shall prove that fl is -related after extension to the Wiener-Hopf operator 
acting on the line

W: P(YYeYY)—+ P(YYY(BY) 

W = PrRWIPa(YOY®YY) 
with Y = [L(R)1 and

	

o	e	0	0 

1	—e	0 

o eI 2	—	e 

	

o	o	e'	0 
In fact,

0 
=E	

0
	IF
	 (1.8) 

0 71	0 IQ(y2y2) 
where E and F are linear invertible bounded operators defined by 

E	Y2(YY)—* [(PnXFi+c,c,1XeX)QrtY2]eY2 
I	 1 E 1	0 I 0 1 F Iy2	0	eJ

eJ	2 + E =	0 jg,1y	0	 0	—eJ	I 
L 0	0	Iy ] [Iy2	—eJ	2 - iJ j 

	

=	 II+Ix	 1 1p 0
	

PF'(i +	)i+	
0 

x 0 
E1	

-	1 F' 
0	 0	 Iix	[ —Ix 

I 

(Watp)() = Pt( — a) = P+(e - a) 

F : [((PrzX F) 1 +r1X) X) QIRY2]	- PR(Y2 Y2) Q(Y 2 e Y2) 

0 I 1y2 1 
F— [
	

'P(YY)	I	0	1 1 — QR3	IQ, ,Y2 IQY2 
QR(	

I 

	

-	w)1p(y2y2) IQ(Y2Y2) j
L	

JPRF1	0 
—JQ 3 PRF1 J1QY2 

F1 = [ 

_FW_ 1 (P+F 1 +2	— i.)	'x 1 

	

.FIX	 0 j 
[ 0	e 

	

=	e 

Additionally, the operator fl is given by
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F1+c,o1XEDXQjiY2 y2	l: 1,+001x XQY2 (1) y2 

0	0	 0 

o	ix	0	 0 

Ha	0	0 IQy2	 0 

0	e' 
o	0	0

e'	'I I - 

Relation (1.8) was derived with the help of several space decompositions. We 
avoided to calculate the factors in a more compact form, because one can see here 
directly that E and F are invertible operators. 

Example 1.6. &relations after extension are transitive, i.e. 

ALB) 
*	. ALC 

BCJ 

and therefore it is possible to relate questions for compositions of operators which are 
is-related (after extension). This is very useful if we are working with higher order 
operators where certain iteration processes are applied in order to reduce the complexity 
of such operators (see [6, 8]). 

Example 1.7. Another situation where the transitivity property is useful appears 
when we want to change the spaces in which the operators are defined. Consider, for 
instance, Wiener-Hopf-Hankel operators defined between Bessel potential spaces (that 
is the usual setting in various applications [18 - 20, 27]) 

?: H(R) -4 H"(R+),	i-i: =	 + 2 J).F	 (1.9) 

where, considering u and v as multi-indices of n components and 1 <p < +o, H''(R+) 
is the Bessel potential space of distributions over R with support contained in and 
H''(R+) denotes the space of generalized functions on IR+ which have extensions into 
R that belong to the correspondent Bessel potential space over the full line, H°'P(). 
By r R ...jR+ we denote the operator of restriction from H''P (R) to H° P (R+). In addition, 
we suppose that (( - i )°j(e)( + i)' and ( - i )2()(e + i)	are LP Fourier 
multipliers and (Jcp)(e) = 

Using Bessel potential operators, we can guarantee an equivalence relation between 
N and the lifted operator 

N0 : [L'(R+)] -4 

No = P.F' (( - j)V41( + j)_U . +( - j)V42(_ + i) — 't . J) .FI[LP(jR+)]
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with P.. = PR (see [4, 15, 261 where classes of this kind of operators are analyzed). 
On the other hand, one can extend and "double" 11ü in a way that we construct the 
operator 

W : [L"(lR)]"	[L"(R+)]' - [L'(R+)]' 
W=P 

-	- I2(1Y)42)( + j)_u	( - j) v c 2 ()_1(	- j)V 

(- + i) u ( i )_ I(e + i)	(_ + i)u(y(_ 
X 

so that	L W (see [9] in a similar case). Therefore, using the transitivity property 
we find that 71 defined in (1.9) is L-related after extension to W. 

2. General aspects of the transfer of properties by delta relations 

Suppose that we have a L-relation after extension T z W. In the following table we 
characterize various regularity properties of 7 depending on certain properties of W. 

Properties
dim ker W = 0 dim ker W < oo ker W is	i ker W 

of T complemented is closed 
codim im W right invertible 
= 0 invertible  and Fredhotm  right invertible surjective 

codiin im W left invertible Fred holm right codim im T < 
cc and Fredholm  regularizable ker T is closed 

im W is left invertible left generalized n. n. complemented  regularizable invertible 
im W dim ker T < cc normally
is closed injective im T is closed n. n. solvable

Tab. 1: Regularity classes of an operator T in a &relation after extension 7 W 
For more details of this classification see 116, 24]. 

Theorem 2.1. Table 1 holds true, i.e. if T i W and W has the property (Z', j) (i,j 
= 1,... ,4) in Table 1, then T has the same property. 

Proof. Let 7 : X1 - X2 and W : Y1 —* Y2 be bounded linear operators acting 
between Banach spaces such that T i W (see Definition 1.2). Then by (1.2), as E and 
F are bounded invertible linear operators, we obtain: 

(i)ker([	
TA]) 

(ii) im ([ .]) is closed if and only if imW is closed. In this case, (X 2 X2A )/ 
im([ To ]) Y2/imW. 

From (i) and (ii) we derive Table ii 
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Corollary 2.2. Let T : Xi - X2 and W : Yj - Y2 be bounded linear operators 
acting between Banach spaces such that T z W, and let TA an operator which satisfies 
(1.2). Then W is a Fredholm operator if and only if T and TA are Fredholm operators. 

Proof. This is a direct consequence of (i) and (ii) in the proof of Theorem 2.1 I 
Remark 2.3. In general Table 1 is not valid in the converse direction, i.e., we can 

not change the roles of T and W in Table 1 if we still have T A W. This is due to 
the non-symmetric character of the /.-relation (after extension). For instance, T may 
be left invertible, TA right invertible, and W generalized but not one-sided invertible. 
Evidently, one can only say: If T belongs to the regularity class (i,j) and TA to the 
class (Z", j'), then W belongs to the class (max {i,i'}, max {j,3'}). 

Theorem 2.4. Let T : X1 - X2 and W : Yj - } 2 be bounded linear operators 
acting between Banach spaces. In addition, suppose that T and W are generalized 
invertible operators. If there is a generalized invertible operator UA YIA -+ Y2A such 
that

U(X

(1
ker T ° 1"	kerW	 (2.1) 

o UAJ) 
T 0	

Y2/imW,	 (2.2) 2Y2A)/im0 UAJ) 

then T A W. 
Proof. Let us denote by T, W and UZ some generalized inverses of T, W and 

UA, respectively. These generalized inverses allow the following decompositions: 

X1 = im(TT) ED kerT	X2 = imT ED ker(TT)	 (2.3) 
Y1 = kerW ED im(WW)	1'2 = ker(WW) imW	(2.4) 

= im(UUA)kerUA	Y2A imUA ED ker(UA U).	(2.5) 

By hypothesis (2.1) there is an invertible bounded linear operator 

ker
 ( [

T 0 1\ 
UAJ) kerW. 

On the other hand, from the right-side identities of (2.3) and (2.5) we obtain 

IITT	0 1\ 
(X2Y2A)/im([ 

UA])U 0 UAUj) 

and from (2.4)
Y2/imW ker(WW). 

Therefore, attending to (2.2), there is an invertible bounded linear operator 

1I TT	0 1\ 
J2 : ker ([ 0 UAUj) - ker(WW).
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With those invertible operators we construct operators E and F, that are represented 
in the sense of decompositions (2.4) and 

(IT-7 _0 I"ker
(	

01\
XleYlA=im[ 0 UAU) 	

['0 uj) 

	

Q0 oU 
0

	QTT	0 
x2Y2A=im(j	Ilker

UAUA	 0u  
E :Y2(X2YzA)—+(X2Y2A)Y2 

o	0	I 'im(diag(T,UA ))	0 1 

	

E	—J•'	0	 0	Oi =
'ker(WW)	0	I	0 

o	'1mW	 0	0J 

F : (XI eYlA)®Y2—+Yl(X2Y2A) 

	

o	 J,I	0	0 

	

o	 0 I 0 W' 

	

F = I	 im(WW) I 
0	0	0 

o	 0IJ 	0	J 

where 

WIim(WW) : im(WW) - imW, W jm(WW) (p = Wp 
diag[T, UA II1m(diag[T_ T,U VA]) : im(diag[TT, UZ UA]) - im(diag[T, UA]) 

iy 0 1 
= [0 UA] ço
	 - 

are invertible operators, due to (2.3)-(2.5), with inverses denoted by WI1(W_W) and 
diag[T, UAJ rn(diag[T T,U; UAI)' respectively. 

Moreover, note that E and F are invertible bounded linear operators with inverses 

(X2Y2A)Y2—+Y2e(X2eY2A) 

	

0	 —J2	10	01 

	

0	 0	I	0	IimWI 
=	'im(diag(T,Ua))	 0	j	0	0	I 

L	0	'ker(diag(TTThUAU))	J2 '	0	j 

	

F'	Y1(X2Y2A)—. (XI ®Y,A)eY2 

1 0	0	I diag[T,UA]' 

	

I in(diagITT,UUA))	0 

=	I1'	0	 0	 ol 
lo	0	I	 0	 J21 
L 0	WI in) (WW)	 0	 0 J 

With the operator UA given by hypothesis and the invertible bounded linear operators
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E and F we obtain
7 0 0 wo 
0U	0 =E 
o	o	i, 

where Z 1	Y2 and Z	X2 Y26 . Therefore, we have a L-relation after extension
(1.2) with

7:Y1 Y2—+Y2Y2,	1, 0 1 

and E and F given above U 

For bounded linear operators acting between Banach spaces 

V:X1 eX2 —Y1 Y2 ,	V=fVjj]=I.2€

we shall denote by R11 (V) the restricted operator of V to the first component spaces, 

R11 (V) : Xi -* Y1 ,	R11(V) =V11. 

Theorem 2.5. Let T X1 -* X2 and W : Y1 - 1'2 be bounded linear operators 
such that 7 is i-related after extension to W in the sense of Definition 1.2. In this 
case:

(i) If W is a generalized invertible operator and W	1"2 - Y1 is a generalized 
inverse of it, then 7 is also generalized invertible and 

X2 -* X1 ,	T = R11 (F' [
	I 

E')	 (2.6) 

is a generalized inverse of T. 

(ii) If 7 and	(cf. Definition 1.2) are generalized invertible operators, and 7-
and Tare generalized inverses of 7 and 7, respectively, then W is also a generalized 
invertible operator and 

W:Y2 —+Y1 ,	W=RII(F[ ]E) 

is a generalized inverse of W. 

Proof. (i) If W V2 - 1)1 is an operator such that WWW = W, then 

W 0 1 [)/V — 0 1 W 0 1 - W 0 
0 Iz	•0' Iz	0 Iz - 0 1z 

Thus, by (1.2), we have

F'
0
 E'	

0 - 7 0	
27 

° TA	0 1	0707	 (.



586	L. P. Castro and F.-O. Speck 

If we write

F' [
	0 

1 E' : X2 X2	X1 xi 
L o 'zJ 

in the form

	

F'	
0 1 E' = [A *1 

Izj	[*	 (2.8) 

(where the right term was abbreviated) and substitute (2.8) into (2.7), then a direct 
computation shows that 

	

A:X2 — X1 ,	A=Rii(F1[	]E-1) 

is a generalized inverse of T. 

Proposition (ii) can be proved in a similar way and therefore is omitted here I 

According to the proofs of the above theorems, we can derive similar results for the 
special case 7 A W instead of 7 L W. For instance, about the generalized invertibility 
of a z-related operator, we have the following result. 

Corollary 2.6. Let 7 X1 — X2 be is-related to W Y1 — Y2 in the notation 
of Definition 1.1. If W is a generalized invertible operator and W : Y2 —* Yi is a 
generalized inverse of W, then 7 is also a generalized invertible operator and 

7 :X2 —Xi ,	7=R11(F'WE') 

is a generalized inverse of T. 

Theorem 2.7. Suppose that 7 X1 — X2 is Li-related after extension to W 
Y2 . if W is a generalized inverse of W, we obtain projectors onto the image and 

the kernel of T, respectively, in the form 

PIcerT R 11 (F')(Iy, —WW)R11(F) 

P.7- = R11 1E [V'V— 
0 

i E"I\. 
0	IzJ  

Proof. If W is a generalized inverse of W, then by Theorem 2.5 we know already 
that 7 is also generalized invertible and additionally we can present a generalized inverse 
7 of T. In this sense, the first part can be proved by a computation of I X , - 77,
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with the help of (1.2) and (2.6), 

Ix, - TT = Ix, - R11 (F-'
[	

I E') R,, (E
[	

] F) 

u[A,, A,2 
A22])

R11([7 0
=IxI_R11[A 0 rj) 

=Ix -R1,
QA21 TA 

A,,T	A, 2 T 1\ \
A22TAJ) 

= R 11 (F'F) - R11 (F-' 1 W	0
] E' E

[	]
F) 

[ 

=R(F'(['

0] [WW
°') F' 

0	'z 0	Izj I 
= R,, (F-'

[ ly, - I'VW 0]
F). 

[	0	0
Therefore,

PkerT = R,i(F')(Iy, - WW)R,1(F). 

The formula for P1 mT is proved in an analogous way I 
Finally, we present an identification of the structure of L-related after extension 

operators. 
Theorem 2.8. Consider a Banach space X and two bounded linear operators T 

X - X and W : X - X. If T L W, then there are bounded linear operators A, B, C 
and D between Banach spaces such that T and W admit the representations 

7 = R,(A - BD - ' C)	 (2.9) 
W=R11 (D-CA'B)	 (2.10) 

where A and D are invertible operators with inverses A - ' and D', respectively. 

Proof. From the hypotheses there are Banach spaces 2, X,A and X2A, a bounded 
linear operator TA X, A -* X2A, and invertible bounded linear operators E : X ED Z -, 
XX2A and F:XX,A-XZsothat 

TO _EW°F 
0 TA 0 I 

Therefore,
A:XXIA-XX2A,	A=EF 

B:XZ-*XeX2A ,	B=E{"0' 01 

C:XXlA -X3Z,	C=F 

D:XZ - XeZ,	D= 'X 
0 

-	 0 I 
are bounded linear operators that fulfill (2.9) and (2.10) with A' = F'E' and 

= D 1 
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Remark 2.9. The above result is deeply related with systems theory. In particular, 
it is well-known that if, for some bounded linear operator U, A = A(x) = xI —U (where 
X is a complex Banach space), then 

W(x) = D - CA -1 B	 (2.11) 

is a realization [1] of W(x). 
In the sense that (2.11) can transform some input data to an output, (2.11) is called 

a characteristic operator function or a transfer function. Therefore Theorem 2.8 implies 
that L-related operators after extension (acting between the same Banach space) can be 
interpreted as restrictions to the first component spaces of some characteristic operators. 

On the other hand, the operators A - BD' C and D - CA' B are said to be Schur 
coupled [3]. In the finite-dimensional case this notion allows special relations between 
matrices (see [31 where a characterization of Schur coupling in terms of Hermitian ma-
trices is presented). Therefore (2.9) and (2.10) tell us that the &related after extension 
operators T and W can be seen as restrictions to the first components of Schur coupled 
operators. 

3. On singular integral operators with Carleman shift 
In this section we like to present two concrete applications, first the explicit generalized 
inversion of certain composed operators and second the asymptotic representation of 
solutions of the corresponding equations under sufficient smoothness assumptions. 

Let us consider once again the operator T with Carleman shift in (1.5). Suppose 

	

now that detAw 0 and detB	0, where 

a()	d() 1 

	

= I
	

e iL03(R)]2nX2n 
L b(a(c)) c(()) j 
F. c()	b() 1 

	

Bw(e) = .1	 I E [L00(R)]2'2 
[d((e)) ci((e))] 

We say that
GB)Aw (3.1) 

admits a so-called (see [21: Chapter V, §5]) generalized factorization in [L P (lR)] 2 ' ( 1 < 
P < +oo), if

G() = G()D(e)G+().	( e R)	 (3.2) 

where

D() = diag '..:•  

(A_(,) ) "2n] 

j	( e Z A() 

E Qa(L"(R)]2'2", )-'G+ E 

EP I L ( R)]2'2" ,	: 1 G:' E Q[L()]2Tx2n	
(q = p_i' 

E £([LP(R)]2)



	

Delta-Related Operators	589 

We will use the notation

(-1)	
( 
-i) 

[91:± 912± 1 = [g
±11 	912± 1

(-1)
and	G

92± 922±1	 g21± 922± 
 (-I)	I 

where gk,±,g ' (k,l = 1,2) are n x n blocks. When 11 is a 2n multi-index, i 
. . , 112n), let 

	

(Ti. =diag[(Tiu,...,(t7]	and	(Ti.. =diag[(Tin+1,...,(Ti2]. 

We also recall that	= 
Proposition 3.1. If the matrix function G (see (3.1)) has a generalized factoriza-

tion in [LP (R)] 2", then the operator with Carleman shift Y,defined in (1.5), is general-
ized invertible, and a generalized inverse of 	is given by 

= 

i 1)-	(-1) [ (Ii-I ) PR + ii—Qn)((— PR + Q)(cà - db) — ' (g 11(-_ a 912- d) 

	

( 1)..	(-1) +(91( Pn + gI2_Q) ((/-• F + Q)(ca - dbY' (g2_ a - 922- ci) 

+ ((I — QR K:)+g(Q + K:))(I— QR - K: +(/+)(QR +K:)) 

x (eä - Jb)1 (gJa - 2—	 —'R + ((I -	- K:) + g)(Q + K:)) 

X (I - Q - K: + (A/A+)	(Q + K:)) (ca—cib)' (g 'a -g	)j	(3.3) 
( I)	(-i) + (gP + glI_QR) ((A_/^)	PR + Qi)(cä - db)' (_ c -	b)J 

(9(—' ) 	9 (—' )b 

+ ((I - - K:)+g(Q + K:))(I - QR - K: +(A/)(Q + K:)) 
-- -1- 

(-i)-	( 1) x (cä - db) 912- C - 9ii_ ) + ((I - Qii - K:) + 9(QR + K:)) 

X (I - 	-)C + (/) . (Q + K:))(cà—cib)1 (;± - 

where 

and K: is the compact operator
±() =±i	ER)	 (3.4) 

K: = (JSJ + S)	 (3.5) 

Proof. The generalized factorization (3.2) of G implies (see [21: Chapter V, 5]) 
that W is a Fredhoim operator. Therefore W is a generalized invertible operator and 

W = (G'F + G _ QR )(D — 'P + QR)G:'B)	 (3.6)
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is a generalized inverse of W (see [21: Chapter V]). Consequently, from (1.7) and Corol-
lary 2.6 we obtain a generalized inverse of T, 

	

= R 11 (EWE') =	+ J'v + wj + JWJ),	(3.7) 
2	11 

where we use the notation
iw 

Lw wi 

with	: [L"(lR)]' - [ LP (R)]". Finally, the formula of a generalized inverse of T€
presented in the theorem is obtained by a combination of (3.6), (3.7) and 

JF=(Q+K)J	and	JQo= (PR —ftC)J, 

where K is defined in (3.5)1 

Remark 3.2. Other generalized inverses of T, for instance a reflexive one or the 
Moore-Penrose inverse, can be obtained if we replace (3.6) by different kinds of gener-
alized inverses of W that can be constructed following the ideas of [251. 

Now let us introduce some additional assumptions. We consider the case where 
G is an invertible Holder continuous matrix function on R (cf. condition (i) in the 
next theorem), with a diagonalizable jump at infinity (see condition (ii) in the following 
result). Actually, the last assumption can be replaced by the Jordan form case. This will 
imply only a reorganization of the elements in the final representation of a generalized 
inverse of T presented below. 

Theorem 3.3. Suppose that G (see (3.1)) has the following properties: 

(i) C E g[CI(fk)]2n,In for some 9 E l O , 11. 

(ii) There are constant (ii x n)-matrices Vk, (k, I = 1,2) and complex numbers 
ij, (j = 1,...,2n) such that 

--	. < —	(pE]l,+[)
1 1<Re i,  
P

1v11 v12 1	 1v11 v1211 2,yi 172n] G' (+oo)G(—oo) = I	
j 

diag[e	,. . . , e	I	
j [V21 V22	 [V21 V22 

(iii) 3 > — mini Re z,. 

(iv) 14' [ LP (R)] 2 ' - [LP (R)] 2n 13 a Fredhoim operator. 

Then the singular integral operator with Carleman shift 7 (see (1.5)) is generalized
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invertible, and a generalized inverse T of 7 is given by (3.3) with 

(-1)	 (-1) 9ii+ = V1 A' +(H) 11 A', 912+ = V12 A"'" +(H+) )"" 12 + 
= V21	+(H+)21)ç", 922+ = V22 	+(H)22 + 

911— = [(G 1i (+) V, i + G 12 (+)v21 ): +
1 912-	[(G 11 +00v12 + Gi2 (+oo)V22 )AI" + (H_) 12 j ). 

921- = [(G21 (+o)v1i + G22 (+)v21 ): + (H_)211A:" 

922- = [(G21 (+oo) V12 + G22(+)v22)A:"" + (H_)22 1\_lc.. 
J — 

) (-1	 (-1) gII_ = g22-/(g ll-g22- - 912-921-), 912- = — 912-/(911-922- — 912_921_) 
(-1)	 (-1) 921- = — 921-/(91I-922- — 912-921-), 922- = 911_/(91I-922- 912-921-) 

where Kj,.. . K2n are the partial indices of a generalized factorization of 

IC1, G121 
G=BIAw=L	C22] 

and (H±)kj are n x n elements of 

H...= [(H—),,. (H)12] E Q[LP(R)J22n 
(H)21 (H)22J 

l

(H+)lI (H)12 1 E P[L"(R)]22' 
(H+)21 (H+)22 

such that
C(+)V+Hdiag[),...,A'] 1 

V+Hdiag[.\,...,A"] f 
E G[L0o(R)I2Thx2T	 (3.8) 

for a constant matrix, with n x n elements 11k1, 

V	
Iv, 1 v,21 

=l	I.€
L v21 v22] 

Proof. From the equality PijGPji + Q, = W(I - Q,Cij), where I - QCP, is an 
invertible operator with inverse given by I + Qii,GP,,, it follows that 

W = BW : [L(R)] 2 -+ [LP(R)j2" 

is a Fredhoim operator if and only if

Pij [L"(R)1 2 " -*
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is a Fredhoim operator as well. Therefore, from [7: Theorem 2.21 (see also [23] for some 
particular cases) we obtain that G admits a generalized factorization (see (3.2)) 

[ (.A_(e) SCj	 f.\()\ K2n] 

G() = G)diag	
,...,	 ] 

G) 

with

G_ = (G(+cx)V + H_diag[.V,. . . , A 2 ])diag[Ai	, 

G+ = diag IA'' ,...,,' i +	+	j(V+H+diag[A" . + 

where V is a constant matrix, and 11+ E Pij [LP(R)]212' and H_ e QR [LP (R)] 2n , 2n are 
such that, (3.8) is fulfilled. Now the properties of L-related operators, and in particular 
an application of Proposition 3.1, imply the statement U 

Corollary 3.4. Let us substitute conditions (ii) and (iv) in Theorem 3.3 by the 
following ones: 

(ii) There are 2ri complex numbers Tb (j = 1,... , 2n) such that 

11<Reii	1 
--	'<—	(p Ell, oo[) p	 p 

lim diag[(A+()\ 
'11	/ A +(e) 

\ T] 

,...,	 j 
= G(±). 

(iv) W [LP (R)] 2 —* [LP (R)] 2n is an invertible operator. 

Then, with the help of the methods exposed in [7] and [23], we find an inverse of T. Due €

	

to the large size of the formulas we do not present 7	explicitly. 

Now we will study the asymptotic behavior of the solution w E [L"(R)]' (1 <p < 
oo) of the equation

	

TV = 0 E [L(R)]	 (3.9) 

where

7 = AjPjj + BTQIR

	

	with { 
AT = a(e) r + b()J 

BT = c(e) I + d()J 

and a, b, c, d are continuous n x n elements such that 

G() = 
c(e)a(a()) — d(c())b() 

[a(a(C))a(C) — b( a(e)) b() a(c(e))d(e) — 
x

c()b(a()) — a()d(a()) c(a())c(e) — d(a())d() 

exists and represents a Holder-continuous (2n x 2n)-matrix function on R, of order v, 
admitting (different) limits at ±. In the study of equation (3.9) we will consider the
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case where tb is such that there exists 

( f(oo)= urn	
[(c()I + d(C)J) _ ' O( C ) 1 

-
(b(e)I + 

+ (e - i) 3 I ((c(e) I + d(e)J)'())' 1) 
+ a(e)J) 

and

g(oo) = hm	
I	

=: 
(c()I+d()J) gi(oo) oo 2i	
(b(e)I + a(e)J)'tb(e)j	Lg2(oo)j 

	

Let us introduce the matrix functions	-	 --

= diag [( - j)-711—1,... ,( - i)'I ^ —11 

Z .(e) = diag [(e + j )-171 (e - i)',... ( + i )_"(e - iy']. 

By [Yq.()]± and [Z,7.(e)]± we denote the boundary values of the corresponding matrices 
Yq.() and Z,,.() on IR, respectively. Similar notation is used for ij.. instead of 77.. 

Theorem 3.5. Consider the above assumptions, and additionally suppose the fol -
lowing: 

() There is a constant C such that 

	

l G(e1) - G(2)I	C	ie 2IL 

1 + I6I) v (1 + I2 

for fi,6 < —1 and eI,2 > 1, separately (see [22]). 

(ii)The matrix G(+cx)G'(—co) has 2n distinct 2) eigenvalues with logarithmic 
values 27r 7, (j = 1,.. . , 2n) such that 

	

max Re(77--77 k )<L/	and	
1 

I<j,k<2n	 p	 p 

(iii)There are four constant (n x n)-matrices Tk, (k, I = 1,2) such that T 
[Tk ,] j=1 is an invertible matrix which fulfills 

= Tdiag[e27T , . . . , 

We will use the notation 

w = mm	- max Re(? - ilk), 1 - max Re(11)) - e 
1<j,k<2n	1<j<2n 

2) This assumption can be dropped on the price of rather complicated formulas, cf. Theorem 
3.3.
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for an arbitrary small e > 0. Let 0 E [L P (R)I n . If there is a solution in [LP (R)] 2" of 
the equation

[ ^02 

- (c(cI+dJ)' +b(bI+aJ))'1'	
310 

- (J(cI+dJ)' +à(bI+aJ)') 

where W is defined in (1.6), then, for —4 ±00, 

^PW
=  

1g
l (oo) + (A, TI ,+ A2 T21 )(	 + O(II)) 

+ 92(00) + (A, T12+ A2 T22 ) ()_/))"** (—oo)[Y.. ()]+(c2 + O(IeI_w)) 

+ T1i[Z,7•()]_(c3 + O(IeI_ u )) + T12[Z..()j_(c4 + O(IeI_u))) 

+ (A3 T11 + A4T21)(A_/\+)'(—cx)[Y,.(a(e))]+(ci + O(fr()I'')) 

• (A3 T12 +	 + 0(la(e)I1')) 

• T21[Z.(a())](c3 + O(I a()I)) + T22[Z..(a(e))](c4 + O(I)I))] 

is a representation of a solution of equation (3.9), where cl,c2,c3 and c4 are constant 
(n x 1)-matrices which depend on the coefficients of G and on TJ and 

A, 
= c(ci(—oo))c(—cx) - d(—oo)d(cx(—oo)) 

a(—oo)c(c(—oo)) - d(—oo)b((—oo)) 

A2 
= c(a(—oo))b(-00) - d(-00)a(cl(-00)) 

a(-00)c((-00)) - d(-00)b((-00)) 

A3 
= a(—co)d(cx(—oo)) - b(cx(—oo))c(—oo) 

a(-00)c(a(-00)) - d(-00)b(ci(—oo)) 

A4 
= a(-00)a((-00)) - b(cx(—oo))b(—oo) 

a(—cc)c(a(—oo)) - d(-00)b((-00)) 

Proof. From the equivalence relation 

B'W=W	GPIt 	 (3.11) 

and the hypotheses we know that there is a solution of the equation 

[
^o 1 = I ( c(e) + d(e)J)'iJ()1	 (3.12) 
22i	L (b() + a() J) - 

and this solution is the same as the solution of equation (3.10). Under the assumptions 
of the theorem we can apply [22: Theorem 3.11 to equation (3.12) and, consequently,
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obtain the following representation of a solution of equation (3.12), for C —* ±00: 

1 (P(C)] = [
92(oo)]

gi(oo)
(P2(e)] 

I

T11 (X-/))'(-oo) T12 

T21  (A-/A)'(-c:x) T22 (A_/.A+)'?"(-_oo)j 

	

Y17. 	1	Ic + O(JCI_tD )1	 (3.13) 
I I	 I 

	

0	Y17.. (0j Lc2+O(ICI'ij 

T11Z 7.(e) T12 Z 7(C) 1 1c3 +O(ICI_u)1 
I	I	 I 

T21Z.(e) T22Z..(e)j - [c4 + O(IeI_tD)j 

where c1,c2,c3 and c4 are constant vectors and 

T= T
11 T12 

T21 7'22 

is a constant invertible matrix so that 

G(+00)G' (-oo) = Tdiag{e27nuhl ,... , 

Further, from the L-relation (1.7) and from (3.11) we obtain that equation (3.12) is 
equivalent to 

T(I.

H- J(P2)((c-dJ)(c+dJ' +(b-aJ)(b+aJy')b 

Therefore, 1 W  + 21 Jçc2 is a solution of the equation T(P = and from (3.13) we arrive 
at the desired representation U 

4. Further aspects about the type of the relation 

In brief we present some additional cases for the discussion of properties of operators T 
which are related to operator matrices W with a "simpler structure". 

Example 4.1. Let C C £(X) be a class of bounded linear operators on a Banach 
space X and algC the subalgebra of £(X) that is finitely generated by operators from 
C. Then every 7 E algC is equivalent after extension to a pure C-operator matrix, more 
precisely

7-	0
= EWF 

0 I._
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where m E N, Ix.-1 E £(X m ) is the unit operator, E and F are upper/lower 
triangular operator matrices whose diagonal elements equal the unity I E £(X), and 
W E C mxm (see [8]). For instance, 

1T1+T2T3 01	[I —T2I

	

I Ti	T21 1 1 01 
=	 (4.1) 1	0	ii	I. 	L-3	I]	I] 

Consequently, a generalized inverse W of W implies a generalized inverse T = 
R 11 (W) of 7 where R11 denotes the restriction on the first element of a matrix. 

Let us consider the particular ease where X = [L 2 (R+ )]n and C denotes a class of 
Wiener-Hopf operators with Fourier symbols in [ L (R)]tlxI , which is a large class for 
the applications [171. We like to study the singularities of the solution of an equation 

= for 7 E algC without smoothness assumptions on the Fourier symbols of the 
operators if b is smooth on ll and rapidly decreasing (for somplicity). Note that, in 
the half-line case, the (Hilbert) Sobolev space setting can always be translated in terms 
of the present situation by the use of the lifting procedure [281. 

Theorem 4.2. Under the above assumptions and 

VV = PF' F E £([L2(R+)]m) 

the unique solution p = [ pj]ji ., of the equation T = it' satisfies 

= O(IxI_1_ 112 )	as II —+0 

where	are the numbers provided by a bounded operator (or strong) factorization (see 
[5,241) of A =	. F with respect to the intermediate space [7] 

	

Z = H''2 (R) . . . e Hm2(R)	(IjI < 

Proof. The solution is representable by the first n components of the nm-vector 

Oln(--j 0 	 0	I(L2(^ 	L 

- 

	

[IJL 1 ( R+ ) j n 0 •1	

[01
w+1w-',

 *	I[L2(+)j(m—) i	 0 

where W' = P+A' are operators on [L2 (R+)] nm generated by a strong factorization 
of A,

A = A_Ak, 
with respect to the intermediate space Z so that A± are invertible operators having the 
factor properties

= jj-n '2 (R)	--

A_ [k',',2 (R-) e	nm2(R )] = [L2(R_)]'m 

Thus a theorem of Abel type yields the same result for as for the first n components 
of the solution of the corresponding Wiener-Hopf system [23] I
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Remark 4.3. Other properties which are transferred are, for instance, regularity 
properties of the operators; if CF E gIC(R)]rnm, then T is Fredholm if and only if 

det(pCF(+oo) + (1 - z)CF(-00)) 0	(.t EJO, 1[) 

otherwise T is not normally solvable; if CF is continuous but not invertible on R, then T 
is generalized invertible (with infinite defect numbers) if and only if rank CF() = const 
otherwise T is not normally solvable. 

The spectra and essential spectra of T and W are not so directly related. We can 
modify, e.g., formula (4.1) and obtain 

	

T1 +T2 T3 —AI 0 - I —T2 T1 — AI T2	I 0 
-	0	I - 0 - I	--T3	- I	 T3 I 

i.e. T - Al and the middle factor W,, satisfy the same relation as T and W do. So 
at least we obtain explicitly essspT = {A : CFA is 2-singular} where CFA denotes the 
Fourier symbol of W,. 
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