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An Extremal Problem 
Related to the Maximum Modulus Theorem


for Stokes Functions 
W. Kratz 

Abstract. There are considered classical solutions v of the Stokes system in the ball B 
Ix E lR' : IxI < 1}, which are continuous up to the boundary. We derive the-optimal constant 
c = c, such that, for all z E B,

Iv(z)I	v()p	 (t) 

holds for all such functions. We show that c = maxxEB c,.(x) exists, where c,(x) is the 
minimal constant in (*) for any fixed x E B. The constants c,(z) are determined explicitly via 
the Stokes-Poisson integral formula and via a general theorem on the norm of certain linear 
mappings given by some matrix kernel. Moreover, the asymptotic behaviour of the c(x) as 
x - ÔB and as n —* oo is derived. 
In the concluding section the general result on the norm of linear mappings is used to prove 
two inequalities: one for linear combinations of Fourier coefficients and the other from matrix 
analysis. 
Keywords: Stokes system, maximum modulus theorem, Stokes-Poisson integral formula, norm 

of linear mappings 
AMS subject classification: 35 Q 30, 76 D 07, 47 A 30, 15 A 45 

1. Introduction 
In this paper we consider classical solutions of the Stokes system, so-called Stokes func-
tions, i.e., functions v: ci —i R' for some domain ci C lR" (n E N) such that 

v E C2 (ci), and there exists a "pressure function" p e C'(ci), 

such that (v,p) solves the Stokes system in ci, i.e., 

Av = grad p, divv is constant in Q. 

Observe that we require only that div v is constant rather than zero as usual. 
Stokes functions do not satisfy a maximum principle like harmonic functions. But 

there exist so-called maximum modulus theorems, which state that the modulus of 
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Stokes functions in a bounded domain is majorized by the maximum of their modulus 
on the boundary times a certain constant larger than one depending on the domain (see 
[6), [7: Theorems 2.1 and 2.2] and [8]). In a recent paper [3] there is derived a maximum 
modulus theorem for Stokes functions in a ball with an explicit constant (in contrast to 
the cited papers), more precisely: 

If v is a Stokes function in a ball ci = Br(xo) = {x E R" : Ix - xoI < r}, which is 
continuous up to the boundary, then for all x E ci, 

v(x)	cmax v()I	 (*) 

for c = n(n+i) (ad denotes the boundary of ci). Note that the pressure p does not 
occur in the inequality like in other estimates (see, e.g., [2] or [10]). 

The constant c =	is not optimal for n 2, but it must be greater or equal

to n (see [3: Remark 3)). In this paper we study the "extremal problem" to determine 
the-best constant denoted by c,. Thus, n	c,	n(n+i)

2	and in the plane we have 
the improved inequality 2 < c2 <	(see [4: Formula (13)]). Moreover, for any fixed

x E ci = Br(xo), we will determine the best constant c(x), for which (*) holds. Hence, 
c,, = sup c(x). Since v(rx + x 0 ) is a Stokes function in B = B i (0) whenever v 
solves the Stokes system in Br(x), we assume throughout that ci = B. Therefore we 
consider the quantities

vis a Stokes function in B with	

}	
(1)
c(x) := sup I 1 V (x )1 v E C(B U ÔB) such that max v(e)I 1 

EäB 

where
B := {x E R": I XI < 11. (2) 

Our derivation of c(x) is based on the Stokes-Poisson integral formula [3: Theorem 
1], which states that a Stokes function v in the unit ball B with continuous boundary 
values is given by (for n ? 2) 

V(X) = 
la

S( ^, x)v(^ ) do,(e)	for, x  B, 

where the Stokes kernel S(e,x) is an explicitly given symmetric (n x n)-matrix for 
(, x) E e3B x B (see formula (6) below). It follows from the general result (Theorem 1) 
of the next section that 

cn(x)max
JaB

S(,x)8Id)	for rEB.	 (**) 
151=1 

We show that c, = maxzEB c(x) exists, and we conjecture that 

r/2 

cn = c,,(0) =
	nF(n/2) 

- 1)/2) J 
(sin	 _2{1 + n(n + 2)cos2 }i/2d 

0
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for all n 2 2. This conjecture is true for n = 2, so that 

2<c2 =J \/1+8cos2 d=2.127 ... <v', 

which is an elliptic integral. This result is shown in the paper [ 5] . Numerical calculations 
by A. Peyerimhoff for dimensions ii = 3,4,5,6 support our conjecture, but so far there 
is no rigorous proof for any ri 2 3. 

The paper is organized as follows. In the next Section 2 we derive a general theorem, 
which leads to formula (**). In Section 3 we discuss the Stokes kernel. In particular we 
show that it is an invertible matrix for all x E B and e ÔB. This property is certainly 
of interest for itself. In Section 4 we show formula (**), and we derive the asymptotic 
behaviour of c(x) as IxI - 1— and of c(0) as n —* oo. Finally, in the last Section 5, 
the general result of Section 2 is used to establish two inequalities. 

2. The general theorem 

In this section we solve the following general extremal problem: determine the norm of 
a linear mapping given by some matrix kernel. 

Theorem 1. Let be given a measure space (l, E, p) and a matrix-valued function 
K: Q— C flXfl with matrix elements 

k,, E L'(fZ)	for 1 < 2,LI	ri.	 (3) 

Then
:= sup {I( v )I : II v IIoo < 11 = max{f(8) : 181 = 11, 

where the linear mapping £: L() —* C" is given by 

£(v) = j K(w)v(w) d1z(w),	 (4) 

and where the function 1: C' —* R is defined by 

-.	
f(6).:= jIK'(w ) 6 l di(w ) .	 (5) 

Throughout the following notation is used: I x I denotes the Euclidean norm of vectors 
x E C" and h A il = max{ tAxi : IxI 11 the induced matrix norm (i.e., the spectral 
norm); As usual li v II := ess sup {i v (w )i : w € l} is the-essential supremum of-the 
Euclidean norm of functions v : Q —* C", v € 'L°°() if li v hioo < co, and A' := AT 
denotes the Hermitian adjoint of matrices (or vectors) A. Note that always hAil = IIA'hl.
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Proof of Theorem 1. By assumption (3), 

ci	IIK(w)II d)	 11K(w)II d) <. 

Hence, by definition (5), If(öi) - 1(52)1 CI 8 ' - 821 for 81,82 E C's . Therefore f is 
continuous on C' , c2 := max{f(8) : JbI = 11 exists, and c2 < c 1 . Moreover, by (4), 
14 <c 1 <oc. Let 77 E (Cn with 1771 = 1 and f( i ) = C2. We may assume that £ 0 0, i.e., 
ItII > 0, and then c 2 > 0 too. 

First, let v E L°°(Q) with Il v ilco	1 and £(v) 0 0, and put 8 :=	Then, by

the Cauchy-Schwarz inequality, 

I(v)I = 5*() = f 8K() dz(w) <j IK*(w)81 d (w )Il v lI <c2. 

Hence, IIII	c. 
Next, let ci := {w Eli: K()77 0 0) and define 

( K* (-),	forwE'l vo() :=
0	otherwise. 

Then, vo E L°°(Q) with Il voII = 1 (since f(r) > 0), and 

C2 = f() = I IK*(w)ld) = ' ( VO)	IIII II II VoII	= 11th. 
11 

Thus, c2 < 11 t h, which implies the assertion U 

The preceding proof also yields the following 

Supplement. Suppose that the assumptions of Theorem 1 hold. Then, 11ill = 
h€(vo)j for

V0 (W) := { ::;, 
if K*(w)q 0 

0	otherwise 
where 77 E C tm with IY71 = 1 and f(i) = max{f(8) : 1 6 1 = 1) = c2 . Conversely, if 
11 t h = lt(vo)I for some vO E L(1Z) with Ih vohIoo < 1, then f(i) = c2 for , = j f!9..1 and 
vO(w ) = ai.N'i a.e. on = {w E ci: K*() 77 01with some E C, IcI = 1. 

Remark 1. Of course fo hhK(w)hl dj.t(w), and this inequality is strict in gen-
eral (as, e.g., for the Stokes kernel) whenever n 2. Moreover, if assumption (3) does 
not hold (but if the matrix elements k, are measurable), i.e., fn Ik,(w)I dp(w) = oc for 
some indices p and i, then it follows quite easily that 114 = sup(A8) : 181 = 1) = co. 
Hence, the assertion of Theorem 1 remains true in this sense. Note that, of course, all 
quantities may be real-valued rather than complex-valued, i.e., C may be replaced by 
R throughout the section above.
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Next, suppose that all quantities are real-valued, and let the"extremal function" 
vo(w) and 77 be given as in the Supplement, so that £(vo) = Ai7 for A := It(vo )I = IIlI. 
Hence,

£(VO) =  
f15	

d() = A77, 

where = {w E ci : KT(LO)77 54 01. This formula corresponds to the well-known 
Lagrange multiplier rule [1: Theorem 7-10] for maximizing f(6) under the constraint 
JbI = 1, because "formal" differentiation implies that 

ji
gradf(6)(,7 =	

K(w)KT(W)	 = A,7= Agrad{ISI}I,,. 

Theorem 1 can be derived also by abstract arguments from functional analysis. The 
assertion of Theorem 1 can be reduced to the fact that the norms of a certain linear 
operator and its adjoint coincide (see [9: Theorem 4.10]), an observation, which is due 
to W. Arendt. In this way Theorem 1 is shown via a "vector-valued" version of the 
Hahn-Banach theorem (see (9: Theorem 4.3 and the corollary to Theorem 3.3)). 

3. The Stokes kernel 

The basis of this and the next section is the following Stokes-Poisson integral formula 
[3: Theorem 1]. 

Lemma 1. For any continuous boundary values v() E C(ÔB) there exists a unique 
Stokes function v in B with v E C(B U ÔB) (where B is defined by (2), and n 2), 
and this function is given by 

V(X) = Ja B	
for x E B, 

where the Stokes kernel S(, x) is defined by

I2

S(,x) := P(,x)I+	x2	
fH(etx)dt	 (6) 
0 

_2 with Poisson kernel P(, x) := 1 -In	(where a = 2 F( 

___n_____

/2) 
is the surface area of the 

unit sphere OB), with Hessian H of the Poisson kernel, i.e., H(, x) = DP(e,x), and 
with (n x n)-identity matrix I. 

The next lemma states basic properties of the Stokes kernel. 

Lemma 2. The following assertions hold for all ,,7 E 9B, x E B and n 2: 

(i) S(e,x) is a real and symmetric (n x n)-matrix.
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20 - IxI2)
where 

2o

1	 1 

:= 2 -	
- x)T 

+ nJ ( -	- tx)T di - J 
di 

Ie— x v-- 2	 l—txH2 le—ixh 
0	 0 

(iii) S(, x) is invertible, moreover, it possesses one positive eigenvalue and n - 1 
negative eigenvalues. 

n(1—I 1)2 
(iv) 4(1 +l)	

IS(e,x)qI	n2''P(,x). 

Proof. Statement (i) follows from definition (6), since H(e, x) is a Hessian. Formula 
(ii) can be derived by straight forward differentiation as follows (compare [3: Lemma 
2]):

{	
2	1-1x12 

+2k' Ie— x I	Ie — xl 
2n

{x(—x)T+(e—x)xT} 

n(n + 2) 

	

+ I - 
x+ (1 - x 1 2 )(e - x)( - x)T,	 (7)€jn 

d	2t	- n(1 - t2 1 x 1 2 ) - n —2 
dt IC 	txI -	- ixIn+2	I - txI' 

- ix)( - tx)T	
T I 

(n + 2)(1 - 1 2 1x1 2 ) -	 ____ 
=(e—ix)(e—tx) di	ie - ix I +2	 -	 e _txln+2 

Ie_txV+z 

and therefore our definition (6) implies that

(	1 

	

1—IXI'(1L2)J	

dt	
_	

2 2aS(,x) = 2
Ie— x I Ie—txI	I—xl 1 0 

+ 722 J ( —ix)(e - ix)T 
di + 2n - x)( - 

x)T 

- ixIn+2	 ( - 	I 0 

which is assertion (ii). 
Now, let= A(e,) (1< v < n) denote the eigenvalues of S(,x) for fixed 

E ÔB and x E B Obviously, every z E R'1 \ {0} with ZTX = ZT = 0 is an eigenvector 

	

with corresponding eigenvalue - j))	Hence, we have with suitable enumeration 

of the A 1, that 

(ii) S(,x) =

1,	
J	

di 
A <0	for 1<v<n-2.	 (8) 

I—ixI	 - - 
0
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Since traceH(,x) = L 1 P(,x) = 0, we obtain from assertion (ii) and (6) that 
x 2'i 

2o, 
I 	"_' S(e,x) = trace P(e,x)I = nP(e,x). 

The idea to consider this trace is due to J. Beurer. Thus, we get that (use also (8)) 

n	 1 

A,	
2	 2	

(n 2)f	
di = 	A. + An_i =	+ -	 > 0.	(9) Ie— xI'	 Ie — ixI '= 1 0 

Therefore An > 0 if A 1 < A2 < ... < A,,, and it follows immediately from assertion (ii) 
that, for all 1 <zi < n, 

J

di	 2	 f	dt	-- 
-	 AII,x)II<	+(n-1) I	 (10)tXjn - Ie— x I	' JR—txh 

0	 0 

This implies easily the right inequality of statement (iv) (see [3: Proposition 1/(iii)]). 
For the proof of the other assertions of (iii) and (iv) fix E ÔB and x E B. If and x 
are linearly dependent, then 

1	 1 

I
di	 2	 1 di 

ie - txI	
and	A,, = ie - xl" + (n - 1)] -

€

which completes the proof in this case. Hence, suppose that and x are linearly inde-
pendent. We consider three cases: 

Case (i): ,TX 0. Using the formula 

d	1	xT(e_x) 
di - txl" 

=n 
l - ix"+2 '	 (11)€

we obtain from assertion (ii) via integration by parts 

2	 1	di 
xl"

_(n_2)J	
—ix l" l—

0
1	 1 

=2 ( 1	 j(1Tx)2_le_txI2 dt+I
	

di€+n - xl n+2	 - i +	 - 
0	 0 

1	 I 

=2l+2 +nJ	l_ixl+2	+ tltl" 

2 - 1x12	p j 2 (eTx)2 - teTx di J d	1	
di + I	

di 

0	 0	 0 

- 1 - 2eTx + 2(Tx)2 - 1x12 
-	le—xl"2 

1_1x12

- 

+nJ le—txl"2 di 
0
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because eTx 0. Now, (10) implies 

2	

di	1 -1xl2	 l-1x12 A
n
 > eI 

+(n_2)J 
e	+ eI2'	

n—I	le	ln+2 <0. (12) 
0 

Case (ii): 0 < eTx ( I X II. Using the formula (see (11)) 

d e - tx -	x	+	ix)x"( - ix) 

dt Ie — tx I	Ie — ixl 

we obtain from (ii) by a simple calculation the identity 

1IxI2
(—x).	 (13) 

Hence, for Y7 =	we have that

1_1x12 
77 S(C X)17

= H2 
{_T 

+ - xIn+2	
- lxl2)}, 

and this implies that

1 1-1x12 An...i	
2I - x'	

<0	for 0	Tx	lx12
(14) 

 -	<0	for IxI 2 <Tx < 

Case (iii): IX12 < eTx < r i . Let 77 =	We obtain from assertion (ii) via a 

simple but tedious calculation (use (11) and integration by parts) 

2	
(n 2)J	

di 
- I—xI - -	Ie — ixh 0 

n	' { (e - x)T(e - tx)} di
(n 1)J -di 

- IC - x f	ie - ixI m + 2	-	- 	ixl 0	 0 
1	 1 

J
di	f (t - 1)xT( - ix) 

i_ixIJ	e—tx+2	
di 

0	 0 

xT(e - x) J (1 - ) I - ixI2 - (1 - t )2 xT (e - ix) di +fl I_xI2	 Ie—ixV-'2 0
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+
+(n-2)J (1—t) ______ di } =1	

Ie—x1 2	 Ie — txI 
0 

> 1 +

 

	

XT 	x) 
-	Ie—x12 

- 1 - 
— Ie—x12 

> 1—x 
-	_xI2' 

using that Z T(e — x) ^! 0 in the present case. From (9) we obtain similarly as in the 
case (i) that

- _	
<0.	 (15) 

Now, the assertion (iii) follows from (8), (12), (14) and (15). Moreover, elementary 
estimates show that

1— x min {I A 4 : 1 <v <ri} > 
- 2(1 + xJ)'' 

which yields the left inequality of (iv) via (ii) I 
The following lemma follows essentially from Lemma 21(u). 
Lemma 3. The following statements hold for n > 2: 

(i) JOB I S(, x) — So(, x )JI du(e) —* 0 as lxi —p 1—, where 

	

So(e,x) .
	n(1 — 1x12)

- x)(e - x)T. 
an 16 - xIn+2  

(ii) JOB llSo(e, x )Il do (e) = n for all x E B. 

JOB il S (, x) 11 da(e)	
t1) 

for lxi ( 1, with equality if and only if x = 0. 
Proof. It follows from Lemma 21(u) and JOB P(c, x) do(e) 1 that 

	

fe l S(, x) — So(e, x )ii da()	
n(i - lxl 2 )	 di <	 (n—i) da(e) B	 - 2a	 foB I - tX 

0 

= n(n— '(i - 1x12)	di 
2	f 1 - 121x12 

0 
—40 as I x l- 1 -

which yields statement (i). Of course,JOB ll So(e, r )ll dcr() = n JOB P(e, x) do (e) = 
and assertion (iii) (compare [3: Proposition 11(u)]) follows similarly I
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Remark 2. Let us shortly comment the invertibility of the Stokes kernel, It stands 
for the fact that any "needle perturbation" of the boundary values has an influence 
upon the flow at every point in the ball. More precisely: if o E ÔB, vo E R" \ {O}, and 
v (e) = v0 for all e E ÔB with I - o  < and ve() 0 otherwise, then limE....0	) = 
S(eo, x )vo	0 for all x E B, where v(x)	JaB S(,x)v(e)da(e) and where a(E) 
denotes the surface area of JC E OB :	- Co l < e}. It is, of course, an open problem, 

whether such a statement is true for Stokes flows not only in balls but in general domains. 

4. Solution of the extremal problem and some asymptotics 

Using the notation of the previous section, in particular the definition of the Stokes 
kernel by (6), the solution of the extremal problem of the introduction reads as follows. 

Theorem 2. Let vi > 2, and define c(x) and B by (1) and (2), respectively. Then, 
the supremuin defining c(x) is attained, and 

c(x) = max [ IS(e, x ) I d (e) .	 ( 16)

6E&8 

Moreover, c(x) = Iv(x)I for a Stokes function v in B with v E C(B U c9B) if and only 
if its boundary values are given by 

- v() - S(e,x)
( E OB)	 (17) 

where v E aB with maxaB JOB IS(, x)8I do (e) = f	S(, x ) vil dcr(). 

Proof. The assertions follow immediately from Theorem 1 and its Supplement, 
because K() = S(, x) is a continuous, invertible, and symmetric (vi x n)-matrix-valued 
function on c9B by Lemma 21 

Remark 3. Note that the "extremal boundary values" v(), given by (17), satisfy 
Iv(e)I = 1 for all e E aB. Moreover, formula (17) and the Stokes-Poisson integral 
formula of Lemma 1 can be used to calculate in addition to the optimal constants c(x) 
also the corresponding "extremal flows" v(x) inside the ball B. 

Rather elementary but extensive estimates and calculations lead to the following 
corollary, by using Lemma 21(u), Lemma 3, and that c,, := supZEB c(x) > n by [3: 
Remark 3]• 

Corollary 1. The constants c(x), given by (1) or (16), satisfy the following as-
sertions:

(i) c(0) = 
2Fn1)/2) 

f n) 2 {1 +n(n+2)cos 2 }"2 d for n >2. 

(ii) lim c(x) = d	
/-r(( 
2 I'(n/2+1) 

+ 1)/2) for vi> 2 with d2 = 4 - and d < n for 

vi > 3.
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c,	max c(x) exists with n < c,, < 
n(n+1)

for n > 2. 
zEB	 2 

(iv) cn(0)	1	
r 

-n' l' and dn — ^n1/2 as n -	. 

Proof. In the sequel we shorten some lengthy calculations by omitting elementary 
but straightforward arguments and by writing down only the main steps of the reasoning. 

By Lemma 21(u), S (e, 0 ) = -{(ri + 2)e T - I}. Thus, for all S E ÔB, 

J
S(,0)Sd) -- I i +n(n+2)(TS)2}"2dc(e) 

B	 2an JOB 
ir 

n
I c7_ 1 (sinç)" 2 {1 + n(rz + 2)cos 2 }''2d, 2i, j 

0 

and this implies assertion (i) by using (16) of Theorem 2. Moreover, as n - no, 

c(0)	nF(n/2) 
2r((n - 1)/2) n(n + 2)2 J (sin )fl_2 cos d 

0 

-	nI'(n/2)	.Jn(n+2) 
- /r((n-1)/2) n — i 

p3/2 

by Stirling's formula, which yields the first part of assertion (iv). 
By (16) of Theorem 2 (use also Lemma 2), c(x) is continuous on B. Therefore, 

the existence of maxzEB c(x) follows from 

n c	sup c(x) < n(n + 1)	
(by [3: Theorem 2 and Remark 3]) 

zEB	-	2 

and from d = 1im 111 _ 1 _ c(x) with d < n by assertion (ii). Moreover, assertion (ii) 
and Stirling's formula imply the second part of (iv). 

Hence, it remains to prove (ii). By Lemma 3/(i) and (16), 

lim c ( x ) - max JaB 
So( x )6 I da()} = o. I

l x I- 1—	6EOB  

Now, fix S E äB. We may assume that

with IxI=rE(O,1) 

6=	 with 7E(O,00).
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Then, by Lemma 3/(i), putting =	. . , 

fa S
0(, x)5 da() 

= n(1 - 1x12)	I(e --
8	 I B	I	zIn+2	da(e) 

ri(1x) fa	
i7e2+l —ri 

a1 +72 8(1 + f2 —2re1)(+')/2 da(). 

We consider separately the case n = 2. In that case, 

urn 
JaB

So(,x)SIda() 
IxI-1-

, 

= urn 2(1—r)(1+r)I I7sin+ 

COS —rI 
r1— 21 + 72	(1 + r2 - 2r COS )3/2 d 

—,r 
, 

= urn 2(1 - 
r) f	I7 + 1 - ri 

r-1—	+ 72	((1 - r)2 + p2)3/2 d 
—,r 

00 

2 1 171+11 
= —+,t2	(1 + 12)3/2 di (by substituting 

—00 

4 
ir 

uniformly for 0 <	< oo. Hence, Iim11 _ 1 _ c2 (x) = , which is assertion (ii) in this 
case.

Now, let n > 3. Then, by the calculation above, 

urn IaB
ISo(,x)5Ida() 

IzI—.I—

n(1 - r2)
T 

	

= lim	____ J f r—.1— a /1 +72
0 —/2 

x l7 sin t9sin W + cost9 - rI sint9dcpdt9 (1 + r2 - 2r COS t9)(+I)I2 
,r 

= urn n(n - 2)(1 - r) I J (COS p) 3 i9' 2 7t9sin + 1 - 
r-1—	—+-y2	 ((1 - r)2 + 2)()/2	dd 

 

= (by substituting 0 = (1 - r)i) 
nj2	Ioo 

_____	 Ii 71 n It2 dt1 
n(n-2)  

+72 f (cos )3	+ jJ (1 +12)(n+I)/2 
0
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= (by integration by parts and by explicit integration, respectively) 

n(n-
,r/2 

2) I 
I (cos) 

7r /1+y2 j

.1 sin	 00 
di- 

	

__ 	 rdr 1	+ 2)(fl+1)/2 + 2 f (1 + r2)(n+1)/2 } d 
0	 -y sin 

- 2n(n-2)
f	

(coso)"3	r72cos29, + 1 +-y2sin2)
Ip -	i+72	(1+72sin2)(n+1)/2	n-2	n-i dW 

0 

= (by substituting /i —+ ,y2 tan	I)
co 2n(n - 2) 1 72 00	

di	 1	 di 

	

n	(1 + t2)(n—l)/2 +1 

	

(1 + 72	n-2 / (1 + t2)(n+1)/2	
} 

- lj  
00 

2n[	di 
ir J (1 + i2)(i+I)/2 

0 

uniformly for 0 <7 < oo. Hence, for n> 3,

00 
2ri P	di urn c(x) = d0 

= I x I-.I - J (1 + 12)(n+1)/2 
0 

The recursion	=	--- yields easily the assertions of statement (ii). Observe that 

the limits do not depend on , i.e., on 6 E ÔB, in both cases, i.e., for n 2 and n > 3 U 

Remark 4. For dimensions n = 2 and n = 3 we have by (i) and (ii) of Corollary 1 
the following explicit constants: 

C2(0)=-7r j fV1+8cos2d=2j27... 
0 

	

c3(0)3+ 3 — log(4+v'Th)=3.399..	d2=±, d3 

	

4 /T7r	2 

As already mentioned in the introduction, numerical calculations by A. Peyerimhoff in 
dimensions n = 2,3,4,5, 6 suggest the conjecture that 

c0 = Max c(x) = c(0)	for all n > 2. rEB 

	

This does hold for ri = 2, i.e., c2	c2 (0) = 2.127..., as is shown in [5]. Moreover, the 
numerical results indicate that c0 (x) = c (I x j) is a decreasing and concave function on 
[0, 1) for all n > 2.
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5. Further applications of the general theorem 

In this section we use Theorem 1 to establish two inequalities. The first application 
concerns complex functions on the unit circle. 

Proposition 1. Let be given complex-valued functions a and b on the unit circle 
C = { E C:	= 1) with a,b E L' (C). Then, 

max {j{a()v(e) + b((e)}	: v e L(C) with II v II	i}	(18) 

exists, and it equals

max IIa()+ 5 (e)I	.	 (19) 
5EC J 

(Note that J'f()f = ff(e'')d for any function f on C.) 

Proof. We split the functions a, b and v into their real and imaginary parts, i.e., 

	

a=a i +ia2 ,	b=/3j+if32,	v=u+iw, 

so that 

av+b=yi+i72 with(1=K(u) for K= ( aI+fl1 02 2 

\2)	 W	 a2+2 

Then K: Q = C - R 21 satisfies assumption (3) of Theorem 1. Hence, our assertion 
follows from Theorem 1, because 1K61 = IKToI = 1ã5 + MI = Ia + bS2 I for 5 E C  

Remark 5. If the maximum in (19) is attained for 6 = 77 E C, then according to the 
Supplement of Theorem 1, the maximum in (18) is attained for the extremal function 
Vo given by

a()+b()	. -	- 
(e) =	a() + b(e)iI 

if a(e) + b(e)ii	0 
vo  

	

1' 0	 otherwise. 
An immediate consequence of Proposition 1 is the following 

Application. Let be given trigonometric polynomials 

a() 
=	

and b() 
=	

for = e'° E C. 
k---n	 k=-n  

Then, for every function v E L(C) with Fourier coefficients 

1 
j V(e i

w )e- ik 
wd p̂	for k E =

2ir
0
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the inequality

+ bkk} <c II v II	 (20) 

holds for c = maxc	f0 Ia(e 1 ) + Sb(e)I dcp, and this constant is optimal 

Observe that the functions a() 1 and b() = 2 2 lead to the constant c c2 (0) = 
2.127... from Remark 4, which follows from the Stokes-Poisson integral formula in the 
plane with complex notation (see [4: Theorem 11 for z = 0). 

The other application of Theorem 1 concerns an inequality in matrix analysis. It 
follows immediately from Theorem 1 for the special case that the abstract integral 
reduces to a finite sum. 

Proposition 2. Let be given matrices A 1 ,... ,Am E CflXfl. Then, 

max {
	

Akck : ck E C, IckI i } = max I	IA6I : e c, öi = 1 }.
	

(21) 
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