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Abstract. Boundary integral equations of the second kind in the logarithmic potential theory	- 
are studied under the assumption that the contour has an inward peak. For each equation 
we find a pair of function spaces such that the corresponding operator bijectively maps one of 
them onto another. 
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I. Introduction 
In this paper we prove the unique solvability of boundary integral equations of the 
Dirichlet problem

Au = 0 in ci) 

UIr=9	 (1.1) 
) 

and the Neumann problem
Au =0 in ci 
au	 (1.2) 
ônr	J 

in a bounded plane simply connected domain ci with inward peak z = 0 on the boun-
dary 1'. Here and elsewhere we assume that the normal n is directed outwards. 

We look for a solution of the problem (1.1) in the form 

M u(z) = (Wo)(z) - > t( ' )Ik(z )	( z = x + iy E ci) 
k=1 

where Wa is the double layer potential 

(Wa)(z) 
= Ir 

a(q	1 
ds q 
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are real numbers and Ik(z) = Imz k_ 4 . The function a and the vector t = 
( t (fl ,. .. , t() ) satisfy the equation 

7ra — Ta+	= -	on r\{O},	 (1.3) 

where Ta is the value of the potential Wa at a boundary point. 
A solution of problem (1.2) is sought in the form 

U(Z)
	(Va)(z) + 	t(k) lZk( Z )	(z E ), 

where Va is defined by

(Va)(z) = f a(q)log	1ds9 

and l?k(z) = Rez c_ 4 . Then the function a and the vector t = (t( I ) ,. . . , t() ) satisfy 
the equation

a+Sa+t-1k =	on r\{O},	 (1.4) 

where
(Sa)(z) = jan, a(q)— log	1ds	(z E \ {O}). 

Let r \ {O} belong to the class C 2 . We say that 0 is an outward (inward) peak if 
Q (the complementary domain ) is given near the peak by the inequalities i_(x) < 
Y < ic 4.(x), 0 < x < 6, where x''k±(x) E C2[0,1 and lim+ox T"c ±() = 
with /L > 0 and a+ > c_. By r± we denote the arcs {(x, i±(x)) x E [0, 8]}. Points on 
r and r_ with equal abscissas will be denoted by q+ and q_. 

In our previous articles [5 - 71, where we also studied boundary integral equations 
of logarithmic potential theory on contours with peaks, the solutions and boundary 
data were characterized by their asymptotic behaviour near the peaks. Here, for every 
integral operator under consideration we find a pair of function spaces such that the 
operator maps isomorphically one space onto another. 

If jq j 1W E L(1'), then we say that belongs to £,(F). We define the norm in this 
space by = II jqj 1 W IIL,(r). We shall make use of the same definition with F 
replaced by arcs of r± and intervals of R. 

Let V , (r) be the space of absolutely continuous functions on F \ {0} with finite 
norm ça = II W, II8r + II p IIcø_1(r) . It is an easy exercise to check the 
density in £,(r) of the set of smooth functions on F vanishing near 0. 

We introduce the pair of spaces 91(F) of absolutely continuous functions cp on 
F \ {0} with finite norms

I 

IIII(r) =
	

I(q+) ± (q_ )I P IqI dsq ) +
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Let qJ(I') denote the space of restrictions to r \ {O} of real functions of the form 
P(Z) = Iot ) Rez k , where m =	- - + fl . A norm of p is defined by 

El= It(k)I. The space 9)t,,([') is defined as the direct sum of 9l(f) and 
q3(r). 

By T,6(r) we denote the space of functions on r \ {O} represented in the form 
= da 4', where 0 E 9)I([') and t,1' (za) = 0 for a fixed point zo E F \ {O}. We supply 

J , (r) with the norm	r = 1'1 t (F) 
In the following short description of our results we assume that 0 < fi + 

min {M, 11. In Theorem 1 we prove that the operator 

x Rm (a, t)	 ira _Ta+t (k)Ik E	 (1.5) 

is continuous. As is shown in Theorem 2, the range of operator (1.5) coincides with the 
space 9)1,(F)if—/3—l+ N. For the exceptional case—/3- 1 + € Nwefind 
that operator (1.5) is not Fredholm (see Proposition 4). In Theorem 4 we show that 
the operator

M 
x	(a, t)	ira + Sa +	t(k)P-1k E J ,fl (r)	(1.6) 

k=1	an 

is onto ifp-13— l + N. Under the assumptionp_8_ l + E Nwe prove in 
Proposition 5 that operator (1.6) is not Fredhoim. In Theorems 3 and 5 we show that 
operators (1.5) and (1.6) are injective. The boundary integral equations of the exterior 
Dirichiet and Neumann problems for a domain 0 with outward peak are discussed in 
Theorems 6 - 9 and Proposition 6. 

2. Continuity of the operator in - T 

Let the operator AC be defined by 

ACf(x) 
= IR K(x, y )f(y ) dy, 

where
K(x,y)I	c	

1 
x-yI(1+Ix-yIJ)	

(J^0). 

Here and elsewhere by c we denote different positive constants. 
We introduce the space L ,0 (R) of functions on IR with the norm 

II'PIIL,0() = 11( 1 + x2)p IIL(U). 

The following lemma was formulated in [4).
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Lemma 1. If AC : L(R) - L(R) (1 < p < ) is bounded and —J < c+ I < J+1, 
then AC is continuous in L,0(R). 

We shall also use the following technical lemma. 

Lemma 2. Let p(u) = c(u) - r.—(u) and let the function h be specified by 

5 
f dv 
/ —=r
	

(T 0)	 (2.1) 
j p( V) 

h(r) 

If 1 1 -	< co, where Eo is a sufficiently small number, then 

p(h())p(h(r))	-	1	c ( 
(h() - h(r))2 + (p(h()))2	( - r) +1 - r	- r)2 ±1 + 

Proof. By the asymptotic formula 

h(r) (i+ - a_)r) P	as T .


which can be differentiated three times, we obtain the estimates 

(eLhn) 2 (2.2) 
\T) 

and
p(h())p(h(T)) 1 - o (( -  (2.3) 

(a( , r))2 

where a(e, r) = (h() - h(7-))(C - r)'. We represent 

p(h(e))p(h(r))	-	1 
(h() - h(r))2 + (p(h(e))) 2	( - r) + 1 

in the form

1	 )) 

	

(p(h()) )2	 1	p(h(	p(h(r)) 
p(h())p(h(r))	 - c(,r)	 -	((,r)) 

(u(, r))2	((e - r)2 + 1) (( - r)2 +	 -	( -
 7)2 + 1	

(2.4) 
(a(,r))2) 

From (2.2) and (2.3) it follows that (2.4) does not exceed	+ ) U 

Theorem 1. Let Si have an inward peak and let 0 < $ + < min{j, 1). Then the 
operator

	

(in - T) : £ 1 (r)	- (in - T)cr E m,fl(r) 

is continuous. 

Proof. Let c be so small that k±(x)— K(u)l c u 1 for all u satisfying Ix - uI < 
ex. The arcs of r± projected onto the segments 10, (1 - e)x], 1(1 - e)x, (1 + e)x] and
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[(1 + E)x,6) will be denoted by r(x), r(x) and r(x). Set a(u + i#'(u)) = 
u e [O,5]. 

(i) We prove the continuity of the operator irI - T) : £, + 1 (r) - 
Since

a	 a	Izi 
2 - Ora - Ta)(z) = ira (z) + Jr a (q)—log Iz q1dSq 

it is sufficient to estimate the norm in £,+(l' fl {l q I < }) of the function 

T.a(z) =  

	

Jr+Ur_ a'(q)	
IzI – log	dsq. 

n 

We represent Ta(z) in the form 

(1	+I	)a'(q)__log Izi 
r'(x)	 (z)	On	Iz - qj€

where the last term on r+ U r_ admits the estimate 

I	 6 i	I II(z)I <—ci(fr4(u) + Ia(u)l)u du + —c
	

(Ia(u)I + Ia l_(u)I) du. 

0	 x 

It follows by Hardy's inequality [2: Section 9.9] that 

<C IU'IIt(r) 

	

It is sufficient to assume that z E r. Since I a log 1--1	 I' for q E	(x), we obtain an,
(1-f 

zI	I	C	I f	I x i r(x)
(1-e)z 

The required estimate for the left-hand side follows from Hardy's inequality. 
For q E F(x) we have 

a	IzI __________ —log	
(1+(())2)4 = _+(u)–k(u) 

+0(1). 
an,	 z – q	 z–q12	x 

Since I  — q 2 > c((x - u) 2 + (p(u)) 2 ), we obtain 

a	IzI I

	G p(u)
—log
ôn	Iz - I 	(x - u)2 + (p(u))2)
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This implies

—log	dsq 
fr.(z)	an,

( 

	

(1+e)z	 1 +e) x
P(U) l(u)l 

	

J	(u)du 
+ f (-x--- u)2 + (p(u))2 

du x— ( 

	

(I—e)z	 1—e)r€

= .11 + J2. 

The integral J1 can be estimated in £p, p+ I (O, ) by Hardy's inequality. By making the


	

change of variables r = u, C =	in J2 we obtain 

	

.5/2 / 	/ _	 p 

la , (7- )IT— 
f x 

+)J2(x)dx	
( J p(1—a) ( f	

- -- T_	 I 
(e—r)2+1 dr) dj 

\(.5/2)—' 

where /3 +	p( - D. From Lemma 1 it follows that the integral on the right is 
majorized by

6/2 

	

c J l(r')lr	T— I'dT = c f I(u)lu1du. 

(6/2)	 0 

Thus,
llTli	 — c l oll	 (2.5) 

(ii) Now we estimate the norm in £ , ,4 (r fl {q <}) of (in - T)a(z) + (id 
—T)a(z..). We represent (in - T)o(z) for z = x + ii(x) E r in the form 

± in[o(z) — 

-lx 
q1dsq 

- I !( - q)ô
	1 —log	dsq 

ôfl q	lz — 

+[ira(,:F )	
f	

a(q) 
ô	1 

	

— I	—lo	d 
Jr()	q g lx — ql 

Sq] 

1 
dsq 

(z)UF'(z)	anq	lz - ql
6 

	

fr\(r+ur-)	
ô	1

q>J1k(Z). a(q)—log	ds
 ôflq	lz —qI	k=1
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For any q E r(z) U ['() ur(x) the inequality 

o	ii 
—log	I <cx' 1	 (2.6) 
Ofl q	z-qI 

is valid. In fact,
z 

i log	(1+((u)2)	<	
1072q	z -q	 I-iz -qi2 

	^ cx1, 

U 

if q E I'(x), and 

0 1 __	 ______  —log	(1+((u)2)	
1z q1 (Iu)I 

1	 k±(u)_,+(x)I)	u'+x' 
Ofl q	Iz — q	 q — z 

if q E F(x). Inequality (2.6) follows. Therefore 

(1+)x 

	

112 (z)I + 113(z)I	/ (Ia+(u )I + Ia-(u)I)du. 

Hence, the estimate

+ Il I3IICp,_p(rfl{Iq}) ^ C IIlI,^,(r) 

results from Hardy's inequality. 
Now we estimate 14 . We can assume that z E r+. In the sequel we shall use the 

estimate

	

1	p(x) log	1	+ (1+ (K(u))2) 

	

Ofl q	z—qI	 (x - u)2 + (p(x))2	
(2.7) 

x2l+' 
( —i 

+ (x - u) 2 + X2+1)	(q = U + iv E r'-(x)) 

where p(x) = ic+(x) - r,-(x). In order to obtain (2.7) we notice that 

- k(u) - tc.(u)(x - u)I <cx'(x - u)2. 

Therefore	
0	1	 1 

----log	(i + (,c.(u)2)7 
Oflq	i z - q l

- (u - x)ic'.(u) - (Ic_(tL) - ic+(x))	
(2.8) 

- (x - u) 2 + (k(u) -	())2 

,c+(x) - _(x)	
+ 0 (x'). 

= (x - u)2 + (r,—(u) -	2
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Taking into account c_(x) - K_(u)I cxx - we obtain 

K+(x) - 

(x — u) 2 + ( i(u) - 

=

tC+(X)) 

+0( p(x)	 x2p+1	
(2.9) 

(x — u) 2 + (p(x)) 2	(x —u) 2 +x2+?J 

Now (2.7) follows from (2.8) and (2.9). By making the change of variables r = 
= x we arrive at 

612	/ (1+e)x 

I	I	x2+lcy_(u) 
(X_U)2+X2+2) dx 

0
+00

(J ,zIa(r)I <c f e'	( - r) 2 + M2 T J 

where /3+ = p ( — ). From Lemma lit follows that the right-hand side is estimated 
from above by

c f r 	la— (r)Idr <c	 orI(u)Pu+1)du 

(6/2)- s	 0 

Thus, it is sufficient to estimate

(I+e)x 

ir- (x)— J	
p(x)_(u) 

X — ( 	u)2 + (p(x))2 
(i-c)x 

We make the change of variables u = h(r), x = h(e), where h is specified by (2.1). By 
Lemma 2 we have 

6/2 (1+e)z	 Ip 

I x	ira_(x) - J	
p(x)_(u)	

du dx (x — u) 2 + (p(x))2 
 (i-c)z 

CO	 'p 
0_(h(r)) 

C J	— I - r)2 + 1 dr d	(2.10) 
h- 1 (6/2)	 IR 

CO 

+	J	(lo)II()IPde 
h-'(6/2)
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where I() admits the estimate

6	 6 

'()I	f I_(h(r))I	+ cJ I_(h(r))I	+ C 
J	

_(h(r))I dr 
(e-r)2+lr 

h-'(6/2) 

From Lemma 1 and Hardy's inequality it follows that the last integral in (2.10) does 
not exceed

	

00	 6 
c 

J	
-a_(h(r))r0)dr = cJ I(u)Iu"du. 

h-'(6)	 0 

The Fourier transform of

- 
fa(h(r)) 

dr 
 ( - r)2 + 1 

equals
1 -exp(—lul) —irisign(ii)(or oh)' (v)

Iz'i 

Since the function (1 - exp(— I v I))1 u 1 1 is the Fourier transform of log(1 + _ 2) up to a 
real factor, it follows from the boundedness of the Hilbert transform in £ 1 _ 0 (R) (see 
[3]) and from Lemma 1 that the first integral on the right in (2.10) does not exceed 
c IIa'Il 

We turn to the integral 15 . We have 

1	 1	 1• —log- -Re-----cos(nq,x) -- Im-------cos(nq,y).	(2.11) Oflq	q - z -	q - z	 q - z 

For q E ç(x)ur:(x) and z E r  {II <	we represent the first term in (2.11) in the 

form m k z

	

x) 
Re(qm+'(q 

-Re	-j-cos(nq, - 	_))c05(nq, 

It is clear that

Re	
zm	\ 

(qm+l(q - ) cos(nq,x) 

Now we consider the second term in (2.11). To this end we make use of the equality 

m	k	 1	zm 
+ Im —Re Im(q - z) - ' = Im >	 qm+l	q -z	

(2.12) 
+Re' Rezm+hIm+Re 1 qm+l	q 	 q 



650	V. Maz'ya and A. Soloviev 

Since Imz k Req_ k_I = O(xllu1) and Rez k lmq_ k_l = xklmq_k_I + O(xu'), we 
obtain

	

M

k	M 

,in =	xCImq__l + O(xu'). 

The second term in (2.12) does not exceed	 Since Im(q - z)-'l< c(u' + 
we obtain for the third term in (2.12) 

I Req_ rn_i Re z'Im (q - z)1	C(xmUm_2 + x'u-1). 
The last term in (2.12) satisfies 

IReq	Im zmRe(q - z)-'l < cxu1 
Thus, we have for q e r(x) U 

log 
q zI =	

k (_Re ;;•;i cos(nq, x) + IM	cos(n, )) + I(q, z), 

where I(q,z)	(xm+lu_m_2 + xu'). Therefore 

J
cT(q) P_ log 1 

ds =	k) (a)xk + 
r.(r)ur'(z)	flq	Iz - q	

q 
	k=O


where
cW(a) 

= fr+ur—c  
1(q)(_Re j- cos(riq,x) + Im— j. cos(riq,y))dsq 

and Ri c admits the estimate 
tRi aII	 < c - 

It follows from Hardy's inequality that c(k)() (k = 1,. . . , i-n) are linear continuous 
functionals in £,#_,(r). 

It is clear that 16 is represented in the form 

+ (R2ci-)(z), 

where

+	 C 

Finally,

- Th)(z) = ±((z+) - (z_)) +	+ (Ra)(z)	(z E 

where
IC(k) 

I +	 C 

with

(R)(z) 
=

+ (Ri a)(z) + (R2u)(z). 

Hence and by (2.5) we obtain the boundedness of (7r1 - T) : £(1') - 9J , (r) I
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By changing the direction of the normal n we obtain the following assertion from 
Theorem 1. 

Corollary. Let Q have an outward peak, and let 0 < 0 + 1 <min{p, 11. Then the 
operator

(in + T) £ +1 (F) D a '—i (in I + T)a E 9)1,(I') 

is continuous. 

In passing, we have proved the following statements. 

Proposition 1. Let Q have either inward or outward peak and let 0 < 0 + < 
min{iz,1}. Then the operators 

T: £ 1 (F) a —+ ThE £,81(F) 

S: .C ,+1 (r) a '-4 Sol E £p,p+1(I') 

are continuous. 

3. Asymptotic representation of a conformal mapping 

We shall make use of the following lemma. 

Lemma 3. A conformal mapping 9 of R. = {( = + 177: ii > 01 onto Q, 9(0) = 0, 
has the representation 

( l2i]+I 
I	B' + B ( [2+2)e211)+2 log I + B (*) IC12ju+2 

9(e)	
+O(e22)	 if 21 E N, = '	 (3.1) I [2,]+2 

IB(Ic)	+ B)II 2M+2 + B(l2]+3)(2Il+3 

k=2
+0( 22 )	 if 2p V N, 

as C - ±0, where BM (k = 2,... , [2k) + 2) are real coefficients. Decomposition (3.1) 
can be differentiated at least once. 

Proof. By D we denote the image of Q under the mapping u + iv = (x + iy) 12. The 
boundary OD near the origin is the graph of the function c(u) such that 

,c(u) = ±a±IuI21 (1 + O(U2m21}))	(u - ±0).	(3.2) 

This asymptotic decomposition can be differentiated twice. 
Let 9 denote a conformal mapping of R?,. onto D, normalized by 9(0) = 0. According 

to Kellogg's conformal mapping theorem [4] we have 

Re O() = e + t'()	( E IR),	 (3.3)
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where (0) = 0, and i' satisfies the Holder condition 

-	c 16 -	(0 < y < rnin{2p, 1}).


By substituting (3.3) to (3.2) we obtain 

Im) = IeI 2 (fi± - A())	( —4±0), 

where A satisfies the HOlder condition with a small exponent 7 and A(0) = 0. 
The derivative of °() belongs to the Hardy space H' in the upper half-plane R.. 

Therefore
Re9(e) = s(Im)() + C, 

where i5 denotes the Hubert transform. We represent (Im)(e) for > 0 in the 
form

00 
1 f d	di J Im8(i)— 

-00

2 
di	I d Im W(

	
di 

in Pd^ d
0	 0 

00	 00 
tdi	2	1 d	(+)	di 2td 

+ - I (_Im ) (t) e2 j2 +	
(im) 

(t)e2 d	 _j2 inJ \ 
2 

where
(Im)(e.) = (Im(e)— Im(_e)), 

(+) 
(im) () = (Im) + 

By this representation we obtain	 . 

4 a(k)	+ a((2ll)[2hu] log	+ aIeI 2 ' + 0(2+) if 2z E N
k=O—Re O() = 
d	 a(lc)	+ a(±) II 2lA + a([21LH1)t2hiH1 + O (e2-- )	if 2	N 

as -+ ±0. Hence,

+ b( [ 2 ] )[2 ,l+ 1 log II + b(±) 1 ^ 12 1A+ I + O( 21 ) if 2z E N 
—	

+I b ) + b() IeI 2 ' +	 + O( 2 + 1 +)	if 2	N. 

Squaring the preceding representation we arrive at (3.1)1
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The inverse mapping 8'(z) on f has the form 

[2M1 

=

k=1	 (3.4) 
([2+1)	1 + (±1)t 2 1+ 1 / 2zl+ x	log - +	+ o(x) 

x 

if 2p € N, and
[2&J+1 

e =	(±l)x+ flx	+ 0 (x1)	(3.5) 

if 211 V N. Here 13(k) (k = 1,. . . , m + 1) are real coefficients.


	

We notice that there exists a function of the form	- 

d(() - 5 (+	
a(k)c + 

a ([2 1,1+1) ([2l1]+1 log( if 2j. € N 

-	 a(k)(	 if 2p N 

defined on R? and satisfying

(Go d)(() = ( + 0((21) 

It is clear that 9 = (Go d)2 is the conformal mapping of a neighbourhood of ( =0 in 
onto a neighbourhood of peak in l and has the representation 

x = ReOo() = + 0(22)	as - ±0.	 (3.6)


The inverse mapping 00 1 has the form

on r. 

By diminishing 6 in the definition of r± we can assume that 80 is defined on F. U r-

4. Auxiliary boundary value problems for a domain with 
outward peak 

	

Let no be the integer subject to the inequalities no - 1	2(p - -	< no. Then

M = [p - - + ] is the largest integer satisfying 2m no. 

We shall make use of the following proposition proved in [4]. 

Proposition 2. Let Q have an outward peak and let W belong to 91(1'), where 
0 < fi + 1 < min{p, 1). Then there exists a harmonic extension h onto Q of with 
normal derivative in £p,fl+I(I') satisfying 

;hLpfi+I(r) < 

Now we prove the following existence result.
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Proposition 3. Let ci have an inward peak and let V E fl(r), where 0 < /9+


	

P'fl
min{ j.i, 1) and 1i - /9 - +	N. Then there exists a harmonic extension of W onto 
ciC with normal derivative in the space £p,p+i(r') such that the conjugate function g, 
g(zo) 0 with a fixed point z 0 E r \ {O}, has the representation 

ck()Rez 7 + g#(z), 

where ck (ç4) are linear continuous functionals in	and g# satisfies 

	

P'O
119	1l91()(r) 

with c independent of W. 

Proof. (i) We start with the case when w E 9([') vanishes outside r ur_. We 
extend the function 4(r) = (ç o 9o)(r) by zero outside a small neighbourhood of 0. 

We first prove the estimate 
Cl	 :5	 +	

1L 1() 
+ 

'L21(ff)	

(4.1) 
< C2 IIs°II+, 

where (f)() =	 Let r be a measurable function on (0,00) subject to 
lr()l.< 21• We choose £ E [0,1] such that < 0 + < Then, from the 
boundedness of the Hardy- Littlewood maximal operator in £p2,_t+L (R) (see [9]), we 
obtain

fR
+ r(e)) JP 

	

(ICI	

P 

f	
r1+t4(T)dT	 (4.2)

J
 

e_ce+I 

^ cf41W"II2flP+P+1d. 

For z E r we have I9'(z)+O(z_)l c 2 '. Hence and by (4.2) the left inequality 
in (4.1) follows. 

	

Let h be a measurable function on [0,6] such that Ih(x)I	x. As in (4.2) we

have

/ 9(x) - (x + h(x))Ix'dx 

/	z+cz +	 P 

	

<c 

6 f	J t	(t)dt) xdx	 (4.3) 
- J ' xl+l 

o
6 

	

<cf	(t)x)"dx. 
0
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By using (3.6) we obtain that for C in a small neighbourhood of the origin the distance 
between 9 (e) and 8(—) does not exceed cx'. Hence and by (4.3) the right-hand 
inequality in (4.1) follows. 

We introduce a function ?1 by 

71)= if(r)Re log c__rdr	((=+ir7ER.). 

From the norm inequality for the Hubert transform of even functions in £2+i(R) 
(see Li]) It follows that the function

= ± I -_(-)(T)T-r- 
lre2JRdr 

satisfies
c	 ,	 (4.4) 

where	(e) =	2 
We represent	() in the form

dr 
__ j	+ 1. f _(r(r))--_ = (T1 'I — )(e) + (T24())(). 

From the norm inequality for the Hilbert transform of odd functions in £ p,20+ 1 (R) (see 
[1]) it follows that

	

cIIIIIL,,2^1(iR).	 (4.5) 

Let x be a C°°-function vanishing outside a neighbourhood of = 0 and subject to 
f1 (u)du = 1. The Fourier transform of (T2 cI ) )() with respect to is given by 

in [ In n)(n) + sign(n)(1 - (n)(n(n))] = §1 P ( 1 ) + S2W(r), 

where 'I'(T) is the Fourier transform of Since I n I(r ) is the Fourier transform 
of a smooth function admitting the estimate O(e-2) as -* ±00, it follows by Lemma 
ithat

IlSi 'IIL
P.2$	!^ CIIIIL,..2+ 

P	 P 

Taking into account that in sign(r)(i — (r)) is the Fourier transform of the function 


1	( X(u) dU	
( u,(u) 

J	Je() 
which admits the estimate Q(_2) as C - ±oo, we obtain by Lemma 1 

< c(-_ci°	 + IIHL .2	PIIS2'PIIL	-	d P

P
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Thus, T2 - ) satisfies 

T2IIL 1()	 +
 d	IIL25,1()	IlL92$ 1(a) 

This along (4.5) imply

d	L, 25 , 1 ( ) II	 IlL,2+1()).	(4.6) 
P 

We represent the odd function 7( on R in the form 

= .-1 -(r) log e - r 
7r dr 

flo J 4(+)(r) 
dr	

O' k 

- 	
T-C 

dr. 
Rr°(e-T) k=o 

Since cI ) e L2_2+i(R) and since 0 < 2/3 - 2j.t + n0 + a < 1 for even no and 
0 < 2/3 - 2i + no + < 2 for odd n0 , it follows from the boundedncss of the Hubert 
transform in weighted LP-spaces (see [ 1 1) that the norm in L2_21+jjR) of 

ci()(r)
dr 

Jrfoe_r 

does not exceed c 1I 4( IL 22+j(R) 
Hence by (4.4), (4.6) we obtain that the function h(z) = 7-1 o O (z) is represented 

in the form

	

a()Rez7 + h#(z)	 (4.7) 

for z e Q situated in a small neighbourhood of the peak. Here 

ak() 
= j (+)(r)r_2kdr	(1 <k < m) 

are linear continuous functionals in ')l,tj(r), and h# belongs to JLj(i') and satisfies 

h#h1 
II'J1(I'^ur) < c 

It is clear that	=	E L 211 (R). Therefore h belongs toan 
Now let ic E C(R2 ) be equal to 1 for Izi < 6 and vanish for Izi > 6. We extend ,ch 

by zero outside a small neighbourhood of 0 and set 

0 1 (z) = -(Kh)(z)	 (z E I1C) 

0 
p(z) = —cp(z) - -(kh)(z)	(z E ).

as
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We consider the boundary value problem

((CR2)) 

—F(+iO)=T()	(eER)	
(4.8) 

J 

where Q(() = (01 o 9)(() 01 (() 1 2 and T() = ( o 9)( + iO) I)( + iO)I. By using the 
estimates 

gradN)I < Hf T2(d(I/dT)(T)dT	and I fl(I	")(7)d-j 

and theorems on the boundedness of the Hardy- Littlewood maximal operator and 
Hubert transform in weighted L-spaces [3, 9] we obtain 

II7- IIL 9 () + IIQIIL()	C 
(11 

dTL,2,+1() + IIIIL,2+)). 

A solution of problem (4.8) is given by 

= f T(u)O(u,  du - JR Q(w)5(w, dudv	(w = u + iv) 

with Green's function

27r	I (	W( ) ( 1 W( 

We rewrite F on R in the form 

= t_ 1 (p) log II + t0 (o)

Q(w)log1—-dudv	(49) 
7r	 U	 7r	 W 

where
t_1() 

= 

if T(u)du + if Q(w) dudv 
7r	 7r

and
to(p) = if T(u)log uIdu if Q(w) log lwldudv. 

7r	 ir

Hence we obtain

- t_ ' () = if ----du 
1IR2 

( - tL)Q(W) 
7T•	 Ic — wI
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By the boundedness of the Hubert transform in £(R) and the Minkovski inequality we 
prove that

- t 1 () € L(R)	 (4.10)


and that the L-norm of this function does not exceed 

II 7 IIL,() + IIQIIL,(). 

It is clear that in a neighbourhood of infinity 

=	 (4.11) 

where IR00()I	c (II T IIL,(ii) + IIQIIL, ( R .) ) for large	. Set I =	o9. From (4.10)

and (4.11) it follows that äf belongs to £, fl+ I (r) and satisfies 

M o < C	,,(r) .	 (4.12)

S II c9 , fl41 (r) - 

By Taylor's decomposition of the integral terms in (4.9) we obtain 

no-1 

= t_ 1 (p) log I + io(o) +	i,(ço)	+ IeI'° R 0(),	(4.13)

k=i 

where It k()I	c (II T IIL(R) + IIQIIL(R)) for k = —1,...,no - 1, and R0(e)I 
C ( 7]1L,() + IQIL()) for small IC1. Taking into account the asymptotic represen-
tations (3.4), (3.5) of 9 and the inequality 2(p - - ) < no, it follows from (4.12) 
and (4.13) that f is represented in the form 

1(z) =	bk(o)Rez	+f#(z)	(z E l)	 (4.14) 

where f E t(F), and bk(cø) (k = 1,... ,m) are linear combinations of the coeffi-
cients tt() ( = 1,... ,no - 1) in (4.13). 

According to (4.7) and (4.14) the function g = ich + f is harmonic in Q and can be 
written as

g(z) =	ck()Rezk7 + g#(z)	(z E C) 

with Ck( (p) = ak((p) + bk(p). Moreover, 

M 

:i: Ic'I + 11011 (_) () < CC() p .0	 p.8 () k= I 
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and by the definition of g it follows that (go9)(oo) = 0. Because	=	on 

	

an	an 
it is clear that one of the functions conjugate to g is the harmonic extension of onto 

with normal derivative in £,+1(f). 

(ii) Now let p belong tol(1') and let p vanish on r n {q < }. We introduce P'P
the function 7(s) ( o 9)() ( E R) which equals zero outside a certain interval. Set 

g(() = - f (r)Re	dr	((€ R . ).	 (4.15) 
ir j	r((—T) -_ 

It is clear that one of conjugate functions is a harmonic extension of 1 onto R. It 
follows from the boundedness of Hilbert transform in L P-spaces that 9 = go 9' belongs 
to	and satisfies	 - 

9 11i	(f')< C 11(0 lI ( r ) p.0+'	 P.O 

Further, we represent g on R in the form 

g() = -P.V.j 4)(7-)-r-'d7 
7r 

1	1 c1(r)T T' o ' + n0-1	I 4(T)rk_1dT+ 
em1	

dr 
k=i 
7r 
_  

n0-1 

=	
t((0) + 

k=O 

where
tk((0) = - f (r)rk_ldT 

7T j 

Ow =	 dr (C E R). 
1	f (r) r"' 

Since - i <2p.-2/3--no+1< 1-,wehave 
n0-1

t/((0) + IIg# 
II	'IL 

k=O	p,2p-20—
	L,(lit) 

Hence and from (4.16) it follows that g is represented in the form 

g(z) =	ck ()Rez k_ +g# (z)	(z E ci) 

where g# E 1(r), ck(p) (k = 1,. ,rn) are linear combinations of coefficients 
t() ( = 1,... no - 1) in (4.17). These coefficients and the function g# satisfy 

kk(()I + lI g# II) (r ) < C II(°II1(+r) 

	

k=1	P.0

According to (4.15) we have (g o 9)() = 0, and the conjugate function W=	is

the harmonic extension of W onto ci with normal derivative in £,0+l(r) I

(4.16) 

(4.17)
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5. Boundary integral equation of the Dirichiet problem 

Here we prove the unique solvability of equation (1.3) on the contour r with inward 
peak. 

Theorem 2. Let Q have an inward peak and let 0 < 0 + < min{p, l}, A - /3 - 
+	N. Then the operator 

	

Rm (, i)	- To, + E t(k)Ik E 1(r),	(5.1) 

where Ik (Z) = Imz k_ 4 , is surjeciive. 

Proof. (i) Let p E 91(F) and y = 0 in a neighbourhood of the peak. We consider 
the harmonic extension hR of p onto Q and its conjugate function g*, normalized by the 
condition g(zo)	0 (z0 E r \ {O}) which were introduced in Proposition 3. By 
Proposition 3,

	

	gR E £, + 1(r) and there exist real numbers c ( ' ) (p) (k = 1,... , m)€as 
such that the function

go, (Z) = g'(z) - 

where R.k(z) = Rez k_ 4 , belongs to 91j(F). The coefficients e ( () (k	1,...,m)€
and the function g(z) satisfy 

M 

>	c()+ 11 g IIj(r)	c	p Ilg(1 (f) .	 (5.2)

p k=1	 .8 

The function

h(z) = h t (z) +	e( k)()I(z)	(z E 

is the harmonic extension of

	

+	 E 9l(F). 

Let h be the harmonic extension of h ontoQ c subject to grad h (z) = O( Iz I)• Hence 
and by the estimate h(z) = O (1 z 1 4 ) (z E 1) we obtain 

h(z)	
1 J i5h0	ôh) log 1z 'dsq + h(oo)	(z E r \ {O}).	(5.3) 

2ir	an	On 

According to Proposition 2 the Dirichiet problem in n c with the boundary data g has 
a solution e such that Ôfe E £, + 1(r) and satisfies an

	

II __fCII	< cgI_)) .	 (5.4) 

	

ii	- 
II
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Let ge denote the harmonic function conjugate to JC and vanishing at infinity. We have 
0 e - '9 cc 

- ;;i E r9,fl+I(r). Since 

C	 c	 •	3 - g = _-f - —--g = —— h	on \ {O}, 

it follows that ge belongs to	and satisfies the Neumann problem in Q c with 
boundary data - h. By the integral representation of a harmonic function in Qc and an 0 
by (5.4) we obtain

IIgII'	(F)	CIIg
0

II 0( _ )(	.	( 5.5) 

	

P'0+1	 1 . 0 

Since grad g' = O(I zI) (z E C) then the function w = _ gC - h + h(oo) admits 
the representation	 -	 - 

	

w(z) = 2-. [ (W() 8q log 1	8W	IzI 
)dlq	(z E DC). 

27r JF	 z — q 

From the limit relation for the double layer potential and from (5.3) it follows that 


	

W - ir'Tw = — 2(h - h(oo))	in r \ { O}. 

Since T 1 —ir, we obtain that the function 

or =	

(

gE + +c(k)()i) E 

satisfies

a(z) - Ta(z) = —(z) -	c(k)()Ik(z)	(z € F\ {O}). 

We set j(') = c ( " ) () (k	1,... ,m). From (5.2) and (5.5) it follows that 

M 

	

i ItI + II 0iIC, ( F )	C II(PI1+ 1 . .	( 5.6) 
k=I 

(ii) Now let ça be an arbitrary function in 1)(r). There exists a sequence {r}r>] 
of smooth functions on r \ { O} vanishing near the peak, which tends to V € 91 (+) (r). 
Let (a,., tr) € £,+ 1(r) < Rtm be the solution of equation (1.3) with the right-hand side 

Which is constructed as in (i). 
According to (5.6) the sequence {(ar,tr)}r>i converges in £, +1(r) x R" to a limit 

(a, t). Since the operator T: £,+1(F) '— £ , + 1( r ) is continuous (see Proposition 1), 
it follows, by taking the limit, that 

a — Ta+tIk = —s,.	 (5.7)
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Consequently, equation (1.3) is solvable in	< Rm for every E 

(iii) We turn to the case ç(z) = Re z' (z E r \ {O}). As the harmonic extension 
of onto Q we take the function h'(z) = Re zk. It is clear that the conjugate harmonic 
function gt(z) = Imz ic belongs toYl)(I'). According to Proposition 2, gZ admits the 
harmonic extension fC onto çc such that ä1e e £,#,(r). Let gC be the harmonic 
function conjugate to fC and vanishing at infinity. We have 

	

ag e - oh' on F\{O}	and	geEr(r) 

Arguing as in (i) we prove that the pair (a, 0), where a(z) = —(27r)' (gc(z) + Rezc), 
belongs to £ 1 (r) x Rm and satisfies (1.3). This and (5.7) imply 

9)1 , (r) c ( - T +	 ( fi+1(r) x 

The converse inclusion was proved in Theorem ii 
Theorem 3. Let Q have an inward peak. Then operator (5.1) is injective for 0 < 

/3+ <min{,1}. 

Proof. Let (a, t) E £ 1 (r) < Rm be an element of Ker(irl - T +	0iIk). 

Then the harmonic function 

(Wa)(z) +	t( k)i(z)	(z e ) 

vanishes on the contour r \ { O}. By (Wo) we denote an arbitrary function conjugate 
to Wo, in ft We introduce the holomorphic function 

W(z) = —(Wc,)(z) + i(Wa)(z) + > tzk	(z E 

Let ( = 7(z) be a conformal mapping of Q onto R, y(0) = 0. The function 
F(z) = (W o y)() is holomorphic in the lower half-plane R = { = e + ir1 ij 
continuous up to the boundary and Im F = 0 on the real axis. We notice that the 
function Wcr admits the estimate

	

RWa)(z)l	cIzI_N 

for an integer N. Therefore the holomorphic extension F of F onto C is an entire 
function with real part satisfying

C
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From the Schwarz integral formula it follows that Fezt has the same order of growth at 
infinity as ReFt. In particular, there exists a polynomial P with real coefficients such 
that

-(Wcr)(z) + 1: t(k)lZk( Z ) = Re P	 (z E ci). 
k=I 

Since
-)(z)	d q)log zI dS = (V 'I(z)	(z E ci)
(Wa = —( 

Jr ds	
1_q1	

\ ds) 

the equality

do,  
(z)) 
1	-	(k)Z V—"(z) Re 

P(

	

(z E r \ { O})	(5.8) (	=	
7 

holds. Taking into account that V() E 91" (r) (see [4: Theorem 1]) we obtain that di	P'O 

the right-hand side in (5.8) belongs to 91(l'). However, since m - + '3 - i < -, P'O
the functions 7k (k = 1,. . . , m) and positive integer powers of	do not belong to 

fi (r). Hence, it follows that the coefficients j) (k = 1,... ,m) are equal to zero 
and the polynomial P is constant. Therefore Wa and Wa are constant in Q. 

By W..a we denote the harmonic function conjugate to (Wa)(z) (z € ci c ) which 
equals Wa on r \ { O}. Since W_a admits the estimate 

l(W_a)(z)I <cIzI_ N	as z -40 

for an integer N and is constant on I'\{O}, it follows that W.a = const in ci a . Therefore 
Wa is constant in cia. 

From the jump formula for Wa we obtain that ci const on ['\ {O}. Since the 
non-zero constant does not satisfy the homogeneous equation (1.3), it follows that a 
equals zero I 

	

Proposition 4. Let ci have an inward peak, and let 0 < 6 +	< min{p, 1},

+ 1 E N. Then operator (5.1) i3 not Fredholm. 

Proof. Let
= Ielfb_l (— log II) 

in a small neighbourhood of the origin and let supp be in the domain of the mapping 
00 introduced in Section 3. Let be such that	< 1. By p we denote the function 

o e O1,t(I') and introduce the harmonic extension h of onto S1 constructed in 
Proposition 3. Let g' be the harmonic function conjugate to h' from Proposition 3. We 
have

-	 g'(z) = > C1k(Z) + g#(z). 

Here	 --
g # (z) = c Re(z	(logz') +.g(z),



664	V. Maz'ya and A. Soloviev 

where go E ¶fl, fl (r). The harmonic extension e of g# to ci'described in Proposition 
2 has the form

fe(z) = cilm	
ZZ0 

I
	

( log Z)
j Rz0 - 

+ c2 Rel

	

If zzo 	(log z) 	+ for (z), 
L\zo_z) 

where C1, C2 E R, z0 is a fixed point of ci, and	E £,,6+,(r). 
The function g e , ge(oo) = 0, conjugate to f, has the representation 

g e (z) - cx(logx)' 

It is clear that gC £, 1 (r) and? E £, 1 (r) for /3' > /3. By Theorem 2 the pair 
(a, f), where t = (c( 1 ) . . , c( '' ) ) and 

= —(2' (gc++c()Ik)	on 

is the solution of equation (1.3) in £,fl+I(F) x Rm for 3' > 3. From Theorem 3 it 
follows that equation (1.3) is not solvable in r, 1 (r) x RT. 

According to Theorem 2 equation (1.3) with a right-hand side in O1,(r'), /3' </3, 
is solvable in £,,, +1 (r) x Rm . Since the set of smooth functions vanishing near the 
peak is dense in 91j(1') and £, 8 , 1 (r) x Rm is embedded to L" P,6+1 	x Rm , it follows

that the range of operator (5.1) is not closed in 9Y1 ,fl(r) I 

6. Boundary integral equation of the Neumann problem 

In this section we prove the unique solvability of equation (1.4) on the contour r with 
inward peak. 

Theorem 4. Let ci have an Inward peak and let 0 < 8 + < min{z, 1} and 
Then the operator

m 
x	(a, t)	 E	,fl(r)	(6.1) 

k=1	an 

with Rk( Z ) = Re z C	is surjectzve. 

Proof. (i) Let e fl(I') and 7/' = 0 in a neighbourhood of the peak. By h we 
denote the harmonic extension of 0 onto ci which is introduced in Proposition 3. Let 
g be the function conjugate to hR and normalized by the condition g 2 (zo) = 0 with
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0 e F \ {O}. By Proposition 3, g' belongs to r +1 (r) and there exist real numbers 
c ( ' ) () (k = 1,. . . , m) such that 

In 

g'(z) = -	 + g(z)	(z E ). 

These coefficients c ( ' ) (0) and the function g satisfy 

In 

	

i	c'( ')+ II g IIj() ( r )	C	1' IIr)1(+)(r)	 (6.2) 
k=I 

Since  

	

an 9' = –a h' =	the function –g solves the Neumann problem in Q with 
boundary data

d V,-	c	—7k E	,fl(F). 

By Proposition 2, the Dirichlet problem in Q c with boundary data –g has a solution 
hC such that	hC e £p,fl+1(f) and satisfies 

II	hell	<C g "	(r) II an	ILc, 5+ , ( r ) - 

From the equality

1 '• ôh	IzoI	1 	he(q) 5	1	
dsq an,	zo – q	

();lo10_q1 h1(oo) =	Jr

	
(q) log	dsq 

where z0 is a fixed point in Q, and from (6.3) we obtain that the linear functional 
- h(oo) is continuous in 91j(['). Therefore, we can choose g' so that h e (oo) = 0 

and inequality (6.3) remains valid. Since gradg = O(I z I) and grad he = O(IzI), 
it follows that

1h' ______ 
1 I g

o 
(Z) = 

	

(._.& (q) + --- ( q)) log 
I  - 

dsqan 

Set

C(Z) = i(-( Z) -	(b)-7k(z) -Oh'(z))	( z E F\ {o}).	(6.4) 2ir ds
k=1 

Taking into account that Vc(z) = O (I z ') ( z 0 0) as well as the boundedness of 
the functions g(z) (z E ) and he(z) (z E	we have 

1 
g(z) + Vo(z) = clm— (z E )	and	he(z) + Vu(z) = 0 (z E lC) 

y(z)

(6.3)
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where 7(z) is a conformal mapping of onto R, y (0 ) = 0. From the jump formula for 
we obtain

c --Im
y(z)

 = 0	(z E r \ {0}). 
an  

Since Imy as x - 0, we have c = 0. Thus, Va = —g on ft A limit an	1X 2
relation for the normal derivative of the simple layer potential implies 

ira(z) + (Sa)(z) = -(z) - j c(k)($ik(z)	(z E r \ { o}).ds 

We set t( k )	c(k)(,) (k.= 	. . , m). Hence, it follows that the pair (a, t), where 
t	(t (1) ,. . . ,j(m)) and a is defined by (6.4), belongs to	x Rm and satisfies 
equation (1.4). From (6.2) and (6.3) if follows that 

M 1 +	 C i,b "1(r)	 (6.5) I,	II

k=1 

Now let ,b be an arbitrary function in 91(r). There exits a sequence {i'r}r>i of 
smooth functions on F \ {0}, which vanishes in a neighbourhood of the peak and tends 
to V, E 91p(+),,6 	Let (a,, t,) E £ ,+ 1 (r) x Rm be the solution of (1.4) with right-hand

side 0,. According to (6.5) the sequence {(ar,ir)}r>i converges in £,s+1(r) x 
to a limit 

(a, t). 
Since the operator S : £,+1(r) - r ,1 (r) (see Proposition 1) is 

continuous, it follows by taking the limit that 

ira + Sa +	j(k)	= ;- ;t.	-	 (6.6) 

Consequently, equation (1.4) is solvable in £ ,' (F) x R m for every 0 E 9l(F). 
(ii) We turn to the case (z) = Re z' (z E F \ 101). As a harmonic extension of 

5 onto Q we take the function h'(z) = Re?. The conjugate function g'(z) = —IM zk 

belongs to fl(F). By Proposition 2, the function —g 1 has the harmonic extension h 

on Q c such that	hC E £p,fl+I(F). Set an 

a	27(z) = 1 (-	
on

1(z) - Phe (z) '\	( z E F \ {O}). 

Then the pair (a, 0) E £ , fl+ 1 (F) x Rm is a solution of equation (1.4) with right-hand 
side	(see (i)). 

This and (6.6) imply 

fl(F)c(	

m 
in + S +	( k)Ô	

) (r,, +1 (r) x Rm) 
On	I k=I	 /
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(iii) It remains to prove the converse inclusion. Clearly, 

	

In	a
C J,([') 

k=1 

for any t E Rm . Now let a belong to £ ,+ 1 (r) and let a function 6 E	be

defined by 6 = a on r \ {O}. By 0 we denote the function 

O( Z ) = 7r6(z) - [6(q) Izi —log	ds,. 
r	ôflq	1z — qI 

From Theorem 1 it follows that 0 E Xn 8(r). Since 

= ira(z) + j a(q) a 
— log Izi dsq, 
n 

we obtain that the image of £ ,+1 (r) under the mapping (6.1) is the space 

Theorem 5. Let ci have an -inward peak. Then operator (6.1) is injective provided 
0 < 0 + < min{, 11. 

Proof. Let (a,t) E £ , ,9+l (r) x lR tm , where t = (t ( ' ) ,. . . , t() ), belong to Ker(irl+ 
S+ >	tj1k). Then the harmonic function 

	

V(Z) = Va(z) +	j ( k)( z )	(z e 

has zero Neumann boundary data on r \ {O}. Since 

Iv(z)I c I zI, (6.7) 

we obtain by the integral representation for the harmonic function v(z) and a limit 
relation for the double layer potential 

	

v(z)+Jv(q) 5
	1 

	

—log	ds 

	

Sfl q	z — q 
q 0	(zer\{O}). 

Thus, V is a solution of the homogeneous integral equation of the Dirichiet problem in 
QC.

The double layer potential (Wv)(z) (z E C) grows not faster than a power function 
as z —+ 0. Since the limit values of Wv vanish on r \ {O}, it follows that (Wv)(z) = 
0(z E Q c). Therefore an arbitrary conjugate function Wv is constant in Qc . We set 
Wv=C. 

Let W+v be defined by Wv = Wv in Q and let W+v be a conjugate function such 
that W+v = Con r \ {O}. We introduce the holomorphic-function 

W(z) = (W+v)(z) + i ( i T - C)	(z E ).
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Let ( = 7(z) be a conformal mapping of ci onto lR f., 7(0) = 0. The function F(() = 
(Wo-y')( . ) is holomorphic in the lower half-plane R, continuous up to the boundary, 
and Im F = 0 on 3R. The holornorphic extension Felt of F to C is the entire function, 
which grows not faster than a power function as ( —* co. It follows that W(z) = P(.), 
where P is a polynomial with real coefficients. This implies that 

I 1 - 
(W+)v(z) =	

k C(k)Re (.)	(z E ci). 
k=O 

From the jump formula for Wv we obtain 

t -k 
v(z) = –(2ir)	cRe( 1

(z E r \ {O}). 
k=O 

By (6.7) we have

	

V(z) = – (2ir)' (c( ° ) + c(')Re----)	on r \ {O}. 
7(z) 

Therefore

1	1 (V)(z) +	 1Zk(Z) = – (2'c° — (2)c'Re	+ cIm 

	

k=1	
7(Z) 

for z E Q. By h (k = 1,... ,m) and ho' we denote harmonic extensions of 7k and 
Re() onto ci'which grow not faster than a power function as z —* 0. Since 

Va +	(k)he+ (2'c'h + (2)'c° 

vanishes on r \ (0), we have 

(Va)(z) = —	t (k) k(Z) — (2)c'h(z) — (2'c°	(z E ciC) 

From the jump formula for the normal derivative of Va it follows 

0	1 — 

	

2a(z) = -	t(k) Rk(Z) + c	Im
7(z) 

 
k=1	 (z E r \ (0)) 

On 

+(k)a() 
+ (27r'c-h(z) 

On k=1
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where

—k(Z) ak±IzIk+_ 
an	 (k = 1,... ,m) 

ô	1 —Im---- " 
an 7(z) 

M(z)	±bk I zI'	(k = 0, 1,... , m). 

Here ak and bk (k = 0,1,... ,m) are real coefficients. Since m < y - 3 - , we have 

k – – +fl<	for k=0,1,...,m. 

It means that the function	does not belong to £ fl+I (r) for k  
Therefore the coefficients	,t) and c(1) are equal to zero. Thus, 

1 a = (27r)'c a —Im–	on I' \ {O}. an 

By the integral representation for the harmonic function Tm on Q we have 

1 r a	1	 i í	i	a	 1 - i —(Tm---)log IzI ds q = - I Im--log IzI ds q + Tm— 27r Jr anq	7(q)	Iz - q	27r Jr	7(q) an,,	z - q	7(z) 

for z E Q. Since Tm = 0 on r \ {O}, it follows from a limit relation for the simple 
layer potential that ira – Sa = 0 on r\{o}. However, we have ira+Sa = 0 on F\{O}. 
Hence, we obtain or = 01 

Proposition 5. Let Q have an inward peak, and let 0 < 8 +	< min{,1},

- /3 - + I E N. Then operator (6.1) 13 not Fredhoim. 

Proof. Let
=	flo-I ( _ log 

I) 

in a small neighbourhood of the origin and let supp'I' be in the domain of mapping 6 
introduced in Section 3. We assume < < 1 and set = 'I' o	e 9,(r). By h 
we denote the harmonic extension of /' on Q constructed in Proposition 3. Let g' be a 
conjugate function from Proposition 3. We have 

g'(z) = c(k)*(z) + g#(z). 

Here
g#(z) = cRe(z	(log z') + g(z), - 

where g0# E 91j(r).
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By h we denote the harmonic extension of g# on c from Proposition 2. We 
have

f  
h (z) =c1Im zoZZ-0 

J
	(log Z)€z/ 

+c2 Re[()(1ogz)] +h(z) 

where z0 is a fixed point of Q and	E r , + 1 (r). Since an 

a	 -fl-l-I - he(z) - c 	i (logx)', 

it follows that	rfl+I(r) and hC e £ an	 ,fl+I(r) for /3' > 8 
By Theorem 4 the pair (a, t), where t = (c( ' ) ,... , c ( ') and 

= (27r) - '(- -	 - 0--h	on \ {O}, an	on k=I 

belongs to £pfl'+l(r) x Rm for 13' > /3 and satisfies (6.6). From Theorem 5 it follows 
that the same equation is not solvable in £,fl+I(r) x Rm. 

Equation (6.6) is solvable in £fl+l(r) x Rm , 3' < 3. Since the set of smooth 
functions vanishing near the peak is dense in 1(I') and since £,,6+I(r) x Rtm is 
embedded to £,+1(r) x Rtm , we obtain that the range of operator (6.1) is not closed 
in 1J,fl(F)I 

7. Integral equations of the exterior Dirichlet and Neumann 
problems for a domain with outward peak 

Now we shortly discuss the integral equations mentioned in the title of the section. 
Their proofs are similar to those of the corresponding results relating to the interior 
problems for a domain with inward peak, which were proved earlier. 

Let Q have an outward peak. The solution of the Dirichlet problem 

Au = 0 in ci' 

= 

is sought in the form

M 

U(Z) = (Welta)(z) +	j(k)Iext()	(z E fC)€
k=1 

Here
(Wa)(z) J c(q) (	 )dsq —log	+1 

r	Onq	z-q
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and
 c I 2 (z) =Re( 

	

 - zi	
(z E )

 
where z0 is a fixed point in Q. The density a and the vector t = (t ( ' ) ,. ,t ) ) satisfy 
the equation

+	+	tI =	on z E r \ {O},	 (7.1) 

where Teta is the value of the potential W e a at a point of r \ {O}. 

Theorem 6. Let ci have an outward peak and let 0 < /9 + < min{z, 11, 
+	N. Then the operator 

(a, t)	a + Tta +	 E	 (7.2) 

is surjective. 

Proof. Let h be the harmonic extension of E oi(r) on	constructed in

Proposition 3, and let ge be a conjugate function vanishing at a fixed point on r \ {O}. 

	

By Proposition 3 there exist real numbers	(k = 1, ..., m) such that 

M 

=	c(Ai.	+ g, 
k=1 

where g E 1([') and

	

/	\k 
l CZi (z) = Rel

'zo - zi 

We set h = h +t(k)It. 
The only change to be made in the proof of Theorem 2 is that the solution g' of the 

	

Neumann problem on ci with boundary data	should be chosen so that an 

IIrgtds =hds - 2h(co). 

Then the pair (a, t), where t = (c( 1 ) ,. , c() ) and 

/ 

	

a = (2)' (W +	cI' - gs) 

k=1 

is a solution in £ 1 (r) x Rm of equation (7.1). The case w € () is considered as 
in Theorem 2 1
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We represent the solution of the Neumann problem 

L,u=O in cic 
3u - = 
an I r 

in the form

	

U(Z) = (Vu)(z) -	t(k)zi(z)	(z E ciC) 

where Vu is the simple layer potential. The density u and the vector t = (t( l ) ,. . . 
satisfy

	

- Sa +	 = -	on r \ {O}.	 (7.3)
an 

Theorem 7. Let ci have an outward peak and let 0 <fi + < min{, 11, i -)3 - 
+	N. Then the operator 

$+ i ( F) x	(u,t)	- s +	 E	 ( )an 

is surjective. 

Proof. Let h be the harmonic extension of 0 E i([') on ciC and ge be a 
conjugate function constructed in Proposition 3. Then there exist real numbers c 
such that

	

gC =	
+ g, 

where goe E O1j(r). We choose g to satisfy g() = 0. Here the function ge plays the 
same role as gt in the proof of Theorem 4. 

Now we use the same argument as in Theorem 4. By h t we denote the harmonic 
extension of goe on ci such that	h' E £,+i(F) (see Proposition 2). Then the pair an 
(a, t), where i = (c( ' ) ,. . . ,c() ) and 

or = ( 27r)- '( h t -	+e 

	

an	ds	 n	j k=1 

solves equation (7.3). 
The case E 3([') is considered in the same way as in Theorem 4, one should only 

replace g t , hS and h by g e , he and h 1 , respectively I 

Two following theorems can be proved in the same way as Theorems 3 and 5.
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Theorem 8. Let Q have an outward peak. Then operator (7.2) is injective for 
0< 0 + 1 <min{L, 1}. 

Theorem 9. Let Q have an outward peak. Then operator (7.4) is injective for 
0< 9 + <rnin{ 1L, 11. 

The proof of the following proposition is essentially the same as those of Propositions 
4 the case of operator (7.2)) and 5 (the case of operator (7.4)). 

Proposition 6. Let Q have an outward peak, and let 0 < 13 +	< min{, 11, 
- 0 - + I E N. Then operators (7.2) and (7.4) are not Fredholm. 
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