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Abstract. Boundary integral equations of the second kind in the logarithmic potential theory
are studied under the assumption that the contour has an inward peak. For each equation
we find a pair of function spaces such that the corresponding operator bijectively maps one of
them onto another.
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1. Introduction

In this paper we prove the unique solvability of boundary integral equations of the
Dirichlet problem

Au=0in Q
1.1
ul, = ¢ (11)
and the Neumann problem
Au=0in Q
Ju (1.2)
a_n,r =¥ '

in a bounded plane simply connected domain Q with inward peak 2z = 0 on the boun-
dary T'. Here and elsewhere we assume that the normal n is directed outwards.
We look for a solution of the problem (1.1) in the form
u(z) = (Wo)(z) - )_tPL(z)  (2=z+iyeQ)
k=1
where Wo is the double layer potential

d 1
woxa) = [ o(0) g o8 [rds
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t(8) are real numbers and Zx(z) = Imz 3. The function ¢ and the vector ¢t =

(t(l),. ..,t{m)) satisfy the equation

no —To + Zt(k)Ik =—-p on I'\ {0}, (1.3)
k=1

where To is the value of the potential Wo at a boundary point.
A solution of problem (1.2) is sought in the form

u(z) = (Vo)2) + S t9Ri(z) (2 € @),

k=1

where Vo is defined by

(Vo)(z) = / o(g) log - =l ldsq
and Ri(z) = Re z¥=%. Then the function o and the vector t = (t(1,...,t(™) satisfy
the equation

7ra+50+§t(")5in7€k =y on T'\ {0}, (1.4)
where
(5)e) = [ ooz tos omdsy (2 €T\ {O)).

Let T\ {O} belong to the class C?. We say that O is an outward (inward) peak if '
Q (the complementary domain §2¢) is given near the peak by the inequalities k_(z) <
y < k4(z), 0 < z < 6, where z7#"1k4(z) € C?(0,6] and lim; _4oz7# 7 ka(z) = oz
with g > 0 and a4 > a_. By 'y we denote the arcs {(z,x+(z)) : = € [0,6]}. Points on
I'; and I'_ with equal abscissas will be denoted by ¢4 and ¢_.

In our previous articles {5 - 7], where we also studied boundary integral equations
of logarithmic potential theory on contours with peaks, the solutions and boundary
data were characterized by their asymptotic behaviour near the peaks. Here, for every
integral operator under consideration we find a pair of function spaces such that the -
operator maps isomorphically one space onto another.

If |g|Pp € Ly(T), then we say that ¢ belongs to £, g(I'). We define the norm in this
space by || ¢ |lc, ,r) = |l lglPe lz,(r)- We shall make use of the same definition with T
replaced by arcs of 'y and intervals of R.

Let £} 4(T) be the space of absolutely continuous functions on I \ {O} with finite
norm ||<p||cx ST = s llc, ory + llellc, - ry- It is an easy exercise to check the

density in Cl p,8(D) of the set of smooth functions on I' vanishing near O.

We'introduce the pair of spaces ‘JI;:?(F) of absolutely continuous functions ¢ on
'\ {O} with finite norms

P
||v||m;¢p>(r)=<ﬁ or |<p(q+)i¢(Q—)I”|q|’(”"”’dsq) +Hlele,,,m-
; LUT
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Let P(T") denote the space of restrlctlons to F\ {O} of real functions of the form

p(z) = Y jeot®)Rez*, where m = v -8 - p + 3]. A norm of p is defined by
||p||‘n(r) = Ykwo [t™®)|. The space M, 4(T) is deﬁned as the direct sum of ‘.Tlﬁ,fﬂ)(f‘) and
B(T).

By Dp,8(I’) we denote the space of functions on I'\ {O} represented in the form
w= d_.t,/), where 1 € M, 4(T') and ¥(2) = 0 for a fixed point z € T \ {O}. We supply
Dy,5(T') with the norm [lp]|, =¥l

In the following short descrlptlon of our results we assume that 0 < S8 + 5 1<
min{y,1}. In Theorem 1 we prove that the operator

LoD xR™ 3 (0,t) — 10 —To + Y P e M4a(T) - (15)
k=1

is continuous. As is shown in Theorem 2, the range of operator (1.5) comc1des with the
space M, g(I) if pu—-p -1 > t3 3 ¢ N. For the exceptional case u— 8 — ; + 3 € N we find
that operator (1.5) is not Fredholm (see Proposition 4). In Theorem 4 we show that
the operator

m - a
Lps+1(T) x R™ 3 (0,t) —> 70 + So + ;t“)a—nm € a_)f,,g(r) (1.6)

isontoif u — B — + ¢ N. Under the assumption y — 8 — 1 + € N we prove in
Proposition 5 that operator (1.6) is not Fredholm. In Theorems 3 a.nd 5 we show that
operators (1.5) and (1.6) are injective. The boundary integral equations of the exterior
Dirichlet and Neumann problems for a domain § with outward peak are discussed in
Theorems 6 - 9 and Proposition 6.

2. Continuity of the operator I — T

Let the operator K be defined by

Kf(z) = /R K(z,3)f(y)dy,

where
1

1
lz =yl (1 + |z — y]Y) ,
Here and elsewhere by ¢ we denote different positive constants.
We introduce the space L, o(R) of functions on R with the norm

|K(z,y)| < ¢ (J >0).

o
- : lelle, .m =11 +2*) 70|, m)-

The following lemma was formulated in [4).
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Lemmal. If K : L,(R) — Ly(R) (1 < p < o0) s bounded and —J < a+% < J+1,

then K is continuous in Ly o(R).

We shall also use the following technical lemma.

Lemma 2. Let p(u) = k4(u) — x_(u) and let the function h be specified by

] d :
/mﬂ (r>0).
h(r)

If ll - $| < €9, where €o i a sufficiently small number, then

(R(€) = h(n))2 + (p(R(E)))? ~ (€—T7)? +1
Proof. By the asymptotic formula

E-nF+1 ¢

p(h(§))p(h(7)) 1 ~S ;( 1 1)‘

h(r) ~ ((ay — a_)r) K ‘as T o oo,

which can be differentiated three times, we obtain the estimates

(568) -1-0(7)

and
o(RER(H(T)) | _ o (=)
w&r)? O( =)
where a(€,7) = (h(€) — h(7))(§ — 7)~'. We represent

p(R(E))p(h(7)) _ 1
(h(&) = h(r))? + (p(R(£)))? (€ —7)* +1

in the form

p(h(€))p(h(r)) 1- (&) 1 p(h(e) A
@& ((E-rr+1)(E-r+ Z2@)  (€-rP+1

From (2.2) and (2.3) it follows that (2.4) does not exceed f((f_—fl)m + %) |

(2.1)

(2.2)

(2.3)

(2.4)

Theorem 1. Let Q have an inward peak and let 0 < g + ;7 < min{p,1}. Then the

operator

(7] =T): L} 5. (T) 30— (7] — T)o € My 5(T)

13 continuous.

Proof. Let ¢ be so small that |k+(z) — xz(u)| > cu#*! for all u satisfying |z —u| <
ez. The arcs of I's projected onto the segments [0, (1 — €)z], [(1 — €)z,(1 + €)z] and
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[(1 Tos)gﬁ’&] will be denoted by T'{(z), I'(z) and T'L(z). Set o(u +irs(u)) = g(u),

u€

N (i) We prove the continuity of the operator 3 2 3:(nI = T): L, 54,(T) = Lpp+1(T).
ince

5279 = To)(z) = 7'() + [ ()2 log oL,

it is sufficient to estimate the norm in £, 541(T' N {|g] < £}) of the function

T.a(z):/r - a(q) ]og| 12 Iqldsq.
+U

We represent T,o(2) in the form

7]
(/ + )”'(‘1)—‘% Blds, + 12),
() Jrie On, 7z —gql

where the last term on I'y UT'_ admits the estimate

z §

UGN < 5 [ (bl 4ot @hudu+ £ [ (o ]+ lol @) da

0 T

It follows by Hardy’s inequality [2: Section 9.9] that
< ! .
”I”C,,,“(I‘n{|q|<%}) - C”a ”Cp.ﬁﬂ(r)

It is sufficient to assume that z € I'y. Since |% log ]}Li‘lq‘[ < £ for ¢ € IS (z), we obtain

(14¢)z

c
< - ! .
<¢ [ ol

(1-¢)z

9 2]
o'(q lo ds
/1";(:) ( )Bn, & |z~ ql !

The required estimate for the left-hand side follows from Hardy’s inequality.
For q € T (z) we have

é] || . 1 kg(u)—k_(u) 1
. o8 - ql(l +(rl(2)")? = —+—|Z_q|2— +O(;).

Since |z —q|2 > c((z — u)? + (p(u))?), we obtain

s 18 |zlilql\ s¢ (l i A(z - u)z(:)@(u))?)'
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This implies

9 |2]
o'(¢)=— log ——ds
/[“_(z) (q)anz glz_ql 9

o U st
c p(u) ol (u
< = ! d /
3 / (v | s G
(1-e)z (1-¢)z
=h+J

The integral J; can be estimated in £, g4,(0, %) by Hardy’s inequality. By making the
change of variables 7 = u™#, { = 2z7# in J; we obtain

|~

§/2 oo P

o 1. -1
B+1 (1-a lo_(r™®)|r" Tk
/:z:”( Wa(2)Pdz < c / gp1-e) / | |
0 (8/2)~* (6/2)=*

where 8 + ;—, = p(a - %) From Lemma 1 it follows that the integral on the right is
majorized by

) /2
1 ‘P£ﬂ+l) 1
c / lo_(r~®)Pr— & 77T Hdr = c/ lo” (u)|PuPB+Vdy .
(5/2)7* ' 0

Thus,
T.0 <clle . .
I "L,_,,+,(I‘n{|q|<§}) < “L;_“l(l‘) (2.5)

(ii) Now we estimate the norm in £, 5_,(T N {lg| < 2}) of (7] = T)o(24) + (I
—T)o(z-). We represent (vI — T)o(z) for z =z + ix4(z) € I'x in the form

£ 7{o(24) - o(z-)

- /r;(:)ur‘_(z) a(q)a_i- log |2_iq—|dsq

= @ o g

+lroten) - [ wa(q)a%log ]
0 1

o S CF - e

d 1 °
- o(q)z—log——ds, = E Ix(z).
/r\(r+ur_) (q)anq 8 lz—ql * =1 {z)

dsg
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For any ¢ € T'S.(z) UT% (z) Ul'Y (z) the inequality

i}
<czt? 2.
o log (| <3 (26)
is valid. In fact,
—a—log (1+(n (u) )7 T ]n"(r)(z —u)dr| < cz*!
Ong "z - * Tz —qf? * - ’

if ¢ € T'%(z), and

i) 1
By log = =ql (1 + (s (w)? )

(l":t( jl 4 L) = '°+(”)'> < Mt

=T —d lg — 2|

if ¢ € T4(2). Inequality (2.6) follows. Therefore

(14¢)z
|L2(2)] + [Is(2)] < ez / (lo+(w)] + lo—(u)])du .

Hence, the estimate

Ille, 5o magaic sy + 1 slic, oo umagai<sy S €lo’lle,

results from Hardy’s inequality.
Now we estimate I;. We can assume that z € I';. In the sequel we shall use the
estimate

_i o 1 ' (u 2 —% p(:l:)
anql g—|z __ql + (1+( +(u) ) (z — u)? + (p(z))? @)
' p-l g2t _ . e .
<c (.’E +W> ‘(q—u+w€F‘_(z))
where p(z) = k4(z) — x_(z). In order to obtain (2.7) we notice that
|k—(z) = 5-(u) = _(u)(z — u)| < c;“_l(z —u)?
Therefore
) 1 Vo2 g
—a—nqloglz—_—a (1 + (n+(u) )
(= )R () = (k—() = xa(2))
(2w + (e-(u) - 54(2))’ 28)
IC+(.’E) _ K_'(.’E) + o) (zp—l) )

T @ -0t (5 () - rp(2)
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Taking into account |x_(z) — k_(u)| < cz#|z — u| we obtain

r4(z) = k_(2)
(z = u)? + (k-(u) — r4(2))”

(2.9)

_ gnts
- (z —u)?+ (p(:c))2 * O((z —u)? + 12"+2).

Now (2.7) follows from (2.8) and (2.9). By making the change of variables 7 = u™#,
§{ = z7# we arrive at

/2 (1+e)z P
/ ZP(B=1) / g _(u) u | dz
(z — u)? 4 z2u+2
0 (1—e)z
+ o0 1
<ec / é-p(l—a)(/ /“la—(z “)l'z d_‘r)pdg’
/- R(E-T)+p? T

where 5+ ;7 = pla— %) From Lemma 1 it follows that the right-hand side is estimated
from above by

+o0 6
c / . r""’la_(r_%)P’d‘r <c /Ia'_(u)lpu”(ﬂ“)du.
(6/2)-» o

Thus, it is sufficient to estimate

(1+e)z

ro (e - p)o-(w)
@) / G+ (P

(1-¢)

We make the change of variables u = h(r), = h(€), where h is specified by (2.1). By
Lemma 2 we have

5/2

/ ZP(B—8)

0

(1+¢€)z

oy p(x)o-(u)
eCRl = e

P
u| dzx

(1-¢)z
oo

<c / gPU=N\no_(h(£)) - / Q:S_%dr d¢ (2.10)
h-1(8/2) R

+ / £Pt=)| (g P,
h=1(6/2)
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where I(£) admits the estimate
‘ ar | d [ lo-(h(r)l
T T o_(h(r T
/ w%MﬂN7+c/W4MﬂN;+c [
1(6/2 3

E—ry+1r
h-1(8/2)

11(§)l <

MI(\

From Lemma 1 and Hardy’s inequality it follows that the last integral in (2.10) does
not exceed

‘—w(Mﬂ)
"(6)

rP0= °’)d1'—c/|a (u)|”up(ﬂ+l)du

The Fourier transform of

(h())
wa_(h(€)) /———(6 41 T

equals

—misign(v) (U/OT)’ (u)—e—xlpw
Since the function (1 — exp(—|v|))lv|™! is the Fourier transform of log(1 + £~2) up to a
real factor, it follows from the boundedness of the Hilbert transform in Ly 1-a(R) (see
[3]) and from Lemma 1 that the first integral on the right in (2.10) does not exceed
cllo)i? .
o |
We turn to the integral I5. We have

1
lo = —Re
Bla—zl 4

For ¢ € I (z)UT” (z) and z € TN {|g| < £} we represent the first term in (2.11) in the
form

R
I . 2.11
— cos(nq,x? + mq S cos(ng, y) (2.11)

anq

m zk zm+l .
~Re Z qkT cos(ng,z) — Re (m) COS(nqa z).

k=0

N ( Zm+] ) ‘ ' )
e | —— ) cos(ng, z
\ (g - ) ) s

It is clear that

< cgMtlysr—m-2

Now we consider the second term in (2.11). To this end we make use of the equality

m k m+1
-1 z 1 z
Im(q - 2) —ImE qk+l+Imqm+lReq_z
k=0 e : : (2.12)
+ Re +lRe 2™ m + Re ! T Im 2™*1Re .
qm q-2 gm+ g-z
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Since Im z*Req™*~! = O(z#u~') and Rez*Im¢=*~! = zFIm¢=*~1 4 O(z#u—1), we

obtain - m

Im Z qiﬁ = Z ¥ Img™*"! 4 O(z*u™?).

k=0 k=0
The second term in (2.12) does not exceed cz™u#~™~2. Since |Im(g — z)™!| < c(u*~1 +
z#u~'), we obtain for the third term in (2.12)
|Reg™™ 'Rez™*'Im (¢ — )7 Se(a™ P utTmTE p ghu T,

The last term in (2.12) satisfies

IReq_'""llm z™1Re(q - z)_l| <eczhul.
Thus, we have for ¢ € I'} (z) UTT (:c)

m

a 1 l
—log—— = Re cos(ng, z) + Im —— cos(n,, + I(q,
By B 7 = f(- (r7) +Im gy cos(ng,9)) +1(g, 2)

where |I(g,z)| < c(z™Hur~m"2 4 z“u‘l)_. Therefore
9 1 T~ (k) k
o(q)— log ——ds, = c®(0)z* + (Ry0)(2),
/%W_m @ o8 e = 2 <P + (Rao)(o)
where

1 1
c®)(o) = / a(q)( cos(nq,x) +Im—r cos(nq,y)) dsg
F+UP- q

and R;o admits the estimate

< ! .
WBaoll, |, ongacsn S <ol o

It follows from Hardy’s inequality that ¢(¥)(¢) (k = 1,...,m) are linear continuous
functionals in £p,g—,(T).
It is clear that Is is represented in the form

> Wzt 4 (Rya)(2),
k=0
where
(k) ! :
kz;)|c |+ ”R20”5 pon(Prlal<d }) <cllo ”LM.“([*) :
Finally, .
(7!'0’ — Tg)(z) = :tﬂ'(U(Z-f-) - O’(Z_)) + Z C(k)l‘k + (RU)(Z) (Z € F+)y
where »
(k) !
’;) 121+ 1Rl L eagacsy S C19lle, 0y
with

(Ro)(z) = Y _ Ie(z) + (R10)(2) + (Ra0)(2) -

‘ k=2
Hence and by (2.5) we obtain the boundedness of (I — T) : £} pa+1(0) — My, s(C)Y 1
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By changing the direction of the normal n we obtain the following assertion from
Theorem 1.

Corollary. Let Q have an outward peak, and let 0 < § + % < min{g,1}. Then the
operator

(7I+T): L, 541(T) 30— (71 + T)o € My 5(T)
18 continuous. '
In passing, we have proved the following statements.

Proposition 1. Let 2 have either inward or outward peak and let 0 < ﬂ + 5 1<
min{u,1}. Then the operators

T: [';l:.ﬂ+l(r) So—To € L:,l,",“(l‘) )

S:Lpp+1(T) 30+ So € L;541(T)

are continuous.

3. Asymptotic representation of a conformal mapping

We shall make use of the following lemma.

Lemma 3. A conformal mapping 6 of R: = {( = £+in: n > 0} onto Q, 6(0) =0,
has the representatson

((24]+1
Z BRIk 4 B([2"1+2)£[2“]+210g el + B(:t)|£|2#+2
k=2
+0(§2u+2+7) . if2u € N,
(2u]+2

Z B(k)ﬁk + B(i)|5|2u+2 +B([2#]+3)6[2I‘]+3
k=2

[ +O(rH) if 2u ¢ N,

6(¢) = (3.1)

as € — £0, where BXY) (k =2,...,[2u) + 2) are real coefficients. Decomposition (3.1)
can be differentiated at least once.

Proof. By D we denote the image of 2 under the mapping u +iv = (z + iy)§. The
boundary 9D near the origin is the graph of the function x(u) such that

w(u) = £= ai|u|2“+l (1+0(2™r2et)) (v - £0). (3.2)

This asymptotic decomposition can be differentiated twice.

Let § denote a conformal mapping of R? onto D, normalized by 0(0) 0. According
to Kellogg’s conformal mapping theorem [4] we have -

Ref(€) =€+ v(€) (£€R), (3.3)
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where (0) = 0, and ¢’ satisfies the Holder condition

(&) -Gl Scles —&I” (0 <y <min{2p,1}).

By substituting (3.3) to (3.2) we obtain

%Im()(ﬁ) = €24 (B + AE)) (£ — %0),

where A satisfies the Holder condition with a small exponént v and A\(0) =

The derivative of 5({) belongs to the Hardy space H' in the upper half-plane R%.
Therefore

EReo(g) (d£1m5)(5)+c

where § denotes the Hilbert transform. We represent H(& d Im0)(§) for £ > 0 in the
form

oo

17 d
/dfl 9(t)—

—00

3
. .
= ;6/ —Imé(¢ — Im8(£+t /d_flme( t){+t ‘

o2 dma) ot 2 / ) g

where

(dilmé)(_)(f.) %( Im6(€) — Im0( 6), -
(5m8) " © = 5 (% 1m0(5)+"lmo( 0)-

By this representation we obtain

d- 4R 0(6) 2[2#] 1 (k){" + a““b{[h] lo_g|§| + a(:t).|£|2u + O(£2p+7) if2ue N
e
d¢€ Zl:;‘!, at®ek 4 aEg2e 4 gll2al+Del2ul+1 4 O(e2+7) fou ¢ N
as { — 0. Hence,
5({) Z[M] b(k)ﬁk + b([2u]+l)fl2u]+1 log |€] + b(:!:)lfl?p-}-l + 0(52“+1+7) f2ue N
= Z['zu]+l bR gk 4 p(H) |g2e+1 4 pl2u+D)gl2n)+2 4 0(§2“+’+“’) 2, ¢ N,

Squaring the preceding representation we arrive at (3.1)
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The inverse mapping 8~!(z) on 'y has the form

(24]
€= (21)pWst
k=1 ) (34)

+ (il)[2#1+1'@([7u1+1)$(-&‘;ﬂ2 log 1 + ﬂ(:t)xui-% + o(z“+’1’)
T

if 2u € N, and
(2u)+1

€= Z (:tl)kﬂ(k)x"ls + ﬂ(*)z“'*ll’ + o(z”+’l’) (3.5)
k=1

if 2u ¢ N. Here (¥ (k =1,...,m 4 1) are real coefficients.
. We notice that there exists a function of the form

d(-() _ { ¢+ 2[3:11 a®) ¢k 4 a([2ul+1)<[2u]+vl log¢ if 2u eN
¢+ TEE athic if 2 ¢ N
defined on R% and satisfying
(Bod)(Q) = ¢ +0(¢**).

It is clear that §; = (50 d)? is the conformal mapping of a neighbourhood of ¢ =0 in
R? onto a neighbourhood of peak in €2 and has the representation

z =Rebp(£) = 62 + O(E*?)  as € - £0. (3.6)

The inverse mapping ;' has the form

1 :
§=Re00_’(z)=:_tz7+0(:z:“+’l’) on Ti.

By diminishing é in the definition of 'y we can assume that 6 is defined on I'y UT_.

4. Auxiliary boundary value problems for a domain with
outward peak ‘

Let no be the integer subject to the inequalities ng — 1 < 2(;4 - p - ;7) < ng. Then
m= [y -p- -,l; + %] is the largest integer satisfying 2m < ny.
We shall make use of the following proposition proved in {4].

Proposition 2. Let  have an outward peck and let ¢ belong to m;,_ﬂ)(r)’ where
0< B+ :7 < min{u,1}. Then there ezists a haermonic extension h onto Q of v with
normal derivative in L, g41(T) satisfying

‘ 7]
Lpp41(T)

—h
on
Now we prove the following existence result.

<c - .
< cllelloe)ry
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Proposition 3. Let Q havc an snward peak and let p € ‘J’((+)(F), where 0 < ﬂ+ <

min{yu,1} end p — -1 + 1 @ N. Then there ezists a harmonic eztension of ¢ onto
Q¢ with normal derwa.twe in the space L p41(T) such that the conjugate function g,
9(20) = 0 with a fized point zo € T\ {O}, has the representation

m

3 cx(@)Rezt "1 4 g#(2),

k=1

where cx{p) are linear continuous functionals in ‘ngg)(l‘) and g¥# satisfies

# _ <e
llg ”mi,p)([‘) = ”Sollmifﬂ)(r)a
with ¢ independent of .

Proof. (i) We start with the case when ¢ € ‘JIH)(I‘) vanishes outside 'y UT .. We
extend the function ®(7) = (¢ 0 8y)(7) by zero outsxde a small neighbourhood of O
We first prove the estimate

c < Jloth) oty +@
1 "‘p”mg"f")(r) - " "Lp,zﬂ-2u+%(lk) ” "Lp,zptfl-{»‘}(m) " ”Lp,zﬂ-f-i;(m) (4 1)

<clle
1lngsry

where ®(H)(¢) = w. Let r be a measurable function on (0,00) subject to
[r(€)]. < €%#+!. We choose £ € [0,1] such that £ < 8 +;7 < &1 Then, from the

2
* boundedness of the Hardy-Littlewood maximal operator in £ (R) (see [9]), we

p,2ﬂ—l+%
obtain

/R 1B(€) — B(€ + r(€))[P|E[*8P~247+ 1 dg

€+C£1u+l P
1 _
< c/ 2p+1 / ‘TH( T)IdT |£|2ﬂp [Hldg (4.2)
R | 1€12#
g-cgret
d P
< el 28p+p+1
<c [ 2] ersreiae.

For z € Ty we have [6;'(2) +6;(2-)| < c£?#*!. Hence and by (4.2) the left inequality
in (4.1) follows.

Let h be a measurable function on [0,6] such that |h(z)| < z#*!. As in (4.2) we
have

/ lo(z) - 9(z + h(z))P2P~7ds

& z4cztH! P
< ! | Lowla | 2Pd (4.3
cof (T eeta) e
z—czhtl

)

/ ‘p(t)‘ B+ g,

0
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By using (3.6) we obtain that for £ in a small neighbourhood of the origin the distance
between 6p(€) and 6y(—€) does not exceed cz**!. Hence and by (4.3) the right-hand
inequality in (4.1) follows.

We introduce a function H by

Tdr  ((=¢€+ineR2).

H(():%/IR%(T)Re logc—

From the norm inequality for the Hilbert transform of even functions in L, o8 141 (R)
' P
(see [1]) it follows that the function

Oy = L [ Loy T4

satisfies
” —'H(+)

, (4.4)
Lv.zp+1+§(m)

where ®(-)(¢) = ﬂf)g;b;f_l'
We represent ai’H(‘) in the form
1

"7 Ja + g L o)

From the norm inequality for the Hilbert transform of odd functions in £ p26+) (R) (see -
(1)) it follows that

3(- >(T) —(m‘ N(€) + (T2 2)(8).

”Tl ‘p(_)"LF,)m}l-&%(R) < CI|¢(_)|IL;,25+"L(R). (45)

Let x be a C*-function vanishing outside a neighbourhood of ¢ = 0 and subject to
Jg x(u)du = 1. The Fourier transform of £(T29())(€) with respect to £ is given by

mi IrIR()E(r) + sign(r)(1 = X(r)(r¥(n) | = S1%(r) + 5¥(7),

where ¥(7) is the Fourier transform of £(®(7))(€). Since |7|X(7) is the Fourier transform
of a smooth function admitting the estimate O(£=?) as £ — +oo0, it follows by Lemma
1 that

151l y < cll@ .

,,,“%(R u+l(m

Taking into account that =zsign(7)(1 — X(7)) is the Fourier transform of the function

= /m 3 e~ /R e?sxgut)z)d

which admits the estimate O(£~2) as £ — +o00, we obtain by Lemma 1

15911,y < o 2520

=)
+1® ||Lp',,+%(n¢))-

L,,,”H%(R)
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Thus, T, ®() satisfies

-— d - -
LR (F 2 Iy 00)

Lp.za+1+;‘,~(m

This along (4.5) imply

no| (H &) + 8 ) 4.6
E BRSPS Lo D) B

We represent the odd function H(~) on R in the form
_ 1 d E—1
(=) == ] ZaH)
HT(E) - /IR d‘r‘I) (r) log‘ ¢ ldr
£ / ¥y R / (r)
=— | ————dr - = | ———=dr
A 25 Ja

T o (£ — 1) el Tk+1

Since (1) ¢ Lp,Zﬂ—2p+’l—,(R) and since 0 < 28 — 2u + ng + % < 1 for even ng and

0<28-2u+ng+ % < 2 for odd ny, it follows from the boundedness of the Hilbert

transform in weighted Lp-spaces (see [1]) that the norm in Lp,2ﬂ—2u+,’—,(R) of

gno / q)(+)(7-)

(+)
does not exceed c||® ”Lp 292wt 1 R

Hence by (4.4), (4.6) we obtain that the functlon h(z) = H o 6;'(z) is represented

in the form
m

Y axl()Rez 4 + h%(2) | @)
k=1

for z € 2 situated in a small neighbourhood of the peak. Here
ar(p) = /R<1><+>(r)r-2*dr (1< k<m)
a;e linear continuous functionals in ‘II;:B)(I‘), z;nd h#* belongs to ‘J"(i,_ﬂ)(I‘) and satisfies
13y < Il

It is clear that 2 = Zde L, 2ﬂ+|+l(]R) Therefore 2 h belongs to L, g41(I+UT-).

Now let « € C’°°(R2) be equal to 1 for |z| < 6 and vanish for |z| > §. We extend xh
by zero outside a small neighbourhood of O and set

b = -8R (z € 99
o1(2) = ppl2) = (xh)(z)  (z € D).
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We consider the boundary value problem

AF(¢) = Q(Q) (¢ eR}) }
(4.8)

SFE+O0)=T(E)  (E€R)

where Q(() = (1 0 6)(¢)16(¢)I* and T(£) = (1 0 6)( +10)[6'(¢ + i0)|. By using the

estimates

lgrad H(¢)| <

/ T2(d®/dr)(T)
(-1

dr‘ and  |[H(O)| < =

T Q(T) '
G 4

and theorems on the boundedness of the Hardy-Littlewood maximal operator and
Hilbert transform in weighted Lp-spaces (3, 9] we obtain

d
1T, @ + 1212, @) < ¢ (H —e|,

ma+l+¢(m

el gm)) ~
A solution of problem (4.8) is given by |
F(¢) = /R T (u)®(u, ¢)du — /R | Q(w)8(w, ()dudo (w —u+iv)
+
with Green'’s function

1
Qs(wa C) = %log

e-30-3)

We rewrite F on R n the form

F(§) = t-1(w)log €] + to(v)
1 §law - L _¢ (4.9)
n ;/I;'T(u)log|l - u|¢u - /Ri Q(w)log|l w‘dudv

where

to1(e) = —%/R’f(u)du+ %/R Q(w) dudv

and

to(p) = l/’I'(‘u)log |uldu — l/ Q(w)log |w|dudv .
T JR ™ n_i
Hence we obtain

(6) tl(«)) l/kwdu_l E-w)Qw) 40

{—u T JR2 [§ — w|?
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By the boundedness of the Hilbert transform in £,(R) and the Minkovski inequality we
prove that

7

0 1
a—gf(f) —t-1(p) ¢ € Ly(R) (4.10)

and that the Lp-norm of this function does not exceed
171z, + 11212, w2
It is clear that in a neighbourhood of infinity
g 1
27 (&) = Roo(f)ﬁ—2 (4.11)

where |Roo(€)| < ¢ (IIT Iz, @®) + ||Q||Lp(w+)) for large |£]. Set f = F 0 6. From (4.10)
and (4.11) it follows that £ f belongs to £, g+1(T") and satisfies

Lp.p41(T) e ”‘p“C;,ﬂH(r) ’ (4.12)

[

By Taylor’s decomposition of the integral terms in (4.9) we obtain

no-—l

F(E) = t-a(p)log ] + talw) + 3 ti(9)E" + €™ Ry (), (4.13)

k=1

where [te()] < c(I1TllL,@®) + 1QllL,®z)) for k& = —1,...,n0 — 1, and |Ry,(§)| <
c(I TN, w + ”Q”L,(mg)) for small [¢|. Taking into account the asymptotic represen-
tations (3.4), (3.5) of 67! and the inequality 2(u — 8 — ;7) < ng, it follows from (4.12)

and (4.13) that f is represented in the form

f(2) =Y bi(o)RezX T + f#(z)  (2€Q) (4.14)

k=1

where f# € mf,j;(r), and bg(p) (k = 1,...,m) are linear combinations of the coeffi-
cients te(p) (€=1,...,n0 —1)in (4.13).
According to (4.7) and (4.14) the function ¢ = kh + f is harmonic in § and can be

written as
m

9(2) = Y cx(@)Re "t +g#(z) (2 €9

k=1

with ck() = ak() + bx(p). Moreover,

m
(k) #| -
c + - <c
k§=1| I+ 1lg ||fn<’.ﬂ)(r)_ ||‘P"m§,_+;(r)
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and by the definition of g it follows that (go6)(co) = 0. Because 2 g = a%<p on '\ {0},
it is clear that one of the functions conjugate to g is the harmonic extension of ¢ onto
2 with normal derivative in £, g4, (T).

(ii) Now let ¢ belong to ‘)’I;:;(I‘) and let ¢ vanish on I'N {|g| < §}. We introduce

the function ®(¢) = (¢ 08)(¢) (£ € R) which equals zero outside a certain interval. Set
1 oo

60 = [ 2Re

—00

¢ 2
e T)dr (¢ € R2). (4.15)

It is clear that one of conjugate functions 6 is a harmonic extension of ® onto Ri. It
follows from the boundedness of Hilbert transform in L,-spaces that g = Go6~! belongs’
to £} 5.,(T) and satisfies

lgle,,mSelle ”mﬁ_ﬁ,’(r) . (4.16)

Further, we represent G on R in the form

G(&) = %P.V./mq)(f)r_]dr

ng-1 -
1 et 1 /@(T)T"o !
+ ; Wék/lké(r)r drt et | e
no—1

= Z M +g#(£)

k
k=0 6

where

ti(p) = %/ﬂ;@(‘r)‘rk_ldr
(4.17)

1 B(r)rmo!
#(£) =
GH) = gy ||~ e (E€R)
Since—% <2p—2ﬁ—%—no+l<1—;‘;,wehave

no—1

g—o lte(2) + "g#"L,,“_,,_%m) Sellell,,m-

Hence and from (4.16) it follows that g is represented in the form

m

9(2) =Y a(p)Re* "t +g%(z)  (z€Q)

k=1

where g#* € ‘J’Iﬁ,’_;(l"), cx(¢) (k = 1,...,m) are linear combinations of coefficients
te(p) (€=1,...,n0 — 1) in (4.17). These coefficients and the function g# satisfy

m
D (@) + 19* gy ry < ellelimesyry -
k=1
According to (4.15) we have (g 0 §)(c0) = 0, and the conjugate function § = 5(0—11—) is
the harmonic extension of ¢ onto {2 with normal derivative in £, g41(T") B
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5. Boundary integral equation of the Dirichlet problem

Here we prove the unique solvability of equation (1.3) on the contour I with inward
peak.

Theorem 2. Let 2 have an inward peak and let 0 < B + i; < min{yg,1}, u— B —
;—, + 3 ¢ N. Then the operator

L} 501(D) x R™ 3 (0,t) — 10 —To + Yt € My 4(T), (5.1)
k=1

where Ti(z) = Imzk_%, is surjective.

Proof. (i) Let ¢ € ‘JI;T/,)(I“) and v = 0 in a neighbourhood of the peak. We consider
the harmonic extension h* of ¢ onto  and its conjugate function ¢*, normalized by the
condition g(zo) 0 (20 € T'\ {O}) which were introduced in Proposition 3. By
Proposition 3, £¢° € £, 5+1(T) and there exist real numbers c(*)(¢) (k = 1,...,m)

such that the function .

HOEFIOEDY C(k)(«’)Rk(Z),
k=1
where Ri(z) = Re'z"‘%, belongs to ‘J'{ﬁ,’_ﬂ)(l‘). The coeficients ¢(®(p) (k =1,...,m)
and the function g§(z) satisfy

S D)+ I -y ry S € 11 Ny (5.2)
k=1

The function
hi(z) = hi(2) + Z (")(99)11:(2) (zeQ)

is the harmonic extension of
m
+
o+ > cM(e)T € NCD).
k=1

Let h§ be the harmonic extension of h(', onto {1° subject to gradh (z) = O(|z|?). Hence
and by the estimate hi(z) = O(|z|"7) (z € Q) we obtain

hi(z) = /(%in - %’:f’) log lzlilqldsq +hi(0) (2 €T\ {O}). (5.3)

According to Proposition 2 the Dirichlet problem in ¢ with the boundary data g§ has
a solution f¢ such that 6 5= f¢ € Lp p+1(T) and satisfies

9
on

e

< cllgillg- - (5.4)
Lpp41(D) 5.0 (1)
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Lct g‘ denote the harmonic function conjugate to f¢ and vanishing at infinity. We have
a,g - a,,f € L:p'ﬂ.H(F) Since

] a .. d ; a
a—ng°=*a—sf =-z%="3-h on T\ {0},

it follows that g° belongs to L} p.p+1(I') and satisfies the Neumann problem in Q¢ with

boundary data “a_,:ho~ By the mtegral representation of a harmonic function in € and
by (5.4) we obtain

lo%lies .,y < gy ey (55)

Since grad g¢ = O(|z|~#~%) (z € Q°), then the function w = —g® — h§ + h§(o0) admits
the representation

- o [ (w0108 2 - g@tog L Yas, e
w() = o [ (w0 tog s - g @log sy (e e 9)

q

From the limit relation for the double layer potential and from (5.3) it follows that
— 77 'Tw = —2(hy — h§(c0))  in '\ {O}.

Since T'1 = —m, we obtain that the function

o =—(2m)”" (9‘ to+ Y. C(k)(‘P)Zk> € L5p41(D)

k=1

satisfies
m

ro(z) - To(z) = —p(z) = D_ P (p)Th(z) (2 €T\ {0}).

k=1

We set t8) = ¢(¥)(p) (k=1,...,m). From (5.2) and (5.5) it follows that

kZ K91+ llolley ., ) < ellellgeny (5.6)
1

(i1) Now let @ be an arbitrary function in ‘n(*)(r) There exists a sequence {¢,}r>1
of smooth functions on I' \ {O} vanishing near the peak, which tends to ¢ € ‘f((+)( T).
Let (or,tr) € £, g41(T) x R™ be the solution of equation (1.3) with the right- hand side
—, which is constructed as in (i).

According to (5.6) the sequence {(or,tr)}r>1 converges in C:,,ﬂH(I‘) x R™ to a limit
(0,t). Since the operator T : L} 5.,(T) = L} 4.,(T) is continuous (see Proposition 1),
it follows, by taking the limit, that

no —To + Z tT, = . (5.7)
k=1
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Consequently, equation (1.3) is solvable in £} 5,,(F') x R™ for every ¢ € ‘JI(+)(F)

(iii) We turn to the case p(z) = Rez* (z € I'\ {O}). As the harmonic extension
of ¢ onto © we take the function A’ (z) Re z*. It is clear that the con_]ugate harmonic
function g*(z) = Im z* belongs to ‘np,ﬂ(l'). According to Proposition 2, g' admits the
harmonic extension f¢ onto Q¢ such that 2 f¢ € £, 541(T). Let g¢ be the harmonic
function conjugate to f¢ and vanishing at infinity. We have

og® Oh'

on _ on

on I'\ {0} and g° € Ly 54, (T).

Arguing as in (i) we prove that the pair (0,0), where o(z) = —(27)~!(¢%(z) + Re z*),
belongs to £, 5, ,(I') x R™ and satisfies (1.3). This and (5.7) imply

M, 4(T) C (71'1 T+ Xm:t(")lk> (£} 51(T) x R™).

k=1

The converse inclusion was proved in Theorem 1 8

Theorem 3. Let Q have an inward peak. Then operator (5.1) is injective for 0 <
B+ l < min{y,1}.

Proof. Let (0,t) € £} 5, ,(T) x R™ be an element of Ker(nI — T + Y-, t)Ty).
Then the harmonic functlon

(Wo)(z) + it(")fk(z) (z € Q)
k=1

vanishes on the contour I' \ {O}. By (W¢) we denote an arbitrary function conjugate
to Wo in 2. We introduce the holomorphic function

W(z) = —(Wo)(2) +i(Wo)(z) + D tW:4-F  (zeq).
k=1
Let ( = 7(z) be a conformal mapping of 2 onto R%, 7(0) = 0. The function
F(z)=(Wo 7")(%) is holomorphic in the lower half-plane R = {¢( = £ +in: <},

continuous up to the boundary and ImF = 0 on the real axis. We notice that the
function Wo admits the estimate

(Wo)(2)] < clz| ™V

for an integer N. Therefore the holomorphic extension F¢** of F onto C is an entire
function with real part satisfying

IReF=*(¢)] < e[¢|?M.
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From the Schwarz integral formula it follows that F¢** has the same order of growth at

infinity as ReF**!. In particular, there exists a polynomial P with real coefficients such
that

—(W:f)(z)+§=:lt(")72k(z) ReP( e )) (z € Q).

Since p 2 p
s a 2z g
(Wao)(z) = /r T (@og - ds, = (v ew
the equality ‘

(vj—‘s’)(z) Rep( ) Zt(")’R,k(z) (€ T\ {O)) (5.8)

holds. Taking into account that V(£a) € ‘JI (F) (see [4: Theorem 1]) we obtain that
the right-hand side in (5.8) belongs to ‘J”l( )(F) However, sincem — 3 + 8 — pu < -1
the functions Ry (k = 1,...,m) and posmve integer powers of 1 3 do not belong to
‘.T[ﬁ,,_ﬂ)(f'). Hence, it follows that the coefficients t*) (k = 1,...,m) are equal to zero
and the polynomial P is constant. Therefore Wo and Wo are constant in .

By W_o we denote the harmonic function conjugate to (Wo)(z) (z € 02¢) which
equals Wao on I'\ {O}. Since W_o admits the estimate

(W_o)2)| <clzl™™ as z2—0

for an integer N and is constant on I'\ {0}, it follows that W_o = const in Q°. Therefore
Wo is constant in Q°.

From the jump formula for Wo we obtain that ¢ = const on I' \ {O}. Since the
non-zero constant does not satisfy the homogeneous equation (1.3), it follows that o
equals zero i

Proposﬂ:lon 4. Let Q have an inward peak, and let 0 < + 5 1 < mm{y,l},
u=p-= + € N. Then operator (5.1) is not Fredholm.

Proof. Let
B(&) = lg|™ 7 (~log €N
in a small neighbourhood of the origin and let supp ® be in the domain of the mapping
8o introduced in Section 3. Let 4 be such that l < v < 1. By ¢ we denote the function

®of,' € (+)(F) and introduce the harmonic extensxon h' of ¢ onto Q constructed in

Proposition 3 Let ¢* be the harmonic function conjugate to h* from Proposition 3. We
have

g'(z) = D MRi(2) + g#(2).
- . k=]
Here n
g#(z) = cRe(z-Qg_%(logz)_"'*"l) +.95 (z)
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where g¥ € N,.8(T). The harmonic extension f¢ of g# to Q¢ described in Proposition
2 has the form

N fe (z)—cllm[( 2% ) “+%Q-%(logz)—7+l]
+e Re[(z:f’z)%n_%(log;:)_w] 152,

where ¢1,c2 € R, zg is a fixed point of 2, and _f0 € Ly p+1(T).
The function g%, g(o0) = 0, conjugate to fe has the representation

g¢(z) ~ c:z:_ﬂ_:l’(log z)~THL
It is clear that g¢ ¢ £ 4,,(T) and ¢° € L, g141(D) for B > B. By Theorem 2 the pair
(0,1), where t = (¢, ...,c(™) and

o =—(2m)"! <g° +o+ ic‘“n> on T'\ {0},

k=1

is the solution of equation (1.3) in £} 45 ,,(T) x R™ for ' > . From Theorem 3 it
follows that equation (1.3) is not solvable in £} 4.,(T) x R™.

According to Theorem 2 equation (1.3) with a right-hand side in ‘J'[ifﬂ),(f") B < B,
is solvable in Cp gr+1(I) x R™. Since the set of smooth functions vanishing near the

peak is dense in ‘JI(+)(F) and £, ﬂ’+1(r) x R™ is embedded to E;,ﬂH(F) x R™, it follows
that the range of operator (5.1) is not closed in 9, 5(I') B

6. Boundary integral equation of the Neumann problem
In this section we prove the unique solvability of equation (1.4) on the contour T with
inward peak.

Theorem 4. Let Q have an inward peak and let 0 < B + < min{g,1} and
u—p—= + ¢ N. Then the operator

Lopn(D) xR 3 (0,0) — no+ 50+ > 9 Lrieg, 0 (o)
k=1

with Rx(z) = Re z¥~ 7 is surjective.

Proof. (i) Let ¢ € ‘JI(+)(F) and ¢ = 0 in a neighbourhood of the peak. By h* we
denote the harmonic extension of ¥ onto Q which is introduced in Proposition 3. Let
g* be the function conjugate to h' and normalized by the condition g'(20) = 0 with
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zo € I'\ {O}. By Proposition 3, ¢* belongs to L, 5.,(T) and there exist real numbers
c® () (k=1,...,m) such that

m

g'(2) = =3 PIRe(e) +ai(2) (2 € Q).

k=1

These coefficients ¢{¥)(¢) and the function g} satisfy

Z Ic(k)(¢)|+ ” gO ”m( )(F)S ¢ ” 4 ||m(+)(r) (62)
k=1
Since 5%9; = —-(%hi = —-disz/), the function —g§ solves the Neumann problem in  with
boundary data

m

2y -y 2 Ry € Dy 0(D).

By Proposition 2, the Dirichlet problem in Q¢ with boundary data —g§ has a solution
he such that ;—nh“ € Lp p+1(I') and satisfies

” gO ”m( r (63)
6n s (M)~

['r a+l(r)

From the equality

dhe EY 1 3 1
= - hé(g)—— S
h®(o0) =  Bny (g)log 70— qldsq 27{/r (q)anq log -—— p dsq,

where 2p is a fixed point in 2, and from (6.3) we obtain that the linear functional
g' — h°(c0) is continuous in ‘Jt;j,,)(r). Therefore, we can choose g* so that h¢(c0) = 0
and inequality (6.3) remains valid. Since grad g5 = O(|z|~ %) and grad h® = O(|z|~#" 3 ),

it follows that
95(2) = /(ag°( )+—(¢1)) logl 2 1%

Set

o) = = () = SO 2R - k() (eT\(O)).  (64)

k=1

Taking into account that Veo(z) = O(|z|_(ﬂ+ll’)) (z # 0) as well as the boundedness of
the functions g§(z) (z € Q) and h%(z) (z € Q°), we have

gi(z) +Vo(z)=clm—— (:€Q) and  h%(z)+ Vo(z) = 0 (z € Q)

1
(2)
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where v(z) is a conformal mapping of 2 onto RZ, ¥(0) = 0. From the jump formula for
a%Va we obtain

0 1
—Im—— = r .
c anIm*y(z) 0 (zeT\{0})
Since :_nlmﬁ ~1z=% as z — 0, we have ¢ = 0. Thus, Vo = —gj on Q2. A limit

relation for the normal derivative of the simple layer potential implies
d ™ o0 () 2
70(2) +(So)(2) = T¥(z) = Y P (@)5-Re(z)  (z €T\ {0}).
. k=1

We set t*F) = c(®(y) (k.= 1,...,m). Hence, it follows that the pair (o,t), where
t = (t™M,...,t(™) and o is defined by (6.4), belongs to £, g4+1(T') x R™ and satisfies
equation (1.4). From (6.2) and (6.3) if follows that

1o lleym + 3 1O@) < el ot - (6.5)

k=1

Now let ¥ be an arbitrary function in ‘.TI(+)(F) There exits a sequence {#r}r>1 of
smooth functlons on I'\ {0}, which vanishes in a neighbourhood of the peak and tends
to ¥ € M) Let (0r,tr) € Ly p41(T) x R™ be the solution of (1.4) with right-hand

side & i z/)r According to (6.5) the sequence {(or,tr)}r>1 converges in Ly, g41(I') x R™
to a limit (o,t). Since the operator §: L, g41(I') — L£p 541(T) (see Proposition 1) is
continuous, it follows by taking the limit that

: 0 d ’
(k) ¥ = —
wo + So + kE lt 3 Rk sz/;. (6.6)

Consequently, equa.tlon (1.4)is solvable in Ly, ,3+1(F) x lR”‘ for every ¢ € ‘JI(+)(I‘)
(ii) We turn to the case 1(z) = Rez* (z € '\ {0}). As a harmonic extension of
3 onto 2 we take the function hi(z) = Rez*. The con_]ugat.e function g'(z) = —Im 2*

belongs to ‘.Tl;,’_ﬂ) (T). By Proposition 2, the function —g* has the harmonic extension h*
on Q° such that Zh¢ € L, g4+1(T). Set

o(2) = o (Hp(e) - Zhe())  (z€T\{0))

Then the pair (9,0) € L, 341(T) x R™ is a solution of equation (1.4) with right-hand

side L9 (see (i)).
This and (6.6) imply

Dp.8(T') C (wI +S+ ) (%m) (Lpp+1(T) x R™).

k=1
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(iii) It remains to prove the converse inclusion. Clearly,

Zt(” —Ri C Dp,5(T)

for any t € R"‘. Now let o belong to £, 441(T") and let a function & € £ 4,,(T) be
defined by 7.6 =0 on T\ {O}. By ¥ we denote the function

P(z) = 76(z) - /G(q log| 2l Idsq

From Theorem 1 it follows that ¥ € 9, g(T). Since

||
|z - ql
we obtain that the image of £, 341(I") under the mapping (6.1) is the space 9, () 8

d 0
) = o)+ [ oo log s,

Theorem 5. Let Q have an_inward peak. Then operator (6.1) is injective provided
0<p+ l; < min{y,1}.

Proof. Let (0,t) € £, 41(T) x R™, where t = (t(),.._,t{(™)) belong to Ker (1] +
S+ 3, ¢t %'Rk). Then the harmonic function

v(z) = Vo(z) + Z tIR(2) (z€Q)

k=1

has zero Neumann boundary data on "\ {O}. Since

o(2)] < clz| "+, (6.7)

we obtain by the integral representation for the harmonic function v(z) and a limit
relation for the double layer potential

nv(z) + ./r v(q)—a% log lz—iq—ldsq =0 (zeT\{0}).

Thus, v is a solution of the homogeneous integral equation of the Dirichlet problem in
Qe.

The double layer potential (Wv)(z) (2 € Q°) grows not faster than a power function
as z — 0. Since the limit values of Wv vanish on T \ {0}, it follows that (Wv)(z) =
0 (z € 2°). Therefore an arbitrary conjugate function W is constant in °. We set
Wou =C. _

Let Wy v be defined by W,v = Wv in § and let Wi v be a conjugate function such
that m = C-on T\ {O}. We introduce the holomorphic-function

W(z) = (Wyo)(2) +i(Wiv—C) (2 €9Q).
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Let ( = y(z) be a conformal mapping of Q onto R%, ¥(0) = 0. The function F(¢) =
(Wory™1 )(%) is holomorphic in the lower half-plane R2, continuous up to the boundary,
and Im F' = 0 on R?. The holomorphic extension F*** of F to C is the entire function,
which grows not faster than a power function as ( — oo. It follows that W(2) = P(ﬁ),
where P is a polynomial with real coefficients. This implies that

¢ 1 \—k
W)= S MRe (5) ()

From the jump formula for Wv we obtain

4
v(z) = —(2n)7! c(")e—l——k z
()=-en™ % Re(-r5) (eT\{o})

By (6.7) we have

v(z) = —(27)~! (c(o) + C(I)Re%) on T'\ {0O}.

Therefore

1R () — (971 e® _ (971 D Re L L
(VU)(Z)+kZ_,t Ri(z) (2n) "¢ (2m)7 ¢ Re7(2)+clm7(z)

for 2z € Q. By hf{ (k =1,...,m) and h§ we denote harmonic extensions of Ry and
Re(’;) onto §2¢ which grow not faster than a power function as z — 0. Since

Vo + Zm: tORg 4 (2m) 7 e Whg + (2m) 1
k=1
vanishes on I'\ {0}, we have
(Vo)z) = = 3 t0R5(2) - (2m) ch() = (20)2e® (2 € 0)
k=1
From the jump formula for the normal derivative of Vo it follows

m

7] 7] 1
2n0(2) = — Z t(%) a—n’Rk(z) +c %Imm
k=1 .

m 5 5 (zeT\{0})
+y z(">a—nh;(z) + (2n)f'c<'>a—nhg(z)
k=1
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where s
a—an(z)~akai|2|k+“"% (k=1,...,m)
O Im—. |23
—Ilm—— ~a
on (z) °
15) 2
o i(z)~:tbk|z|" H-2 (k=0,1,...,m).
Here ax and bx (k =0,1,...,m) are real coefficients. Since m < pn—p- i, we have

1 1
k—p—-=-+p8< - for k=0,1,...,m.
2 P

It means that the function z%—hi does not belong to Ep,pH(VI“) for k = 0,1,...;m. 7
Therefore the coefficients ¢(!),...,¢(™) and (V) are equal to zero. Thus,

o= (2r)""c %Im% on I'\ {O}.

By the integral representation for the harmonic function Im % on 2 we have

1 F) 1 lz| . 1/ 1 8 || 1
— —|Im——)log ——ds; = — [ Im—— — log ———ds, + Im ——
2vr/panq(‘“7(q)) Bl ™ T o T an, B g T ™G

for 2 € Q. Since Im ﬁ =0on I'\ {0}, it follows from a limit relation for the simple
layer potential that 7o — So = 0 on I'\ {O}. However, we have 7o + So = 0 on '\ {0}.
Hence, we obtain o0 =011

Proposition 5. Let Q have an inward peak, and let 0 < B + ;7 < min{y,1},
p—p- ;7 + 3 € N. Then operator (6.1) is not Fredholm.

Proof. Let
V(&) = eI™" (- log l¢]) 7
in a small neighbourhood of the origin and let supp¥ be in the domain of mappirig 6,
introduced in Section 3. We assume 1 <y <1 andset ¢y = Vo8’ € ‘leﬂ)(l‘). By h!
we denote the harmonic extension of ¥ on Q constructed in Proposition 3. Let g* be a
conjugate function from Proposition 3. We have

g'(2) = Y cIR(2) + g*(2).
k=1

Here

g#(2) = cRe(2 T ¥ (log 2)~*1) 4 g (2),

where g# € ‘nﬁ,},’(r),
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By h¢ we denote the harmonic extension of —g# on Q¢ from Proposition 2. We

have e 1
he(z) = ¢ Im[( il )—“+_21_7(logz)_7+l]

20— 2

+62Re[( % )%q_%(]?gz)_7+'] + h§(z)

20— 2

where 2¢ is a fixed point of  and %hg € L, 341(T). Since

2 he(2) ~ =™ 7H (log) T,
it follows that Zh ¢ £, 541(T) and Zh® € L, g4:1(T) for B > B.
By Theorem 4 the pair (o,t), where t = (c(V,...,c(™) and

—em [y awdp 9,
o =(27) (dsr,b kzzlc aan Bnh on I'\ {0},

belongs to Lp g+1(T) x R™ for B’ > B and satisfies (6.6). From Theorem 5 it follows
that the same equation is not solvable in £, g4+1(T) x R™.

Equation (6.6) is solvable in £, g41(I') x R™, 8 < B. Since the set of smooth
functions vanishing near the peak is dense in mﬁ,ff;(r) and since £, g:41(I') x R™ is
embedded to £, g4+1(T") x R™, we obtain that the range of operator (6.1) is not closed
in Ppp(C) B

7. Integral equations of the exterior Dirichlet and Neumann
problems for a domain with outward peak

Now we shortly discuss the integral equations mentioned in the title of the section.
Their proofs are similar to those of the corresponding results relating to the interior
problems for a domain with inward peak, which were proved earlier.

Let Q have an outward peak. The solution of the Dirichlet problem

Au=0 in Qc}

ul.=¢

is sought in the form

u(z) = (We*a)(2) + Y tWI=(z) (2 € Q°).
k=1

Here

+ l)dsq

ext — a 1
WeHto)(s) = / 7@)(5a o8 =
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and
220

1) = Re(Z2) T e,

20 — 2

where zg is a fixed point in Q. The density ¢ and the vector ¢t = (¢, ..., (™) satisfy
the equation

o+ T'o + Zt(k)fzz‘ =y on z €T\ {0}, - (7.1)
k=1

where T°*'¢ is the value of the potential W¢*'g at a point of T'\ {O}.

L]
Theorem 6. Let Q have an outward peak and let 0 < g+ :—, < min{y,1}, p - B -
% + 3 ¢ N. Then the operator

m
L) 501 (T) xR™ 3 (0,t) = 70+ To + Y _tWIE* € M, 4(T) (7.2)
k=1
13 surjective.
Proof. Let h® be the harmonic extension of ¢ € mﬁ,j;)(l‘) on ¢ constructed in
Proposition 3, and let g¢ be a conjugate function vanishing at a fixed point on '\ {O}.
By Proposition 3 there exist real numbers c® (k=1,...,m) such that

m
g° = MR 445,
k=1 :

where g§ € ‘nﬁ,j,,’ (T') and

1
229 )"—7
290 — 2 ’

R (z) = Re(
We set hg = he + 3 po, tFTg=t.

The only change to be made in the proof of Theorem 2 is that the solution g' of the
Neumann problem on Q with boundary data 2 h§ should be chosen so that

/I‘gids = /Fhﬁds — 2h§(00).

Then the pair (o,t), where t = (c!),...,c{(™) and

o= (2m)™! (cp + Ec(")I,ﬁ" - g‘>
k=1

is a solution in L;‘ﬂ“(l‘) x R™ of equation (7.1). The case ¢ € P(T") is considered as
in Theorem 2 1
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We represent the solution of the Neumann problem

Au=0 in QF
gu) _
6n1“_(p

in the form
Cu(z) = (Vo)o) - Y_tRE() (e ),

k=1

where Vo is the simple layer potential. The density o and the vector t = (¢(1), ... ¢(m))
satisfy

m a
(k) ext _
no — So + ,;zli —an’Rk =—yp on T'\ {O}. (7.3)

Theorem 7. Let Q2 have an outward peak and let 0 < B + % < min{u,1}, p— B -
;7 + 1 ¢ N. Then the operator

i 3]
Lpp41(0) X R™ 3 (0,8) +— 70 = So + 3 1M =R € Py p(T)  (7.4)
k=1

18 surjective.

Proof. Let h® be the harmonic extension of ¥ € ‘J'IS;(F) on §2° and g¢ be a

conjugate function constructed in Proposition 3. Then there exist real numbers c(*)
such that

=3 RE g,
k=1

where g§ € ‘nﬁ,},’(l‘). We choose g§ to satisfy g§(oo) = 0. Here the function g° plays the
same role as ¢*' in the proof of Theorem 4.

Now we use the same argument as in Theorem 4. By h* we denote the harmonic
extension of g¢ on Q such that 2h' € £, g41(T) (see Proposition 2). Then the pair
(o,t), where t = (¢(V,...,c(™)) and

o,;, d = 9
= (@2m) " ook - S 3 0 L
o (271’) (6nh ds‘l/‘) + 2 [ 6T).Rk ) € C,,,g.,.l(l"),

solves equation (7.3).
The case ¢ € B(I') is considered in the same way as in Theorem 4, one should only
replace ¢*, h* and h® by ¢¢, h® and h*, respectively il

Two following theorems can be proved in the same way as Theorems 3 and 5.
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Theorem 8. Let Q have an outward peck. Then operator (7.2) is injective for
0< ﬂ-i- < min{yu,1}.

Theorem 9. Let Q have an outward peak. Then. operator (7.4) s injective for
0< ,3+ < min{yu,1}.

The proof of the following proposition is essentially the same as those of Propositions
4 ( the case of operator (7.2)) and 5 (the case of operator (7.4)).

Proposntlon 6. Let Q! have an outward peak, and let 0 < 8 + < min{g, 1},
p-p-1 + € N. Then operators (7.2) and (7.4) are not Fredholm.
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