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Abstract. In this paper we construct a special type of regularization operators for the Kontoro-
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estimates of norms in these spaces are obtained. 
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1. Introduction 

Following ideas of regularization for ill-posed problems, especially in the theory of inte-
gral equations, we will show that the inversion formulas of certain integral transforms 
can be used to stabilize the original in the sense that small changes of the transforms 
lead to small changes of the originals. More precisely: If the transform g with 

g(x) = T[f](x) = I H(x, y)f (y) dy	 (1) 

is substituted by a perturbed function h, not necessarily in the range of T, and if one 
defines a regularization operator I by means of a slight modification of the inversion 
operator T' with

T[g](x) = 1(x) ,	 ( 2) 
one can find stability estimates with respect to I = T '[g] and I[h]. In this sense the 
notion "stabilization" is used. 

Our main goal is to consider a variety of the Kontorovich-Lebedev type integral 
transformations being connected by composition structure and mapping properties with 

H.-J. Glaeske: Friedrich Schiller Univ., Inst. Math., Ernst-Abbe-Pl. 1-4, D - 07743 Jena 
S. B. Yakubovich: Belarusian State Univ., Dept. Math. and Mech., P.O. Box 385, 220050

	

Minsk, Belarus. The work was completed during this author's research visit (supported by 	- 
Deutscher Akademischer Austauschdienst) to Jena University in July and August 1996 (Ref. 
N 325). 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



676	H.-J. Glaeske and S. B. Yakubovich 

the Kontorovich-Lebedev transform [5, 13, 15 - 161 

	

K 1[f](x ) = cosh(x)	 g(x)	(x 20)	 (3) 

where K1 is the Macdonald function (see Li: Vol.2]) and the Mehler-Fock transform [2, 
4, 10, 16]

	

P[f](x) = J 	= g(x)	 (4) 

with the spherical Legendre function of the first kind P_ 4 + 1 (cosh) (see [1: Vol. 2]). 

In Section 2 we deal with the Kontorovich-Lebedev transform (3) in the weighted 
LP -space L , (R) (1 p 00, ii e R) normed by 

(00

	 1/p 

iii	= J X RP-'If(x)IPdx)	.	 () 

Related problems were considered in [3, 8 - 12, 141 and in two monographs [15 - 16]. 
Generalizing our results from the mentioned items we give a special construction of the 
inversion of the Kontorovich-Lebedev transform (3) that gives a solution of equation 
(3) and allows to stabilize it in the space L,(R+), when v = 1 + 1 , 1 <p < 2. 

Finally, in Section 3 we will give such a construction of the inversion formula concern-
ing the Lebedev-Skalskaya transformation [6] being related to the Kontorovich-Lebedev 
transform (see [15 - 16]). 

2. The Kontorovich-Lebedev transform 

Let us consider the inversion of the Kontorovich-Lebedev transform (3) as the equation 
where I e L 1 +,(R+) and suppose that instead of the exact function g on the right-
hand side we have a perturbed one h E L 1 +1(R+), not necessarily in the range of the 
operator K 1 . Let

Ih—gII11,<c	 (6) 

for some C > 0. From the uniform estimate (see [16: Formula (1.100) with 6 = 0]) 

Ko(y),	 (7) 

where K0 is the Macdonald function of zero index, and the asymptotic formulas (see [1: 
Vol. 2/ Subsection 7.2.2, Formula (12), resp. Subsection 7.13.1, Formula (7)]) 

Ki. 	= o(logy)	(y - 0+)	 (8)
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and
K,(y) = 0 (e h Vir/(2y))	(y - oo)	 (9) 

we observe that the integral (3) by the Holder inequality converges at infinity for all 
values of x > 0 and p ^! 1. To guarantee the convergence of the integral in (3) at zero for 
all values of p> 1 according to (8) we restrict the class of solutions f by the additional 
condition f E L([0, 1]), where f denotes the restriction of f to the interval [0, 1]. In 
the sequel we simply write f E L([0, 1)) for this. 

Let us introduce a regularization operator 

00 
2	fTsinh((lr—fi)T) 

(I6h)(x)=__J	
cosh(irr)	

Kjr(x)h(T)dT	 (10) 
a 

where x > 0 and 6 E (0,). Assuming that h E L 1 +1(R+) let us estimate the norm 
of the operator 16 in this space. By means of the generalized Minkowski inequality, 
namely

b	d	 p	1/p	d	6	 1/p 

	

(fjf(x Y) dY dx)	I(JIf(x)V'dx) dy 

(see [16: Formula (1.10)1), we obtain 

00

	

	 1/p/ 

o

00 
2 f 'r sinh((ir - 6)r) 

	

II(I6h)II1+,	J 
o	 \ 

cosh(r)	
Ih(r)I (f 	dr.	(11) 

Hence by the HOlder inequality and estimate (7) we continue (q = 

1 

(0"0	

/p
2 	r

)	

jh	
(sinh((ir- 6)r) 

d)	 (12) IKI6 h )IIl+*,p ^	J 
Ko(x)dx	1+,p cosh(irr) 
 0 

Estimating the integrals in (12) as 

	

/00	 1/p	00 00	 p	I/p 

IKoxdx) 

= (/ (Je_2 co
sh dY) dx) 

00 

	

<-i-I 
dy	 (13) 

- puP	cosh'"y 
0 

2 1 /p_2 [r(_!_)[2 

= puP	r(i-) P
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and

	

(

I1q

 

	

( 000

1/g 

sinh9(( - )r) 
dT 	

< J	= (q)1/q (14) cosh'1(irr)
 000  

we have finally

	

2"	[r(1/2p)J2 
IR Io h )IIi+ I - 2ir2ph/P(q)h/q	r(1/p)	lI h II1+,.	(15) 

For the composition (I6 K 1 [f]) the following assertion is valid. 

Lemma 1. Let f E L([0, 1]) fl L 1+1 (R+) (1 p :^ ). Then

cc 

sin (5	Ki ((x 2 + y2 - 2xy COS 8)h/2) 
(I6Kjrff])	I	(x 2 + y2 - 2xy COS 8)h/2	yf(y)dy	(x >0)	(16) 7r 

0 

where K 1 is the Macdonald function of order one. 

Proof. Substituting the value of Kjr[f] by formula (3) into (10), interchanging 
the order of integration, and then calculating the integral with respect to r invoking 
formula (2.16.51.8) in [7: Vol. 2], we arrive at the representation (16). The absolute 
convergence of the iterated integral for arbitrary S E (0, ) can easily be shown using 
the Holder inequality in the inner integral and the uniform estimate (see [16: Formula 
(1.100)])

IKir(y)l < cTKo(ycosi)	(	[0,)).	 (17) 

The representation (16) is proved I 

Denoting by f the left-hand side of (10), where E depends upon S (we will give such 
a dependence below), we write 

f—f=(I6(h—g))+(I6g)--f	 (18) 

where g = K [f] is the exact right-hand side of equation (3). So, by (15) and (6), 

	

2'E	[r(1/2p)]2 
1< 

	

11f,- fIII+P - 27r2pu/P(qS)h/	r'(l/p)	+ 1(169) - flI1+,p	(19) 

Our purpose now is to estimate the norm 11( 169) - I 11,1. ,,,. Note that our approach 
is valid for all 1 < p < 2. Substituting y = x(cosS + t sin 6) in (16) we obtain the 
equality

00 

1	t R(x,t,S) (Ig)(x)=	
J	2+	

f(x(cosS+t sin S)) (COS S+t sin (5)di	(20) 
- cot 6 

where
R(x,t,S)=x sin S(t 2 +1) h/2 Ki (x sin S(t2--1)1/2).	 (21)
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Hence owing to the generalized Minkowski inequality and accounting the identity 

co 
1 f	di -	8€

I j2+l1 
- cot 6 

we have the estimate 

1 1(hg) - fIIi,, 
00 

1	P	1 
Jj2 +1 

fcos8+isin8))(cost5+isin6)R(x,i,8) 
—cot 6 

- 
(1_ ) 

—' f(x)	di 

00 
1	P	1 j	2 +	 + t sin 6)) (cos 8+ i sin 5)	

(22)
 

^^ lf(x( - cot 6 6Y 
f W R(X, t, b) - _

di 
I+ ,p 

00 

+ 
1	I	l

j2 - -	 + 1 Mf(x )[R(x , t, 8) - 1 1jI	di. 
- cot 6 

We estimate now each norm under the integrals in (22). For this let us assume that 
f has a derivative f E L(R.) such that 

f(x(cos 8 + i sin 6)) (cos 8+ t sin 6) - (i -
	

—I 1(x) 
cos 6+t sin 6 

=	/	-[yf(xy)]dy--7f(x)	 (23) 

Cos 5+tsin 6 

=	/	[f(xy) + xyf'(xy)] dy — -
	1(x). 

Further, observe that owing to the uniform inequality xK1 (x)	1 for the Macdonald 
function from (21) we obtain immediately that R(x, t, 6)	1. Consequently, if f €

then using the generalized Minkowski inequality we have 

[f(x(cos6 + I sin 6))(cos 8+1 sin 6) —: (i_ 
Y 

f W ] R(x, t,
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<f(x(cos 5+tsinS))(cos6+t sin 5)—f(x)II	+	IIfII1+i,p IIi+,p	ir 

c05

6+tsin6	I
S 

[iii'ii+,P + Ill IIi+,p]	f	Y _	F d +	—5 Ill IIi+ 

	

1	 I 

[iu'112+	+ IIfIIi+,p] 1 - (cosS + tsin5)'/ +	
S	

IIfIIl+*,p 

Now for the first integral in (22) we obtain 

0O 
P	1	III. 

!.	j2 + 
1 J	ftf(x(cos5+tsinS))(cos5+isinS) 

- cot 6

- (1_)1f(x)]R(xt6)M 
+ 

di 
III  

[iiiii+,P + iiiii+,] 

00 

J I1_(Cos S+i sin S) —/PI1511f11 
12+1 

- cot 6 

The integral on the right-hand side of the inequality (25) after the substitution ' = 
cos S+i sin S takes the form (p>i) 

00	 CO 1	1 Il —(cos S+t sin S)'/ di =	sinh(v/p) dv.	(26) 16— / ir	 t2 + 1	 ir	cosh  - cosS 
— cot6	 0 

Hence we continue to estimate 

/ 1	00' 

'6 
= sin 6 1+ 1 L ) cosh v_ Cos SV 

co 

sin  (log(cosh v - coss)I + I sinh(v/p) dv	 (27) <
coshv-1 ) 

sin Slog (2_ I sin-2 ) +sin5A 

where
Co 

A = 1 + f sinh(v/p) dv	(p > 0.	 (28) cosh  - 1

(24)

(25)
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Thus we can rewrite estimate (25) as 

00 
1	1	1r 
; J i2+il[f(x( cos 6+t sin 6)) (cos 5+tsfn5) 

 —cotô

- (i_ ) f()] R(x, t,

	

	dt€
II1+,p 

	

<psinb [log (2 - ' sin —2	+ A] IIf'112+i,p 

+ 1psin6log (2-'sin —2
	+psinSA +	iiiii+,p 

To estimate the norm in the second integral in (22) we represent the kernel (21) by 
means of the identity (see [1: Vol. 2/Subsection 7.11, Formula (21)]) 

dx -[xKi(x )] = —xKo(x). 

Therefore, owing to the limit property xK1 (x) —p 1 as x - 0 we obtain the representa-
tion

z sin 6(i2-3-I)'12 

R(x,t,5)-1=—	J	yKo(y)dy.	 (31) 

Substituting it in the norm in (22) we apply the generalized Minkowski inequality and 
with a simple change of variables we derive 

lf( x )[R( x , t, 5) - 11111+ 

/ 00	/ zsin6(i241)2 

= 
IXP

	
. /	YKO(Y)dY)If(X)IPdX) 

00	/	00 

^ I yKo (y	J	x P If(x)I P)	dy. 
o

\e.n 6(t2+1 )h/2 

Making use of formula (32) we return to the respective integral in (22) and estimate it 
as follows:

00 

	

I	1 

	

J	2 +	
f(x)1R(x, t, 5) - 1]	dt

P 1P 
- cot 6

(29)

(30)  

(32)
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1/p 
00	00	00 

<	f 

cot 2
	

e 

fKo(y) ( 

n6(l 

f	9 1f( x ) I Pdx)	dydi 

t-1 )1/2	 (33) 

=	 7	1/ 

fuKo(u)du ( J xP If(x ) I Pdx) di. 

— c0t 0 

Let 0 < a < 2 - p. Dividing the integral with respect to u in (33) as 

(YJ) 
we continue to estimate the norm (33) and we have 

00 /6	oo\

	 (-'i-7

I/p 

f) uKo(u/i2+l)du 
	

xPIf(x)IPdx)	di 

	

—cot.6	0	6

00	 co
00	 1/p IIfIII+Pf f Ko(u I t I) dtdu +f uKo( u ) du (1 xPIf(x)IPdx) 

0 — cots	 0 

Now clearly that according to the absolute continuity of the Lebesgue integral for an 
arbitrary e > 0 there exists a number 6 E (0, f) such that 

xf(x)dx ?.	 (35) 

Hence invoking the values of the integrals 2.16.2.1-2 from 1 7: Vol.2] we obtain finally 
00 

	

— 1	g2J1 f(x)[R(x,t,S) - 1]M1+1 di < 26°11fI1 , + e.	(36) ö
- cot 

Now combining estimates (36) and (29), from (22) we get 

II('o g) - fILi+, 

[log (2_ I sin -2	+ Ap] IIf ' 112+ 1 ,p +	 (37) 

+ fpsinblog (2_ I sin 2	+psin6A + +2ö'] IifIIi+,p. 

Invoking inequality (35) one can let ö = c0, ePO°) , where	is a constant. Assume 
also that I lf IIi+,	 < E1 and IIf'l^i.,	E2 (E1 , E2 > 0). Then, taking into account
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our previous estimates, from (19) we obtain the desired estimate of the difference (18) 
as

21/'	[r(1/2p)]2 
life	flii+,p < 72p1/P(cq)h/ 

+pc0 ,(Ei +E2 )6' ' log (2_i sin	
°)

2	
2 c)) (38) 

+ E + 2E C00EPa(1Q) + (pA(Ei + E2 ) + i)ca,pCP(1O)'. 

We summarize our results in this section by the following 

Theorem 1. Let f E L([0,1]) fl L 1+1, (R+) (1 < p < 2) and let f possess 
a derivative f e L 0 (R+) fl L21, (R+). Then, assuming that	 E1 and 

if li2+,p	E2 (El , E2 > 0), the function (10), i.e. 

2 P r sinh((ir — 5)r) f(x) = ir 2xj	cosh(7r7)	Kir(x)h(r)dr	 (39) 
0 

with
6=cQ,?C')	(0<a<2—p)	 (40) 

is a regularized solution of equation (3) such that iif — fii1+, satisfies estimate (38) 
for all 1 <p<2. 

3. The Lebedev-Skalskaya transform 

In this section we will consider a regularized solution of the Lebedev-Skalskaya integral 
equation (see [6, 11, 13j) 

ReEfl(x) = cosh(x) f ReK 111(y)f(y)dy = g(x)	(x > 0)	(41) 

where ReK1+(y) is the real part of the Macdonald function with the index + ix, 
namely

K1+ (y) + K!_.(y) 
ReK1,1(y) = 2	

2 
2	 (42) 

The integral representation of the Macdonald function (see [1: Vol. 2, Subsection 7.12, 
Formula (21)1)

K(x) = Je_' cosh u cosh(vu) du	 (43)
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immediately yields to the following formula for the kernel (42): 

00 

(y) = f e_°	cosh () cos(ux) du	 (44)€ReK1+  
0 

and the uniform estimate

	

K(y) =	-.	 (45) 

A more precise estimate (similar to (17)) is given, for example, in [16: Formula (6.10,11 )j, 
namely

cos A—Lr 

ReK1+(y)l eKi(ycos;z) =	
yycos	(i E [0, i)).	(46) 

Assume that f e L 1 _ 4 ([0, 1]) fl L(R+) (1 < p < 2). Then owing to (45) and the 
Holder inequality it is not difficult to observe that the integral (41) converges. Indeed, 
we have 

00 

f ReK 1 (y) f()I 
0

1	 00 

f	K1(y) If()I dy + J K 1(y ) If( y )I dy 
v/ 0	 1	 •(47) 

1/q I/g

	 (1"0 (I 
[K (a)] 

q 
d)	If IIL	([0,i]) + I[KY]dY)	IIfII 

<0O. 

Let us introduce a regularization operator 

co
 

41 cosh((ir — ö)r) 
cosh(7r7-)	ReK1+ ir (x)h(r)d7-	 (48) 

0 

where x > 0 and 8 E (0, ). Now we estimate the norm of the operator (48) under the 
condition h E L(R) (1 <p < 2). In the same manner as in (11) we obtain 

00 1/p 

(00" 

4 P cosh((ir — 6)7) 
II( io h )II	2J	cosh(r)	Ih(r)I JIReK+ir(x)IPdx 	d7-.	(49) 
0 
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Hence by the Holder inequality and estimate (45) we have 
1/p	 1/q 

	

- - I K(x)dx)	IIhII	
fcosh((ir_6)r) 

I(I6h)II
d)	

(50) 
j 2	 cosh(irr) 

( 0"0 

Estimating the integrals in (50) as

	

1/p 1/p 

(
IIK1 ( x ) I PdX)

	

	=	(1 
cc 
e1x/2dx) 

(51) 

/ cc 

J 
0

	

=	I/2_1/P [r (i - P)]l 

and

(000 

cosh((it —8)T)	

( 0"0
J	

2	
(52) 

	

 1/q 
 

1/q 

cosh(	
dT)	2

 )	
(q5)1/q 

we have finally

II(Io h )II	ir/(qS)h/ p1/2i/P [r (i_ 
)]

' /P II h II .	 (53) 

As a consequence of the calculations above the following lemma concerning the 
composition (I6 Re[f]) is valid. 

Lemma 2. Let I E L 1 _ 1, ([0, 1]) fl L(lR+) (1 p	). Then 
p 2 

fcc  

(I6Re[f]) = sin(6/2) 
JK0 (/x2

_
 -- 2,y +y2 	 cosö) f(y)dy 

it

(x>0).	(54) 
cc ( X + Y )Kl (x2 +y2_ 2xy cos ö)	1 

+1	Vx2+y2_2xy cos 8 
f()dj 

0 
Proof. Substituting the value of Re[fJ by formula (41) into (48), changing the 

order of integration in the absolute convergent iterated integral for any 6 E (0, ) as it 
can be shown by using the HOlder inequality in the inner integral and the estimate (46), 
we obtain after the calculation of the integral with respect to T by means of formula 
(2.16.55.2) in [7: Vol. 21 immediately representation (54)1 

As above denote by f the left-hand side of (54) and write the equality 

- I = (h(h - g)) + (l5g) - I (55) 

where g = Re[f] is the exact right-hand side of equation (41). Assuming that lIh—gIl p < 
e (e > 0) and invoking estimate (53) we have 

4e	 p\11/P 
ilf - fll ^ ir(q6)h/ 

phI2hIP [r (i_ )j	+ ll( Ia g ) - fll .	(56)
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To estimate the norm (Iog) - 1 li p by the same substitution as in (20) we obtain the 
representation

00 

1 
I 

R(x,t,6) (I6 g)(x) = 
	

t + 1 f(x(cos6+isinö))di	 (57) 
7r  

- cot 6 

where

(x,t,6) = xsin [sin6(t2 + 1)Ko(x sin 6(t 2 + 1)1/2)

(58) 
+(1 + cos 6+i sin â)(1 2 + 1)I/2K1(x sin 6(i2 + 1)1/2)]. 

Hence similar as in the case of the Kontorovich-Lebedev transform we have the estimate 
l(Ig) - flip

0O 

J2 1 f(x(cos 6+ t sin 5))(x, t, 6) - (1 -
	

f(x) di 
 —cotS  

sin  sin S f f(x(cos6+t sin 6))xKo(x sin 6(j2 + 1)h/2) dt 
P —cot 6 

00

1 1	f 

	

+	/	
)621/2 

ir	I 
 —cotS	 (59) 

Ki (x sin 6(t 2 + 1)1/2) —  
2( 7r — 6) f(x)M di 

"P 

00 

1	1 
+ — / 1) 521/2 
lrj	I 

- cot S	+ 1 ^^fw 

K1 (x sin S(t 2 + 1)1/2) —  2( 7r — 6) f(x)M di 
"P 

= I(6) + 12(6) + 13(6). 
Let us estimate now each of the integrals 1(6) (1	i	3). Since for all x > 0 the
inequality xKo(x) < 1 holds, then for the integral 11 (b) we obtain 

I(6) 
= Sfl sin 	J f(x( cos 6 + t sin 6))xKo(x sin 6(i 2 + 1)h/2)Mdi 

—cot 6 

sin f	100 dt
(60) 

\/t2 + 1 (cos 6--i sin 6)'/P 
— cot 6 

v/	
co 

sin	cosh((!- — 
)v) dv. 

	

7r	
lif lip I 

=	i  

coshv — cos b 
0
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Note that the last integral is obtained by the substitution &' = cos 8 + I sin 6. Hence we 
write (l<p< 2) 

(0, 

I+1)cosh((!-- )v) 
pdv 

fcosh v - cos 8

A 1 °°cosh((i - _______________	 )v) 
<2cosh	-	

/	+ 16 sin2 (5/2) +
	I sinh(v/2) 

A	(61) 
2) 

=Bp log (4 sin ()+%J1+16sin2())+cp 

where the constants B,, and C,, are defined as 

/ 1	i \	 1 
00 h((L	)v) 

B,, = 2v'cosh 
(s— -	

and	C,,	
cos	- J sinh(v/2) dv.	(62) 

Thus we obtain finally 

v'sin I 

	

1,(8) <	[Blo (4sin () + 1 + 16 sin2 ()) + C,,] 1111,,.	(63) 
7T 

Concerning the sum of integrals 12(5) + 13 (8) similar to (22) and (24) we derive 

'2( 5) + 13(8) 
00 

 

It 2 1
f(x (cos8+tsin8 )) ___L_ f(x ) M

p 
di 

" - cot 6
00 

1 
+	

i
	

1 "f(x(cos5+isinS))(cos8+tsin8)— f(x)li
p

di 

	

2	t2+1M 
- cot 6

00	 (64) 

	

1	'	1 
j12+1 

- cot 6 

x 
11 
f(x) [2x sin (t 2 + 1)' 12 K 1 (x sin 8(12 + 1)1/2) - cos	fl di 

H p 
2 sin 2(8/4)

11111,,. rcos(8/2) 

Hence, appealing to (36) for the third integral of the right-hand side of inequality (64)
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we immediately obtain the estimate 

00 
1	r	i 
-5 j t2+1 

- cot 6 

f(x) [2xsin (12 + 1)' 12 K1 (x sin 5(t2 + 1)1/2) - cos' 1	di	
(65) 

2  

<25 COS - ' "flip +E 

where for an arbitrary e > 0 there exists such a 5 E (0, ) that 

lf(x )l dx
	(0 < a <2 - p).	 (66) 

The second integral in the right-hand side of (64) is estimated by means of repre-
sentation (23) under the condition that f has a derivative f' E L 1 +i( lR+) . At first we 
have

00 
1	1	1

	1^
wf(x)ii di J j2	f COS 5+t sin 5)) (COS 5+t sin 5)- 

ir 
—i 

— cot 6	 p 
00 

v 
- 2 [ii	+	f 1 - (cos5 + tsin5)I/	5 --- di+– <	 IIfII p. 1 2 +1	 ir 

— cot 6 

The integral on the right-hand side of inequality (67) can be treated in the same manner 
as in (26) - (28). Thus we obtain an analogy of inequality (29), precisely 

00 
1	f	1 J j2	f055+ 

sin 5)) 
(COS 

5+t sin 5)_f(x)M di 
 —cotó	 p 

	

sin  [log (2_i sin2 ) +A9 ] lif)lli+,p	
(68) 

+ [
sinS log (2_ I	2	q sin SA q +	if lip —	 sin	

2ir 

where the constant A q is defined by equality (28) and q as usualy equals	Let us
estimate the first integral in the right-hand side of inequality (64). By using the equality 

(67) 

cos6-4-tsin 6 

f(x(cos5+i sin 5)) — -_?i f() =x	/	f(xy)dy_ _- 7 f(x)	(69)
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we have

f(x(cos(5+t sin 5)) -
7r - 6	lip	 (70) 

P [iltll+	+ iiii] 1- (cos6 +	+	Ill lip

and consequently the final estimate will take the form 
0O 

I 2+ f(x(cos (5+t sin (5))--f(x) dt 
li p - cot 6

<sin 
ts[
 log ( 1	—2 2	sin	+ Ap] llf'll+,	

(71) 

+{sinolog (2'	—2 -	 sin	- I + - sin t5A +	II! lip* 2) 2 

Now meaning 6 = , 6(i) 	where	is a constant, and assuming that Ilf li p 5 E1 
and	 E2 (E l , E2 >0) from (56), (59) taking into account estimates (63)-



(65), (68) and (71) we obtain 

life - flip 
46(2_p_Q)/(1 —a) p\1 /P 1/2-1/p 

P	[r (i_ 

+ (E1 + E2 )(p+	 log (2_ I sin —2 (PEP(i—Q)-')) 

+sin "Cap 
, 

x log (4 sin (PEP(i_a1) +	+ 16sin2 (,PP(a)')) 

+ (E1 (C + 1) + (pA + qAq )(Ei + E2 ))êa,p' ' + 

+ E1 
2 sin 2 ( , e' _a)'/4)

+ 2 6 P0	Y (1l cos -1  ,	 )) 
\

(72) 
Therefore we have proved the following 

Theorem 2. Let f E L1.,([0, 1 1) fl L 1+1, (R + ) (1 <p < 2) and let f possess a 
derivative f' e L 0( 1R+) nL1+1(R+) . Then assuming that llflI	El and lif'll1+,
E2 (El , E2 > 0) the function (48), i.e. 

00 

f (x)	
4	cosh(( - 8)r) 

ReK1+j r (x)h(r) dr	 (73) = -  2 J cosh(r) 
0
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with
(0<cs<2—p)	 (74) 

is a regularized solution of equation (41) such that Ilf - fll p satisfies estimate (72) for 
all 1 <p < 2. 
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