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On Two-Point Right Focal Eigenvalue Problems 

P. J. Y. Wong and R. P. Agarwal 

Abstract. We consider the boundary value problem 

-	 = AF(t,y,y......	(n > 2, t E (0,1))€
(0<i<p-l) 
(p<i<n-1) 

where \ > 0 and 1 < p < n-i are fixed. The values of .\ are characterized so that the boundary 
value problem has a positive solution. We also establish explicit intervals of A. Examples are 
included to dwell upon the importance of the results obtained. 
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1. Introduction 

In this paper we shall consider the n-th order differential equation 

(-1)'"y" = )F(t, y, y',	, y)	(t E (0,1))	 (1.1)


together with the focal boundary conditions 

y'(0)=0	(0<ip_1)	
(1.2) 

y(1)=0	(p<i<n_l)J 

where n > 2, \ > 0 and p is a fixed integer satisfying 1	p n - 1. Throughout, 

it is assumed that there exist continuous functions f : [0 ,00 )P+ I -* (0,) and u,v 
(0, 1) -. R such that the following conditions are fulfilled: 

(Al) f(xo,... , x 3 _ 1 ,	, x3 ,. . . ,x,,) is non-decreasing, for each fixed (x 0 ,. .. 
x1+1,...,x),0<j	P. 
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(A2) For (x0 ,. . . ,x,,) E [0,)P1, 

U(t) 
< F(t, x 0 ,... , x) 

<v(t).€
- f(xo,. .. ,x) - 

(A3) u = u(t) is non-negative and is not identically zero on any non-degenerate 
subinterval of (0, 1). 

(A4)I t'v(t)dt <. 
Jo	 - 

By a positive solution y of problem (1.1)-(1.2) we mean a function y e C () (0, I) satis-
fying equation (1.1) on (0, 1) and fulfilling conditions (1.2), and which is non-negative 
and not identically zero on [0, 1). If, for a particular A, the boundary value problem 
(1.1).-(1.2) has a positive solution y, then A is called an eigenvalue and y a corresponding 
eigenfunction of problem (1.1)-(1.2). We let 

E = {A > 0 Problem (1.1)-(1.2) has a positive solution} 

be the set of eigenvalues of the boundary value problem (1.1)-(1.2). Further, we intro-
duce the notations 

10 = lim	 and f = u 

	

f(xo,. . . ,x)	 . rn f(xo,. . 

	

j —.o+ X0 + ... + X P	 :_.<oo XO + ... + XP 
-i-p 

First, we shall characterize the values of A for which the boundary value problem 
(1.1)-(1.2) has a positive solution. To be specific, we shall show that the set E is an 
interval and establish conditions under which E is a bounded or unbounded interval. 
Next, on relaxing the monotonicity condition (Al), explicit eigenvalue intervals are 
obtained in terms of Jo and f. 

The motivation for the present work stems from many recent investigations. In 
fact, when n = 2, the boundary value problem (1.1)-(1.2) models a wide spectrum of 
nonlinear phenomena such as gas diffusion through porous media, nonlinear diffusion 
generated by nonlinear sources, thermal self-ignition of a chemically active mixture 
of gases in a vessel, catalysis theory, chemically reacting systems, adiabatic tubular 
reactor processes, as well as concentration in chemical or biological problems, where 
only positive solutions are meaningful (see, e.g., [4, 7, 9, 10, 16, 19, 24]). For the special 
case A = 1, problem (1.1)-(1.2) and its particular and related cases have been the subject 
matter of many recent publications on singular boundary value problems, for this we 
refer to [2, 3 , 8, 18, 20, 21, 23, 29]. Further, in the case of second order boundary 
value problems, (1.1)-(1.2) occurs in applications involving nonlinear elliptic problems 
in annular regions (see, e.g., [5, 6, 17, 26]). Once again, in all these applications, it is 
frequent that only solutions that are positive are useful. 

Recently, several eigenvalue problems related to problem (1.1)-(1.2) have been tack-
led. To .cite a few examples, Fink, Gatica and Hernandez [15] have dealt with the 
boundary value problem

y" + Aq(t)f(y) = 0 (t E (0, 1)) 

Y( 0) = y(l) = 0.
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A more general problem, namely 

	

+ )q(t)f(y) = 0	(t E (0, 1)) 

	

y(0)=y2(1)=0	(0i<n_2)} 

has been studied by Chyan and Henderson [8]. Further, Eloe and Henderson [11, 121 
have considered the n-th order differential equation 

	

+ q(t)f(y) =	0	(t e (0,1)) 

subject to the two types of boundary conditions 

	

y(0)=y2(1)=0	(0in-2) --

	

y(0)=y(1)=0	(0i <n-2). 

It is noted that in all these eigenvalue problems, the nonlinear term that appears in the 
differential equation concerned is always a function of y only, whereas in equation (1.1) 
the nonlinear term is a function of y (0 < j p). Hence, the differential equation 
under consideration is more general. As such our results not only extend the work done 
on the above eigenvalue problems, but also complement those in [3, 13, 14, 25, 27, 28, 
30 - 331, as well as include several other known criteria offered in [1. 

The outline of the paper is as follows. In Section 2 we shall state a fixed point 
theorem due to Krasnosel'skii [22], and develop some properties of certain Green func-
tion which are needed later. By defining an appropriate Banach space and cone, the 
characterization of the set E is carried out in Section 3. Finally, in Section 4 we shall 
establish explicit eigenvalue intervals in terms of fo and f,,. 

2. Preliminaries 

In this section, we shall state a fixed point theorem due to Krasnosel'skii [22) and present 
some inequalities of certain Green function which are vital in later sections. 

Theorem 2.1 (see [22]). Let B be a Banach space, and let C C B a cone. Assume 
ci 1 ,ci2 are open subsets of B with 0 E Q, and	C h, and let 

S: Cfl(1l2\Q1)—C 

be a completely continuous operator such that, either 

(a) JJSyJJ 5 huh (y E C n 3 1 ) and hI SuhI ^: huh ( y e C n ac2) 
or

(b) hhSy hl ^! huh (y E c n ô 1 ) and J JSyJJ	hIuhh (y E C fl ôQ2). 

Then S has a fixed point in C fl (2 \ cli).
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To obtain a solution for problem (1.1)-(1.2), we require a mapping whose kernel 
G(i,$) is the Green function of the boundary value problem 

y  = 0 

y'(0)=0 (0i<p—i) 
y'(1)=0 (p<i<n-1) 

where 1 p n - 1 is fixed. The Green function G(t, s) can be explicitly expressed as 
(see [1])

1
=_ (n 

7
	ti(

	

_s)n—_1	if 0	s	t	1	
(2.1) 

i O 
G(i,$)	(n—i)!-	(n i) ti(	if 0<1 ^ S	1. 

Further, the signs of the derivatives of G(t, s) with respect to I are known (see [1]). In 
fact, for (t, s) E [0,1) x [0,1], 

	

(_i)TPG(1)(t,$) 20	(0	i	p - 1)	
(2.2) 

	

(-1)'G(t,$) 2 0	(p	i	n - 1). 

	

Remark 2.1. From (2.2), we have (-1)"G(1)(t,$) 2 0 (0	i < p) and

(-1)"PG(P)(t,$) 5 0. Therefore, it follows that (-1)PC(')(t,$) is non-decreasing 
in 1 (0	i	p - 1) and (-1)'—PG(P) (I, s) is non-increasing in I. 

	

Lemma 2.1. Let 6 E (0, ) be given. Then for each 0	j 5 p and (t, s) C-




-  8] x [0, 1] we have 

(-1)'"G(t, s) 2	 s)	 (2.3) 

where 0 < k	1 is a constant given by 

k - { 

min,EIo, 
1 G(i)(8,$) 

	

G(J) (i s)	 (2.4) 
1	'	ifjp. 

Proof. First, we shall consider the case 0 < j <p - 1. For .s < I, by the mono-
tonicity of the function (-1)'PG(3)(i, s) (see Remark 2. 1), inequality (2.3) holds for 

	

k = 1.	 (2.5)


For I < .s, inequality (2.3) is satisfied provided that 

V < mm (_i)"PC(i)(t, s) 
iEt6I-61 

(6, I) (-1)'PG(7)(s, s)
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Since
(_1)"—PG((t, s)	(_l)l-GoJ)(, s)	c(') (o, s) 

>	 = mm mm	 mm 
LE(6,t-61 (_1)72_PG(i)(.s, s)	- 3E[ö,I] (_1)'-PG(3)(1, s)	sE[6,I] G(.')(l , s) 

.E(5,1I 

inequality (2.3) holds if

G(')(.5,$) 
k	<	mm	 (E (0, 1]). 

sE[6,I] G(i)(l, s)
(2.6) 

Coupling (2.5) and (2.6), we take kj to be the right side of (2.6). 
Next, we shall prove for the case j = p.	For t < s, in view of Remark 2.1, it is 

obvious that inequality (2.3) holds for

k=1.	 - (2.7) 

Further, from (2.1) we find

1	10	if0<s<t<1 
G(t,$) - (2.8) 

(n-p-i)!	-(t - s) P	if 

Hence, for .s < t, inequality (2.3) is actually 0 > k	. 0, which is of course true for any 
constant k'. In view of (2.7), we take k	= 1 U 

Lemma 2.2. For each 0	j	p and (t, s) E [0,1] x [0, 11, we have 

(-1)G(t, s)	(s) (2.9) 

where
(	1

if0	j	p -1 
- 

j 
(n—j_1)!0 

-	 ——' . (2.10)  

(n—p—i)!	
ifj=p. 

Proof. First, we shall prove for the case 0	j	p- 1. On differentiating expression 
(2.1) with respect to i, j-times, we get 

1	n -i" 2(J)ji_i(_5)n_i_1	if 0	s	t < 1 1 
G'(t,$) =

{

2	J (2.11) 
(n — 1)!	n—I 

—	.	(	

i) j()ji-(_5)n_i_1	if 0 <i <s < 1. 

Subsequently, in view of Remark 2.1 and (2.11), we find 

(_1)n'G)(t, s)	(_1)hiJG(3)(1, s) 

(n	1) 
= (n — 1)! i=j

(n	1)	(j)3n—i-1 
--l)!- (n E

=
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Next, for the case j = p, it is clear from Remark 2.1 and (2.8) that 

(-1)'G0'(t,$) < (_1) n 
—PGIP)(O,$) = 

The proof of the lemma is complete I 

Let y E c()[0, 1] be such function that () is non-negative on [0, 1] for each 0 
j <p. We shall denote, for each 0 <j 5 p, 

M = f Oj(s)v(s)f(y(s),y'(s),. .. ,y(s))ds	 (2.12) 
0 

and

	

N = J(_1)	s)u(s) f(y(s), y'(s),. . , y(s))ds.	(2.13) 

In view of Lemma 2.2 and conditions (A2) and (A3), it is clear that M ^! N > 0 (0 
j p). Further, we define the constants

—1 

	

Oi = kN (O<t<pmax M,	(0 <_ i <_ P)	 (2.14) 
I 

where k (0 j 5 p) are given in (2.4). It is noted that 0<0 <1 (0 < j <p). 

3. Characterization of eigenvalues 

Let the Banach space B = C(P) [O, 1] be equipped with the norm 

11 IIII = max I1 Y (3) 1100 = max sup Iy'(t)I. O<j<p	0jp 
te[0,1] 

For a given S E (0, i.), let 

	

Co= { y E BI y'(t) ^!	[O,1j)and	 JIjY (Oj 

We note that C6 is a cone in B. Further, let 

C6(L) = {y E C61 IIII <L}. 

We define the operator S: C6 - B by 

Sy(t) = I (-l)'-P G( t, s) F(s, y(s), y'(s),... , y () (s))ds	(t E [0, 1 1) .	(3.1)
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To obtain a positive solution of problem (1.1)-(1.2), we shall seek a fixed point of the 
operator AS in the cone C5 . It is clear that, for each 0 < i :5 p, 

, (5y)()(t)	f (_1)nPG)(t, s) F(s, y(s), y I ks),.. . , y(j) (s))ds	(t E [0, 1]). 
0 

Thus, on using condition (A2) and the fact that (-1)'PG(i)(t,$) ^ 0 (0 j p) (see 
(2.2)), we find 

(Uy)"(t)	(Sy)(t)	(Vy)'(t)	(t E [0, 11, 0	j	p)	(3.2) 

where
I	 - 

Uy(t) = I (-1)"—PG(t, s)u(s) f(y(s), y '( s),... y (P) (s))ds	(3.3) , 
0 

and

Vy(t) = / (-1)_G(i, s)v(s) f(y(s), y'(s),... , y(s))ds.	(3.4) 

We shall now show that the operator S is compact on the cone C5 . Let us consider 
the case when u is unbounded in a deleted right neighborhood of 0 and also in a deleted 
left neighborhood of 1. Clearly, v is also unbounded near 0 and 1. For rn E N, define 
um,vm: [0,1]—Rby 

1\ 1 I ifo<t< 
\m+1) -	rn+1 

Urn(t) 

= { 

u(t) if	 m 1	
<	 (3.5) 

m+1	m+1 
uI if	m <t<1 

\. in+1) rn+1	- 
\ 1 1 V ( rn

1 if0<t< 
+1) m+1 

Vrn(i) = { v(t) if	1	m _ 	

(3.6) 

m+1	771+1 
rn 

vi	1
M 

if	<t<1 
m+1) m+1	-

and the operators Urn, Vrn : C5 -, B by 

Urny(t) = J(_1)G(t, S)um(s) f(y(s), y (s),. . . , y (3.7) 
0 

--	 1

, ' Vrny(t) = J(_1)G(t, s)vm(s) f(y(s), y, ks),... , y (1') (s)) ds.	(3.8) 
0
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It is standard that for each rn, both Urn and Vrn are compact operators on C6 . Let 
L > 0 and y E C6 (L). Then, in view of condition (Al) and Lemma 2.2 we find, for each 
0<	p, 

(Vmy)(t) - (Vy)2(t)I 

f1)n -PG(j)(t,$)Iv.(s) - v(s)I I (y(s),y'(s),... ,y(P)(s))ds 
0

+1 

f(_l)G(t, 3 )I Vm( S ) - v(s)I f(y(s), y'(s),.. . , y(P)(s))ds 
0 

+ f (l)G(t, S )l Vrn( S) - v(s)I f(y(s), y'(s),... , 

r	I 

J Oj(s)IV(_

1	
—v(s)ds 

 m+i) 
La 

1	 1 

( + I ,(s) 
I v / 

m+l) —v(s)ds. 

The integrability of Oj v (0 j p) (ensured by condition (A4)) implies that Vrn 
converges uniformly to V on C6 (L). Hence, V is compact on C6 . Similarly, we can 
verify that Urn converges uniformly to U on C6 (L) and therefore U is compact on C6. 
It follows from inequality (3.2) that the operator S is compact on C61 

Theorem 3.1. There exists a constant c > 0 such that (0,c] ç E. 

Proof. Let L > 0 be given. Define 

L ___ 	[	 I 

max jIi( 5 ) V (s ) ds j	(3.9) C =
f(L,... ) L) [°<i^P

0 

Let A E (0, c]. We shall prove that (AS)(C6(L)) c C6 (L). For this, let y E C6 (L). First, 
we shall show that ASy E C6 . From (3.2) and condition (A3) it is clear that, for each 
0 j <p, 

(ASy)(t) ^! A f(_I)n -P G lil (t, s)u(s) f(y(s), y'(s) .	(s))ds > 0	(3.10) 
0
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for all t E [0, 11. Further, it follows from (3.2) and Lemma 2.2 that 

(Sy)(t) <f(_l)nPG(t, s)v(s) f(y(s), y'(s),.. . , y(P)(s))ds 

/	(s)v(s)f(y(s),y'(s),. .. ,y(P)(s))ds 

= M3 

for all t E [0, 11 and 0 	p. Thus, [(Sy)	< M2 (0 <j <p) which readily leads 
to	-	 - 

Il Sy II 5 max M1 .	 ( 3.11) 
O<t<p 

Now, on using (3.2), Lemma 2.1, (3.11) and (2.14) we find, fort E [8,1-8] and 0 j <p, 

(ASy)'(t) 2 A I (_ 1)n -P G (j) (t, s)u(s) f(y(s), y'(s),. .. , y(P)(s))ds 
0 

2 A / k(-1)G'(s, s)u(s) f(y(s), Y , ( S )	(P)(s))ds €,...,y 
0


=AkN 

2 AkNj II5yI (max Mt 
0<t<p	) 

= AOIISyII 

= OIIASyII. 

Therefore,
mm	(ASy)'(t) 2 6 II ASy II	(0	i	p).	 (3.12) 

iE[6,1 —6] 

Inequalities (3.10) and (3.12) imply that ASy E C6. 

Next, we shall show that II ASy II L. For this, on using (3.2), Lemma 2.2, condition 
(Al) and (3.9) successively we get, for each 0 < j < p and t E [0, 11, 

(ASy)'(i)	A / (-1)_G(t, s)v(s) f(y(s), y'(s),. .. , y(s))ds 

<AJj(s)v(s)f(L,.. . ,L)ds
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c j(s)v(s)f(L,.. . ,L)ds 
0 

cf(L,...,L) max ft(s)v(s)ds 
0 

= L. 

Hence,
IIASyII	L. 

We have shown that (AS)(C6(L)) C C6 (L). Also, standard arguments yield that AS 
is completely continuous. By the Schauder fixed point theorem, AS has a fixed point 
in C6(L). Clearly, this fixed point is a positive solution of problem (1.1)-(1.2) and 
therefore A is an cigenvalue of problem (1.1)-(1.2). Since A E (O,c] is arbitrary, it 
follows immediately that (0, c] C E I 

The next theorem makes use of the monotonicity and compactness of the operator 
S on the cone C6 . We refer to [15: Theorem 3.2] for its proof. 

Theorem 3.2 (see [15: Theorem 3.2]). Suppose that A 0 E E. Then, for each 
0 < A < A 0 , A E E. 

The following corollary is immediate from Theorem 3.2. 
Corollary 3.1. E is an interval. 

We shall establish conditions under which E is a bounded or unbounded interval. 
For this, we need the following results. 

Theorem 3.3. Let A be an eigenvalue of problem (1.1) - (1.2) and y E C5 be a 
corresponding eigenfunctzon. Suppose that (nn--p) is odd and y ( ' ) (0) = q 1 (p i n—i) 
where qi > O,p i ri - 2 and qn—i > 0. Then A satisfies 

max	 v(s)ds 

1 

) 

[f(DO...D)f(1_sn—'-1 
ptn_i	L_i	i! (n—-1)!	I \ i=0

1 

0	 (3.13 

) [ I
(1 -

—1 

	

(n^f i	 1

u(s)ds p
<A< mm	 f(0,...,0) 	

(n—t-1)!	I - ^I<n—I
 J 

where
n-p-1 

Dj	
qp	(0jp).	 (3.14) 

	

.	(p+i—j)! 

Proof. For m E N we define fm = f * O n where 0, is a standard mollifier [8, 151 
such that fm is Lipschitz and converges uniformly to f. For a fixed rn, let Am be an 
eigenvalue and Ym with y(0) = qj (p < i <n - 1) be a corresponding eigenfunction 
of the boundary value problem 

(-1)y	= A. F n(t, !Im, J,,,. . . ,	))	(i E [0,1])	(3.15)
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y(0)=0	(0i^p_1)1> 
y(1)=0	(p<in-1)J

(3.16) 

where Fm converges uniformly to F and 

Urn(t) < 
Frn(t,Xø,... ,x) 

<Vm(t) (3.17) 
fm(Xo,. . . ,x) 

(see (3.5) and (3.6) for the definitions of Urn and Vm). It is clear that Yrn is the unique 
solution of the initial value problem (3.15)-(3.18), where 

y(0)=0	(0i^p-1)	1 
y(0)=q	(pin-1).J

(3.18)

Since
(p)' (_l)Py)(t)	\m Frn( t , ym, ym,... ,Ym ) 

^ ArnUm(t)fm(ym(t),y n (i),... ,,')(t)) 

(n-i)  we have !Jrn	is non-increasing and hence 

y'(0) = qn-i	(t € [0, 1]). 

Noting that

y(i) = qi + Jy1)(s)ds	(p 5 i n -2, t E [0,1]) 
0 

we obtain, on using (3.20), 

y	 Ym (2) (t) = qn_ + J	-1) ds	q - + q -i	(t E [0,1]). 
0 

Applying the above inequality and continuing integrating, we find 

n-p-i ti Y(t) 

^	q+1-j-	(t E [0,1]). 
1=0 

Next, using the relation 

	

Y. W- J 0) (s)ds	(0 <i <p - i, t E [0,1]) - Ym 

0

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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successive integration of (3.22) yields 

n-p-1 tp+I-J 
!J( t ) :5	i	P+( 

+ i - j)!	
D3	(t E [0, 11, 0	j	p).	(3.24) 

1=0 

Now, it follows from (3.15), (3.17) and (3.24) that, for t E 10, 1J, 

Amm(t)fm(0,...,0) <(_1)flP1(j) < Amvm(t)fm(Do,.. . ,D,,).	(3.25) 

In view of the initial conditions y(0) = q (p	i	n - 1) repeated integration of

(3.25) from 0 to t provides 

	

at (t) <y(t) <b,(t)	(t E [O,i],p<<n- 1)	(3.26)


where

	

a(t) =	- A mfm(Do,... ,D)
(t -

vm(s) ds 2.	 (n—-1)! 1=0 

	

=	-	, 
0)f (t - 

(n - £ —1)! 1=0	 0 

In order to have y(1) = 0 (p	£	n - 1) (see (3.16)), from inequality (3.26) it is 

necessary that al(l) <0 and b(1) > 0 (p £ n - 1) or, equivalently, 

-i


	

/n—t--i	\ I	 I
(1 - 

Am?	j	 fl. (Do,.. . , 
DP)f (n - - 1)! Vm(S)dS	=	(3.27) 

	

tO	 0	 j 
(p £ < n — i) 

and

-i (n-t-1	i	 1 (1 - 

	

) L1°)" ,o)J (n - £ - 1)! 
Urn(S) ds	=	(3.28) 

0	 i 
(p<t<n—i). 

Coupling (3.27) and (3.28), we find 

max at <Am < min fl.	 (3.29) 

	

p<i<n - 1	 p<t<n-I 

	

From (3.26) it is seen that {y (n-i)rn	}m^:I is a uniformly bounded sequence on [0, 11. 
(1) Using initial conditions (3.18) and repeated integrations we find that {ym }m>1 (0 <
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i <n -2) is a uniformly bounded sequence. Thus, there exists a subsequence, which can 
be relabeled as {ym}m>i that converges uniformly (in fact, in C("-')-norm) to some y 
on [0, 1]. We note that each yr,, can be expressed as 

Ym(t) = Am f (—I)"-PG(t,$) Fm (s,ym(s),ym(s) ... ,y(s))ds	(3.30) 

for t E [0, 1]. Since { Am } m^ is a bounded sequence (from (3.29)), there is a subsequence, 
whichcan be relabeled as {Am}m>i that converges to some A. Then, letting m —' 
in (3.30) yields

y(t) = A f (-1)"-PG(t, s) F(s, y(s), y'(s),. .. , y(s))ds	(3.31) 

for t E [0, 1). This means that y is an eigenfunction of problem (1.1)-(1.2) corresponding 
to the eigenvalue A. Further, y ( ' ) (0) = q (p i n — 1) and inequality (3.13) follows 
immediately from (3.29) I 

Theorem 3.4. Let A be an eigenvalue of problem (1.1) - (1.2) and y E C 5 be a 
corresponding eigenfunction. Further, let d = Il y ll . Then 

f(d,. ,d)	
x)(s)v(s)ds] 

—1	

(3.32) 

and

A	
f(90d,. ,9d)	

(_, ) n 3) G) u(s) 	

.	

(3.33) 

Proof. First, we shall prove (3.32). For this, let to E [0,1] and J E {0, 1,... ,p) be 
such that d = Il y ll = y (3) (to). Then, applying (3.2), Lemma 2.2 and condition (Al) we 
find

d = 

= (ASy)(t0) 

< A 
I 

(_, ) n -P G (j) (to, s)v(s) f(y(s), y'(s),... , y(s))ds 

5 A J (s)v(s) f(y(s), y'(s),. . . , y(s))ds 

<AJJ(s)v(s)f(d,... ,d)ds 

<Af(d,...,d) max Jj(s)v(s)ds 
0 ^j p

0
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from which (3.32) is immediate. 

Next, using (3.2) and the fact that mintE[6,1_5) y(i) (t) 2 9,d (0 j p) we get for 
any 0 <j <p 

d>y () 

• A f (_l)--PG(j) G ) u(s) f(y(s), y'(s),.. . , y(s))ds 
0 
1-6 

• A
I 

(_1)G' (, s) u(s) f(y(s), y'(s),. . . , y(s))ds 
6 
1-6 

• A f (-1)G (, s) u(s) f(90 d,. .. , 9d) ds. 
6 

The above inequality readily leads to

1-6 
d> Af (God .... ,Od) max f (_1) PG()) G s)u(s)ds 

O<j<p
6 

which is the same as (3.33) U 

Theorem 3.5. Let 

F8 = {i f(x, 
X 

I x) is bounded for x E [0, oo) 

F0 ={f lim 
f	x) 

X	
=o} 

z—oo(x,...,  1. 
F = ç f lim  

x—.00f(x,...,x) = 

Then the following statements hold: 

(a)If  E F8 , then E = (0,c) or (0,c] for some CE (0, 00). 

(b)If  E F0 , then E = (0,c] for some c E (0, 00). 

(c)If  E F, then E = (0, ). 

Proof. Case (a) is immediate from (3.33). 
Case (b): Since F0 ç FB, it follows from Case (a) that E = (0,c) or E = (0,c] for 

some c E (0, no). In particular,
c = sup E.	 (3.34) 

Let { A m } m > i be a monotonically increasing sequence in E which converges to c, and let 
{ y,, ),,, > ,  in C6 be a corresponding sequence of eigenfunctions. Further, let d = II Yin II.
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Then (3.33) implies that no subsequence of {dm}m^, i can diverge to infinity. Thus, 
there exists L > 0 such that dm < L for all in. So Ym is uniformly bounded. Hence, 
there is a subsequence of {ym}m>i relabeled as the original sequence, which converges 
uniformly to some y E C 5 . Noting that AmSym = Ym, we have 

CSYm =	Ym.	 (3.35) 
Am 

Since {cSym} m > i is relatively compact, I/rn converges to y and Am converges to c, letting 
in (3.35) gives cSy = y, i.e. c E E. This completes the proof for Case (b). 

Case (c) follows from Theorem 3.2 and (3.32) U 

Example 3.1. Consider the boundary value problem 

= 
A(4 +6t2	 (y+y' +y" +7)° (t 

Y(0) = y'(0) = y"(l) = y 3 (i) = 0 

where ,\ >O and a>0. Here, n = 4 and p = 2. Taking f(y,y',y")=(y+y'+y"+7)°, 
we find

F(t,y,y',y") -	 1 
f(IJ, ti', li ii ) - (t 4 + 6t 2 - 12t + 19)a 

Hence, we may take

U(t) = v(t) =
(t 4 + 6t 2 - 1 12t + 1 

All the hypotheses (Al) - (A4) are satisfied. 
Case 1: 0<a<1. We have 

X	-	x	 x 
f(x,x,x) - (x+x+x+7)° = (3x+7)a 

Since I E F, by Theorem 3.51(c), E = (0,). For instance, when A = 24, the 
boundary value problem has a positive solution given by y(t) = t2 (t 2 - 4t + 6). 

Case 2: a = 1. Since I E FB, by Theorem 3.5/(a) the set E is an open or half-closed 
interval. Further, from Case 1 and Theorem 3.2 we note that E contains the interval 
(0,24). 

Case 3: a > 1. Since I E F0 , by Theorem 3.5/(b) the set E is a half-closed interval. 
Again, as in Case 2 it is noted that (0,24) 9 E.
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4. Intervals of eigenvalues 

For the rest of the paper, we shall not require conditions (Al) and (A4). However, we 
need the functions u and v to be continuous on the closed interval [0, lj. For a given 
5 e (0, ) and 0 j p, we shall define the number t E [0, 1) as 

1-6	 1-6 J (—i)G(t, s)u(s) ds = sup J (—i)PG('(t, s)u(s) 
iE(O,1] 

6	 6 

In view of Remark 2.1, it is clear that 

'0 ifj=p. I 
I if0jp-1	

(4.1) 

Theorem 4.1. Suppose that conditions (A2) and (A3) hold. Let S e (0, ) be given. 
Then, for each A satisfying

L < A < R	 (4.2) 

where

L={fjk 
[mm I(_1)PG(t;,$)u(s)dsl 

}_1 '\i0 I 6	 j 

and

F  R= {foP+1 max 
L0<—j:59/j(5)v(5s] } 

the boundary value problem (1.1)-(1.2) has a positive solution. 

Proof. Let A satisfy condition (4.2). Noting that 9	k (0 j p), we let e > 0

be such that

(foo_E)(
j=O I

>
 

8j1 I mm J I O<j<p
(—l)PG()(t, s)u(s) ds]

 \	 1-6 1 

L
	
1	(4.3) 

1) [max J(s)v(s)ds] 
11 

Next,	

A< {fo +e)(p+ 

Next, we choose w > 0 so that 

f(x0,...,x)<(f0+e)x	(0<x5w,0<j<p).	(4.4)
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Let y E C6 be such that IIJI = w. Then, applying (3.2), Lemma 2.2, (4.4) and (4.3) 
successively we find, for each 0 < j <p and i E [0, 11, 

(AS)(3) (t) < A 1(_I) n —PG (j) (t,  s)v(s) f(y(s), y'(s),. .. , y(s))ds 

<A J j (s)v(s) f(y(s), y'(s),... 

A/ j(s)v(s)(fo +)y(t)(s)ds 

<A / c4j(s)v(s)(fo + E)(p + l )lI y II ds 

<A(f0 +e)(p+ l )IIII max It(s)v(s)ds O<t<pJ 
0 

IrJtl 
Hence,

	

IIASyII	IIiII .	 (4.5) 
If we set c1 1 = {y E BI II <w}, then (4.5) holds for y E C6 fl ô9 1 . Further, let T> 0 
be such that

f(xo,x i .... ,x)	 xj	T, 0 <j <p).	(4.6) 

Let y E C6 be such that Ilyll = T' max{2w, T(mino< t.q, 9,)' }. Then, for i E [5, 1 —6] 
and 0 j ( p,

	

y(t) ^! 9jIIYII ^! 0j	
T	

> T 
mlno<e<p °t 

which in view of (4.6) leads to 

f(y(t), y'(t),... , y(P)(t)) 2 (f. 	e)	Y (') (t)	(t E [5,1 - 6]).	(4.7) 

Using (3.2), (4.7) and (4.3) we find, for each 0 j < p, 

(ASy)(i) 2 Af(_1)G(t;, s)u(s) f(y(s), y'(s),. .. , 

2 A 
I (

_ l )n 
—PG(j)(t j' , s)u(s) f(y(s), y'(s),... , y(s))ds
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1-6 P 
2 A f (-1)G'(t, s)u(s)(f - e) E y(l)(s) ds 

I	 1=0 

1-6 

> A f (-1)G'(t, s)u(s)(f - E)	&y ds 

1=0 

2 A(f —e)

1-6

(^: ot IIII 
0 
min 

£0	
f (-1)G'(t, s)u(s) ds 
I 

2 Ill/Il 
Therefore,

	

IIASYII 2 Il y Il .	 (4.8)

If we set Q 2 = {y E BI IIM <T'}, then (4.8) holds for y E C6 fl ac2. 

Now that we have obtained (4.5) and (4.8), it follows from Theorem 2.1 that AS 
has a fixed point y e C6 fl (2 \ Q 0 such that w T'. Obviously, this y is a 
positive solution of problem (1.1)-(1.2) I 

The following corollary is immediate from Theorem 4.1. 
Corollary 4.1. Suppose that conditions (A2) and (A3) hold. Let 5 E (0, )be given. 

Then

(L,R) c E 
where L and R are defined in Theorem .4.1. 

Theorem 4.2. Suppose that conditions (A2) and (A3) hold. Let S E (0, ) be given. 
Then, for each A satisfying

	

LY<A<R'	 (4.9)€
where

L'{

	

/,	\1	1-6

	
I

fo (	
k)

	mm J (-1)	G(t,$)u(s)ds 1
\i=o	O^^P 6 J 

and

= {fP+ 1) [0 X ](s)v(s)ds] }' 

the boundary value problem (1.1)-(1.2) has a positive solution. 
Proof. Let A satisfy condition (4.9). Again, in view of the inequality 9	k (0 

j <p) let c > 0 be such that 

{ 
Yo - e) 

(j=O	
mm I(_1)G(t, s)u(s) ds]

}0<j<p  
L	6 (4.10) I max 

	

<A< 1f+e)(P+1) 
L0^j	

ds] }'.
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Let iD > 0 be such that 

f(xo,..., XP) > (f —e ) x	(O<x_<tD,O_<j<p).	(4.11) 

Further, let y E C6 be such that IIlI = tD. Then, on using (3.2), (4.11) and (4.10) 
successively we get, for each 0 j 

1 —6 

(ASy)() (t) 2 A I	 ) 

	

(-1)G()(t, s)u(s) f(y(s), yI(\	(P)(s))ds ,... 

6 

1-6
P 

2 A f (-1)G ) (t, s)u(s)(fo — e) L y"" (s) ds 
t=0 6 

1-6
P 

> A J (-1) n G(t, s)u(s)(fo — e)	Ot I lyll ds 
6	 6=0 

>A(f0 c)p
	 1-6 

)	
O<t<p 

( t=O 

-	-	> 6,	mm J (-1)'G'(t, s)u(s) ds 
6 

2 IIyII 

Therefore, inequality (4.8) follows immediately. If we set Q, = {y E BI lIM < D}, then 
(4.8) holds for Y  C6 fl3l1. 

Next, we may choose T > 0 such that 

f(xo,..., XP) <(f+E)x	(x2,0<j<p).	(4.12) 

There are two cases to consider, namely, I is bounded and f is unbounded. 
Case 1: Suppose that I is bounded, i.e. there exists some M> 0 such that 

f(xo,..., XP ) <M	(xE0,00),0<j<p).	 (4.13) 

We define 

-	
TI= max {2t AMmaxJi(s)v(s)ds}. 

Let y E C6 be such that Ilyll = Ti . From (3.2), Lemma 2.2 and (4.13) we find, for each
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U <j <p and t E [0, 11, 

(ASy)() (t) 5 A

0
	f(y(s), y'(s),. .. , y(s))ds 

AJ,(s)v(s)Mds 

<AM max I cbt(s)v(s) ds 
O<t<pJ 

0 

ç T 

= Ill/Il. 
Hence, (4.5) holds. 

Case 2: Suppose that I is unbounded. Then, there exists T1 > max{2, i'} such 
that

f(xo,...,x)<f(T1,...,T1)	(0<x,< TI, 0<j<p).	(4.14) 
Let y E C6 be such that I lyll = T1 . Then, applying (3.2), Lemma 2.2, (4.14), (4.12) and 
(4.10) successively gives, for each 0 j p and i E [0, 11, 

(ASy)'(t) 5 A/ j (s)v(s) f(y(s), y'(s),... , y(s))ds 

<A Ji(s)v(s)f(Ti.. . ,Ti)ds 

<AJ j(s)v(s)(f +e)Tids 

= A 	( s )v (s )(f. + e)(p + l )lI y II ds 

A(f. +,5)(p + l )IIlI max f (s )v (s ) ds 
o<t<p

0 

^ IIII 
from which (4.5) follows immediately. 

In both Cases 1 and 2, if we set Q2	{ y E BI IIM < T1 }, then (4.5) holds for

E C6 n oQ2. 

Now that we have obtained (4.8) and (4.5), it follows from Theorem 2.1 that AS 
has a fixed point y E C6 fl (12 \ 1 1 ) such that tD :5 T. It is clear that this y is a 
positive solution of problem (1.1)-(1.2) 1
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Theorem 4.2 leads to the following corollary. 

Corollary 4.2. Suppose that conditions (A2) and (A3) hold. Let S E (0, ) be 
given. Then

(L',R')C_E 

where L' and R' are defined in Theorem 4.2. 

Remark 4.1. If f is superlinear (i.e. ía = 0 and f = oo) or sublinear (i.e. 
fo no and f = 0), then we conclude from Corollaries 4.1 and 4.2 that E = (0, cc). 
i.e. the boundary value problem (1.1)-(1.2) has a positive solution for any A > 0. 

Example 4.1. Consider the boundary value problem 

(3) = A	1	
+ 2y' + 12)	(t E (0,1)) } 

(2t 3 - 6t + 18)a 

Y(0) = y'(l) = y"(1) = 0 

where A > 0 and a < 1. In this example, n = 3 and p = 1. Choosing f(y,y') = 
(2y + 2y' + 12)°, we may take

1 
U(t) = v(t) = (2t

3 - 6t + 18) 

Hypotheses (A2) and (A3) are satisfied. 

Case 1: a < 1. It is clear that jr is sublinear. Hence, in view of Remark 4.1, for any 
A> 0 the boundary value problem has a positive solution. In fact, we note that when 
A = 6, the corresponding eigenfunction is given by y(t) = t(t 2 - 3t + 3). 

Case 2: a = 1. Here, f = no and f = 2. Further, from Lemma 2.2 we find that 
O(S) = f and q5 1 (s) = s. Subsequently, 

1	 1 

max f c1,(s)v(s) ds = fsv(s) ds = 0.0339. 
O<j<1 j 

0	 0 

Hence, it follows from Theorem 4.2 that 

E D (0,12(1 + 1)(0.0339)]') = (0,7.37). 

As an example, when A = 6 E (0, 7.37), the corresponding eigenfunction is given by 
y(t) = t(t2 - 3t + 3).
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