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Approximation of Stochastic Differential Equations 
with Modified Fractional Brownian Motion 

W. Grecksch and V.V. Anh 

Abstract. The modified fractional Brownian motion is a special semimartingale. This stochas-
tic process is suitable for studying the phenomenon of long-range dependence in a wide range of 
fields. This paper introduces stochastic differential equations with respect to modified fractional 
Brownian motion. The solution of these equations is approximated by a splitting method whose 
convergence in probability is proved. An application of this method to determine c-optimal 
controls for a stochastic control problem is also given. 
Keywords: Modified fractional Brownian motion, splitting method, stochastic integral, c-opti-

ma! control 
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1. Introduction 
A key component in stochastic analysis and its applications is the Ito equation 

d..K(t) = a(t, X(t))di + b(t, X(i))dW(t) j	 (1) 
X(0)=Xo	 J 

where W(t) is a Brownian motion (see, for example, Kloeden and Platen 161). Recent 
studies have found that data in a large number of fields display long-range dependence 
(see Beran [2] and Peters [10]). In order to have a useful tool for description and analysis 
of long-range dependence processes, attempts have been made to replace a Brownian 
motion by a fractional Brownian motion Bjq ( < H < 1) in (1) because fractional 
Brownian motion displays long-range dependence in that range and has fractal sample 
paths (Mandelbrot and Van Ness [81). But B i, is not a semimartingale, hence it is 
not possible to apply the ItO calculus. A stochastic analysis with respect to fractional 
Brownian motion is faced with difficulties. Lin [7] and Kleptsyna et al. [6] have discussed 
special stochastic differential equations which contain fractional Brownian motion. 
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In this paper, we shall take another approach based on the modified fractional 
Brownian motion introduced in Anh et al. [1]. The covariance function (in the sense 
of distributions) of fractional Brownian motion is the Riesz kernel while the covariance 
function of modified fractional Brownian motion is the Bessel kernel. The Riesz kernel 
is not integrable, leading to many difficulties as expected of fractional Brownian motion. 
On the other hand, the Bessel kernel is an L2 -function in some range and at the same 
time inherits many useful properties of the Riesz kernel. These desirable properties 
make the modified fractional Brownian motion a suitable tool for studying long-range 
dependence in a local sense. A semimartingale representation of modified fractional 
Brownian motion is established in Anh et al. [1), and the Ito calculus in the sense of 
Protter [11] can be used. Therefore we consider stochastic differential equations of type 
(1) where the Brownian motion W(t) is. substituted by the modified fractional Brownian 
motion B(t) and (1) is then defined by 

X(t) = X0 + / a(s, X(s)) ds + 
I 

b(s, X(s)) dB(s)	 (2) 

(see Section 2). 

It is typical for stochastic differential equations to be interpreted as stochastic inte-
gral equations which contain a Riemann or Lebesgue integral and a stochastic integral. 
Consequently, stochastic differential equations can be interpreted as operator equations 
which contain two types of operators. Splitting methods use this structure. For exam-
ple, the Zakai equation of filtration theory is solved by a splitting method by Bensoussan 
[3], and a nonlinear parabolic ItO equation is solved by a splitting method of Rothe type 
by Grecksch and Tudor [4]. 

The basic idea of the splitting method consitsts in the construction of two sequences 
of equations with a time discretization. The first sequence contains equations which are 
defined with probability 1. The second sequence contains equations with stochastic 
integrals. Both equations are coupled by initial conditions. Consequently, the splitting 
method is an approximation method such that, on the one hand, the equations of 
the first sequence can be solved as deterministic equations and, on the other hand, 
the equations of the second sequence can be solved by the determination of a purely 
stochastic problem, for example, by the simulation of a stochastic integral. 

Here we construct a splitting approximation for a stochastic differential equation 
which contains a modified fractional Brownian motion so that the equations of the 
first sequence are random initial value problems for deterministic ordinary differential 
equations and the equations of the second sequence define ItO integrals with respect to 
a modified fractional Brownian motion. 

Stochastic differential equations with respect to a modified fractional Brownian 
motion are introduced in Section 2. The splitting approximation is formulated in Section 
3 (Theorem 3.1). We prove this approximation in the sense of convergence in probability 
in Section 4. In Section 5 we consider an application in control theory to construct c-
controls by the above splitting method.
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2. A stochastic differential equation with respect to 
modified fractional Brownian motion 

Let B(i) = B0, .1 (t) (1 < -y < , > 0) be a Gaussian process on a given complete 
probability space (Q, .F, F) whose increments are stationary and have the spectral den-
sity

c	A2 
fcrP')	(2 + A2 )	1 + A2	

(A E R,c >0). 

B(t) is called a modified fractional Brownian motion (see Anh et al. [1: Formula (21)]). 
This definition is suggested by the spectral density of the increments of a fractional 
Brownian motion BH(t):

1	1	A2 

	

fH(A) = 27r A2H+1 1 + A2	
(0 <H < l,A e R) 

where H is the so-called Hurst index (see [1: Lemma 2.2]). 

But B jj (t) is not a semimartingale (see [7: Lemma 2.2]). On the other hand, B(i) 
has a semimartingale representation. In fact, [1: Proposition 3.5] gives 

B(t) - B(s) = J Y(u) du + k(W(i) - W(s)),	 (3) 

where Y(u) is a stationary process, W(t) is a Wiener process and k is a positive constant 
which depends on a and . The processes are adapted with respect to the a-algebras 

g =a{B(s)_B(s_r), st,r >o}	 (4) 

and it holds that F = j, where 

F1 = a{W(s) - W(s - r), s t,r > o}.	 (5) 

F1 is a right-continuous increasing family of a-algebras. 

Here we consider the stochastic differential equation 

dX(t) = a(t,X(t))dt+b(t,X(t))dB(t)	
6 

X(0)=Xo	 () 

which is defined by

X(t) = Xo + I a(s, X(s)) ds + I b(s, X(s)) dB(s)	 (7)
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where, in view of (3), 

/ b(s, X(s)) dB(s) / b(s, X(s))Y(s) ds + k I b(s, X(s)) dW(s) 

and the second integral of the last formula is the usual Ito integral with respect to a 
Wiener process W(t). 

We assume the following conditions: 

Xo is a Go - measurable variable with P {i Xoi <co} = 1 
a: [O, T} x R -* R and b: [0, T) x R -i R are measurable functions 
Ia(t, x)i + Ib(i, x)i	K(1 + x i)	 (8) 
a(t, x) - a(i, )i + ib(i, x) - b(t, y) < L i x -	 (9)€

for all t E [0, T] and x, y E R, where K, L > 0 are fixed constants. 

Then it follows from [11: p. 194/Theorem 6) that 

Theorem 1. Problem (6) has a unique solution X which is a semimariingale. 

3. A splitting scheme 

We construct the following splitting method: 

Consider partitions

	

o = 4 ) < j(r) <	< (r) 
tN, = t E [0,T) 

for r = 1,2,... ,Nr (Nr > 1) where (r) - j(r)	hr -* 0 as r -	. For brevity of
notation, we shall write t(r) = t,. We introduce the problems 

X i r(5) X i r(tj ) +Ja(uXir(u))du
	

(s E [t,,t+ 1 ))	 (10)
ij 

X2 r(s) = X2 (t) +/ b(u, Xi r(u)) dB(u)
	

(s E [t,t+ 1 ))	(11) 

with

X1(t) X2r(tj -0)
	

(12) 
X2 r(t,) = Xir(tj+i -0)

	
(13) 

Xi r(0) = X0	 (14)
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and we define

	

X1(t) = Xi r(t —0)	 (15) 

and

	

X2,-(t) = X2 r(t - 0).	 (16) 

The method contains some advantages. Equation (10) is, for fixed w € Q, a deterministic 
problem and can be solved by numerical methods of the deterministic theory. Equation 
(11) can be solved by the simulation of a stochastic integral with respect to a modified 
fractional Brownian Motion. 

Theorem 2. It holds for all S > 0 that 

-	lirnP {IXir(t ) - X(t)I > S} = 0	and	lirnP{IX2r(t) - X(t)I > S} = 0. 

Theorem 2 shows that Xi r(t) and X2 r(t) approximate the solution X(t) for fixed 
t E [0,T]. 

4. Proof of the main result 

We introduce over [0, t] the processes Y, with 

	

Yi(w,$)= 1 0	otherwise

ifflY(w,u)I2du	
(lEN). 

	

0	otherwise 

Then we define BI(s) = Yj (u)du + W(s). If V(t) = fY(u)du, then we can define 
a a-finite measure 8 on B[0,Tj x .T by 

/3(A) 
= j j (k2didP(w) + IV[o,?lI(w)IVI(w,dt)dP(W)) 

for A € 8[0,T] so that, for .Ft-measurable functions F(t) with	IF(t)12d/9 < oo,€
it holds that

E
 JF

(i)dB(t) 

2 

2J	IF(t)12d/3 

	

0	
flx[O,T] 

(see [1: Formulae (45) and (46)]). Here, IVI is a positive measure defined by 

IVI(A) = sup	V(w,t+i) - V(-,t), 
Tr 

ir being a partition (t 1 < t2 < ... < t N,41 tk € A) for intervals A and V I( c4. , t ) < 
IVio ,ii I(w) a.s. 

If we substitute Y by Y,, then the measure 0 is majorized by 

= JQ fA (k 2 + 12 )dtdP	 (17)
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(A E 8[0, TI) and consequently 

E l b(s, X(s)) dB, (s)
	

2(k2 +12 )EJb2 (s , x(s))ds .	 (18) 

Further, we introduce X = max{—1,min{Xo,l}}. 

We first prove Theorem 2 with Y and X0 being substituted by Y, and X. 
Lemma 1. Let X1 be the solution of equation (6) for Y = Y1 and X0 = X. Then 

there exists a positive constant C 1 with E(Xj (s)1 2	C, for ails E [O,i]. 

Proof. It is clear that 

X2(S) 2 I X I 2 + 4	 a(u, X 1 (u)) du + 4/ b(u,X,(u)) dB, (u) 

In view of (18), we get 

E I X, (s )1 2 <2E I X2 + 4E / a(u, X,(u)) du +8(k 2  + 12)E / b2 (u, Xg(u)) du. 

It follows from (8) and the Cauchy-Schwarz inequality that 

E I X , ( s )1 2 <2EIXI 2 + 8TK2 / E IX , ( u )I 2du + 81,2K2 

+ 16K 2 (k 2 + 12) / E I X, ( u ) l 2du + 16K 2 (k2 + 12)T. 

The result now follows from the Gronwall lemma I 

Next we show some a priori estimates for Xir and X2r if Y = Y, and X0 = X. 
Let X' r and X r be the solutions of problems (10) and (11), respectively, for Y = 
and Xo X. Conditions (12) and (13) give X r(tj+j - 0) = X r (ij+i) and X r (tj) = 
X r (tj+i - 0), and we obtain from (10) and (11) for s = t 1 - 0 that 

tj+'	 tj+' 
X ( t +i) - X r(tj) = f a(u, X r( u )) du + / b(u, X,', (u))dB, (u). 

Consequently, 

X r (t) - X"(0) = ]a(uX r (u))du +
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and then 

E IX ( i ) I2 2EIX 2 +4E	a(u, Xr(U)) du + 4E I b(u, X(u)) dB,(u). 

The Cauchy-Schwarz inequality, condition (8) and formula (18) give 

E I X r( t )I 2 2EX 2 + 8TK 2 (T + 2(k 2 + 12)) 

-	 +8K2(T+2(k2 +l2))IEIXr(U)I2du.	
(19) 

The Gronwall lemma then implies 

E IX r( t )I 2	(2EIxI 2 + 8TK 2 (T + 2(k 2 + 12 ))) exp {8TK 2 (T + 2(k 2 + 12))}. (20)€

Obviously, we have X(i) = X r (t) + (X r (t) - X r (t)). Then we have 

E I X ( t )I2 2E I X r( t )I 2 + 2E J b(U,Xr(U))dBi(U) 

<2EIX r(t)I 2 + 8K 2 (k 2 + 12)J (1 + EIXr(u)I2)du	
(21) 

<2E I X r( t )I 2 + 8K (k + 12 )T (1 +	EIXr(t)I2 

	

\	tE[O,T) 

<00. 

Together with (20), we get from (21) that E I X r( t )I 2 is also bounded. Hence we have 
proved 

Lemma 2. There 13 a positive constant D1 with 

E I X r( t )I 2 , EIXr(t)I2 

for all r. 

Remark 1. In a similar manner we can prove the boundednes properties 

	

EIXr(ij+i - 0)12, EIX(i+1 - 0) 1 2	D1	(j = 0, . . . , Nr - 2) 

and
EIXr(s)12, E r( S )I 2 I X 	<D1	(s E	j = 0,..., Nr - 

Next we show
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Lemma 3. There is a positive constant D with 

E I X r(S ) - X r(S)I 2 Dhr 

for sE [tj, t,i) and j=0,...,N_1. 
Proof. Integrating (10) backward over [s,t, i ) with s E [t, t 1 ) gives 

ti+1 

	

X r (t j+ i —0)	r(S) + J a(ti,X r (u))du.	 (22) 

It then follows from (11), (13) and (22) that 

	

(1^1	 3 

Xr(S) - X(s) 
= 	

a(u,  X 1 r (U)) du + / b(u, X(u)) dBj(u) 

and we obtain from (8), the definition of Y1 , the Cauchy-Schwarz inequality and (18) 
that

	

tj+I	 2	 2
3 

E I X r( S ) - X r(S)I 2 2E / a(u, Xr(U)) d	+ 2E	b(u, XIr( tL )) dBj(u) 

ti+1 

<4hK2 + 4K2 / EIXr(U)I2dU

ti + I 

+ 4K2 (12 + k 2 )hr + 4K2 (1 2 +k 2) / EIX:r(u)I2du. 

Remark 1 then gives the statement I 

Remark 2. In a similar manner we also get 

EIXr(tj+i - 0) - X 'It• (t,)1 2 = EIXr(tj+i - 0) - X r(tj - 0)1 2	0 

EIX(t+i - 0) - X r(tj)I 2 EIX r (tj+i - 0) - Xr(tj+i - 0)1 2 - 

EIXr(tj) - X r(t j ) 2 --+0 

for r —'oo. 

Lemma 4. Let X1 be the solution of equation (6) for Y = 1', and X 0 = X, and let 
X r and X r the solutions of equations (10) and (11) for Y = Yj and X0 = X. Then 

urn E I X r( t ) - Xi(t)1 2 = 0	 (23) r—.00
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and
- X1(t)1 2 = 0.	 (24) 

Proof. Consider the problems (10) and (11) for s =	- 0. It follows from these
equations and (12) and (13) that 

X r(t) - Xr(0) 
= / 

a(u,  X1 r(U)) du + 
/ 

b(u, X r (U)) dB, (u). 

Consequently,

X2 M - X 1 W = X2,- (0)- X 

+ / I  [a(U,Xr(U)) - a(u,Xr(u))]du 

+

0 
[a(u,X r (u)) - a(u,Xg(u))]du 

+ /
 I  [b(U,Xr(U)) - b(u,X(u))JdB,(u) 

+

0 
[b(U,Xr(U)) - b(u,X,(u))]dB,(u). 

Then we can estimate using the Cauchy-Schwarz inequality, the definition of 1'1, formulas 
(18) and (9) that

EX r(t) - XI(t)12 
< 2EIXr(0) - X2 

• D' 
/ E I X r( U ) - X1(u)I2du 
0	 (25) 

• D' 
I 
E I X r( U ) - Xr(u)I2dU 

where D' is a positive constant. 
If we consider 

EX r(0) - X01 2 = EX 1.( i 1 —0) - X 2 < 2TK2hrexp{2K2T} 
and Lemma 3, then an application of the Gronwall lemma to (25) gives 

E I X ( t ) -
 XI(t)12 < D"hr	 (26) 

where D" is a positive constant. The last relation proves (23). In conjunction with 
Lemma 3 and (26), the inequality 

EX r (t) - X,( t )1 2 < 2EX r(i) - Xr(t)I 2 + 2E I X r( t ) - X,(t)12 
gives assertion (24) 1
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We can now prove Theorem 2. 
Let 6 > 0 be chosen arbitrarily. Introduce the events 

Aj 6 r = {w : IX(w,t) - Xjr(.,i)i > ö}	(i = 1,2) 

and
B It 	

fl
y(W, U)12du < 1' and iXo(w)i<l}. 

Obviously, P(B,t ) — 1 for I — oo . Let e > 0 be chosen arbitrarily. Then there exists 1 
so that P(1 \ B) < E for 1 2 10. Thus, 

P{Ajór} = P{A i ó r fl Bfl + P{ A6 fl (ci \ B)} 

and
P{A16r} !^ P{IX1(w,i) — X!r(CJ , i )i > s} +. 

Consequently, with the Markov inequality and Lemma 4, we get limr...,oP{Aiör} 
that is, limr....,,., P{Aiôr} = 0 for i = 1, 2. 

Remark 3. Obviously, the above considerations are also true for a and b being 
.Ft -measurable functions so that conditions (8) and (9) hold for every w E Q. 

5. An application in control theory. 
Let b(t, X(t))	b(t) and a : [0, T] x R x R —, IR so that a(t,.,.) fulfils conditions (8) 
and (9) over R x R, that is:

ia(t,x,u)i <,K(1 + lxi + Jul) 

and
ia(t,x,u) — a(t,y,v) 15 L(x — I + lu — vi) 

for all t E [0, T] and x, y, u, v E R. Let V be the set of all Ft-measurable processes 
U(i) with values in a compact set M C R. Let X0 be a co-measurable variable with 
E i Xoi 2 < oo. Further, let F: IR —, IR be a bounded Lipschitz-continous function. We 
now consider the optimal control problem' 

dX(t) = a(t, X(t), U(t)) dt + b(i)dB(t) }

	
(27) X(0) = X0' 

min{(U): U E V} = min{EF(X(T)): U E V}.	 (28) 
We assume that problem (27)-(28) has a solution; that is, there is U E V such that 

= min{(U): U E V}. 

We denote by X' the solution of (27) for a control U. 

We first show that 1' depends continuously on U in the following sense:
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Lemma 5. For all e > 0, there exists 8(e) so that, for V1 , V2 E V with 

E sup IV1 (t) - V2(i)I	6(e), 
O<i<T 

it holds that
14(V1) - 'D(V2)1 

Proof. We have 

XVI (t) - XV2(t) = J (a(s, XVI (s), V1 (s)) - a(s, X(s), V2 (s))) ds. 

0 

Hence,

lX vI (t) - XV2(t) <L/ [ Ix V (s) - Xv2(s)I+ Vi(s ) - V2(s)I]ds 

and consequently the Gronwall lemma implies 

EIX VI (T) - X "(T)l TEsup Ivi(s) - V2(s)I exp{LT}.	(29) 
s E[0 71 

The statement follows with 8(e) = e/LFTexp{LT} where L F is the Lipschitz constant 
of F , 1 

Remark 4. If U C V is compact in L°°(1l x [0, T]), then the optimal controls belong 
to U. Formula (29) shows that X depends continuously on U. 

Definition 1. Let e be a positive real number. A control (J E V is called e-optimal 
if for e > 0 it holds that 4(Ue) - 4)(U) <E. 

We consider the partitions of [0, Tj defined in Section 3 and introduce the step 
processes Nr1 

U"_(t) =	= I[j1+1) (t)U	(t E [0,T])€
j=0 

where UN,j are .7 , -measurable functions from l into M. Obviously, UN, E V. Because 
these step processes are dense in V, there exist step processes which are c-optimal. We 
can assert the approximation statement of the last section for the special equation (27) 
in the mean square sense. 

Lemma 6. There is a constant D > 0 so that 

E I X2r( t ) - X(t )1 2, E I X1r ( t ) - X(t)1 2	Dhr 

for alit E [0,T]. 

Here it is not necessary to introduce the processes Xi,X r and X21 r since the noise 
is only additive. Lemma 6 can be proved in the same manner as Lemma 4.
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We now consider a step control U" and apply this control to (27) and the cor-
responding equations (10) and (11), and define for (10) and (11) an optimal control 
problem

min {EF(XU"(T): UN,  
Theorem 3. Let U"" be an optimal step control for (10), (11), (30). Then U" 

is E-optimal for the original problem (27) - (28) for sufficiently large r. 
Proof. We get 

EF(XU''(T)) - EF(XU(T))	EF(X' (T)) - EF(X7(T)) 

+ EF(Xr' (T))—EF(X

	

	
(31) 

(T)). 

Hence, 

EF(XU(T))_EF(X7(T)) 5LF(EIXU(T)_XU(T)I2) 1/2 Zr 
< (Dhr)"2	 (32) 

< 

for sufficiently large r, where the Lipschitz continuity of F and Lemma 6 for the control 
U" are applied. If EF(X U (T)) - EF(XNr (T)) > 0, then we obtain, in a similar 
fashion, 

EF(XUJ(T)) - EF(X'(T)) <EF(X 
UN, 

(T)) - EF(X'(T))	(33) 

for sufficiently larger. If EF(X'(T)) - EF(XNr (T)) <0, then 

0> EF(XUJ(T)) - EF(X7 (T)) > EF(X(T)) - EF(X(T)) > -	( 34) 

for sufficiently large r, where the Lipschitz continuity and Lemma 6 for the control U' 
are applied. The results (32) - (34) give the statement in view of (31)1 

Remark 5. Problem (10), (11), (30) can be interpreted as a discrete-time optimal 
control problem with entry Xo, steps 

X2 r(t i - 0), X2 r(t 2 - 0), . .. , XZr(tN,_I - 0) 
and exit X2r(tN,. - 0), where the disturbances 

J b(u) 
0 

and the controls
u N. 0,

12	 iN, 

I b(u)dB(u), ... , J b(u)dB(u) 
tj

UN,1' ... ,UNrNr_1 

work on the steps 1, 2,. . . , Nr. The methods of optimal control of discrete-time random 
systems then can be applied to solve EF(X2 r(T)) = mm (see, for example, Muller and 
Nollau [9)).
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