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Semi-Infinite Transportation Problems 
H. Voigt 

Abstract. An old set partitioning problem is treated as a special case of the Kantorovk-
Monge transportation problem. This problem is then related to Klötzler's transportation flow 
problems which allow the consideration of a local cost rate, instead of the constant cost rate in 
the Kantorovk-Monge problem. Three possibilities for the ; numerical solution of the problem 
are discussed and briefly compared. 
Keywords: Transportation problem, Kantorovit-Monge problem, transportation flow problem, 

set partitioning, market area problem 
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1. Introduction 
We study an old problem which is known as a set partitioning problem or market area 
problem. The economical background may be described as follows: In a region ci there 
are m stocks (supply points) T1 , ..., Tm for a certain product each with a positive 
supply a 1 , ..., am. The demand on the product is described by a density function b(.) 
such that the total demand in ci and the total supply are equal. (The demand of a 
subset e of ci is given by f b(t) di.) The problem is to partition ci into m districts such 
that the demand of the i-th district Q i is satisfied from the z-th stock and the overall 
transportation effort (measured by the Euclidean distance) is minimal. 

This leads to a non-standard optimization problem: Find a partition of ) into 
non-overlapping subsets ci 1 (i = 1,. .. , m) such that 

7', - tj di	 (1.1) 

is minimal and the restrictions 

j
b(i)di = a	(i = 1,... ;rn)	 (1.2) 

are satisfied. (I I denotes the Euklidean norm in 1E 2 .) This problem appeared in similar 
form in [1] as regional design problem and in [7] as generalized market area problem. 

In this paper we shall analyze this problem in the context of the Kantorovi-Monge 
transportation problem (cf. 1 31) . The main result is that the required partitioning is 
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a consequence of optimality in the transportation problem. This is discussed in the 
next section. In Section 3, we compare the transportation problem with Klötzler's 
transportation flow problem (cf. [41). This allows us to reformulate the problem in a 
more realistic manner: the transportation cost rate may depend on the location. Finally, 
in Section 4, we present three approaches to the practical solution of the transportation 
flow problem. In the first and second approaches, the problem is partially dicretized 
which leads to a semi-infinite linear or a nonlinear program. This can subsequently be 
solved by a simplex technique and a nonlinear programming method, respectively. In 
the third approach, the problem is totally discretized which leads to a flow problem in 
a graph. These approaches are briefly compared. 

2. The semi—infinite transportation problem 

Omitting the set partition requirement from problem (1.1)-(1.2), we can reformulate 
this as a special Kantorovie-Monge problem. The general problem formulation is as 
follows: 
Minimize t - It 

11 xO
	 (2.1) 

subject to
I' E C(l x ),	;1' ^! 0	 (2.2) 

and

	

t,b(e, ) = Oo(e)	(e E	)	 (2.3) 

	

= qi(e ' )	(e' E	).	 (2.4) 

Here n is a compact subset of the Euclidean space E 2 , B is the a-Algebra of all Lebesgue 
measurable subsets of ci, and 00 , 0 1 are given non-negative measures on ci satisfying 

= i() > 0.	 (2.5) 

The measures 00 , 01 describe the distribution of supply and demand over ci whereas 
the variable describes the "translocation of masses": 5(e, e') is the quantity of the 
product moved from one subset e to another subset e' of ci. The constraints (2.3)-(2.4) 
reflect the requirement that the total supply of a subset e must be moved somewhere and 
that the total demand of a subset e' must be satisfied from somewhere. The objective 
functional (2.1) is the total effort necessary to realize the transportation plan tb. 

The dual problem to (2.1)-(2.4) according to Kantorovië and RubinteTn is: 

Maximize f u(t) dq5o(t) + J v(t') dq4 i (t')	 (2.6) 

subject to
u,v e C(l)	 (2.7)
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and
u(t) + v(t')	It - t'l	(t, to E ).	 (2.8) 

For a feasible solution to problem (2.1)-(2.4) we shall say that a transport from t € 0
to 1' € 0 occurs if for any neighbourhood U of I and any neighbourhood U' of to the 

i value (U, U ' ) ) s positive. This s symbolized with I —i to. 

The Kantorovië-RubinteTn duality theorem (cf. [81) states that both problems (2.1)-
(2.4) and (2.6)-(2.8) have optimal solutions with equal optimal values. Moreover, a 
feasible solution 0 to problem (2.1)-(2.4) is optimal if and only if there is a feasible 
solution (u, v) to problem (2.6)-(2.8) such that 

U(t) + v(t') = It - t'l	if t –-+ 1'.	 (2.9) 

This is exactly the complementary slackness condition from linear programming. 
In this strong form the duality theorem holds only if the integrand in (2.1) is the 

distance in a compact metric space. If it is replaced with an arbitrary non-negative 
continuous function the existence of an optimal solution to problem (2.6)-(2.8) is not 
guaranteed (cf. [6]). 

The classical Hitchcock problem is derived from problem (2.1)-(2.4) if both 4o and 
are finitely-discrete measures. To obtain the model described in the introduction 

(without the set partition condition) we have to specify çb 0 as a discrete measure con-
centrated at the finite set {T1 ,... , Tm } with masses a 1 ,. . . , a: 

00=>aj6r1	 (2.10) 

(5j denotes the Dirac measure concentrated at I) and 0 1 as an absolutely continuous 
measure with density b:

d1 = bdt.	 (2.11) 

Since here only one of the measures Oo, c'i is finite we call this a semi-infinite trans-
portation problem. 

It is now a natural idea to introduce measures 0 1 ,, that describe the translo-
cation of the supply in T1 ,. .. ,Tm, respectively. For a feasible solution 0 to problem 
(2.1)-(2.4) we set

= t({T}, e')	(i = 1,... ,m; e' E B).	 (2.12) 

From (2.2) and (2.3) we then obtain 

and 

Oi E C*(l), iI'i	0 (i = 1 ' ... ' M) (2.13) 

= 00 ({T}) = a (i = 1,... ,m). (2.14)

For eo = {Ti ,. . . , Tm} and arbitrary e' €	we have 

TI	\ eo, e')	4'( \ eo,) = 'o( \ eo) = 0 
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arid, therefore,

= (eo, e') = O(Q, c') = 0 1 (e')	(e' e	).	 (2.15) 

Conversely, if the measures	,.. . ,	satisfy (2.13)-(2.15), then, setting 

rn 
(e, e') =	&r1(e) Oi (e')	 (2.16) 

we obtain a measure ,L' satisfying (2.1)-(2.4): For arbitrary e, e' e B it follows 

=	 = >bj(e') = i(e'). 

Since the measure 01 is assumed to be absolutely continuous the measures O i are ab-
solutely continuous, too. This follows from '(e') i (e') for i = 1,... ,m and e' E B 
(which is an immediate consequence of (2.13) and (2.15)). So, according to the Radon- 
Nikodym theorem, the measures O i have representations 

= bdi	(i = 1,...,m)	 (2.17)

with densities b, E L1 ( fl ) . These densities then have the obvious properties 

b 1 (t') > 0	a.e. in	-	 (2.18)

and

fb(i') di' = a	(i = 1,.. . , m)	 (2.19) 

b(t') = b(t')	a.e. in	 (2.20) 

and from (2.18) and (2.20) we further get b 1 E 

We can now formulate the semi-infinite transportation problem in terms of the 
measures 01, .. , Om and in terms of the densities b 1 ,. .. , bm as well. To do this we 
have to substitute first the representation (2.16) and then (2.17) into (2.1) to obtain 
the objective functional in terms of the O i and the b, respectively. This leads to the 
following problems: 

Minimize

dPi 	 (2.21)
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subject to (2.13)-(2.15) and 
Minimize

ii j Ti - t'I b(t')dt'	 ( 2.22) 
1=1 

subject to (2.18)-(2.20). 

In a similar way we may reformulate the dual problem (2.6)-(2.8) to get the following 
dual problem to (2.22), (2.18)-(2.20): 
Maximize

ai u(T1 ) +f b(t') v(t') di' 
i=1 

subject to
u(T) + v(t') < JTi - t'	(t' E 

Since only the values u(T1 ) are significant we can replace the function u in the dual 
problem with a vector (u i ,... , um) E 1W" and get the following final formulation for 
the dual problem: 

Maximize

ai u + f b(t') v(t') dt'	 (2.23) 

subject to

	

(ui, .... Um) T ER tm v e C(Q)	 (2.24) 

and
u + v(t') :5 JTi - t'	(t' E 0).	 (2.25) 

From the Kantotovië-RubinteTn duality theorem we obtain now the following op-
timality conditions in terms of the measures iJ.', and the densities b 1 , respectively: 

Proposition 1. A set of measures Ji i ,. . . ,i,b satisfying (2.13)-(2.15) (of functions 
bm satisfying (2.18)-(2.20)) is optimal if and only if there exist a vector u and a 

function v satisfying (2.24)-(2.25) such that 

	

u, + v(t') = IT - t' I	if Ti .±..	1'.	 (2.26)

Here Ti.--+ t' means that t'(U') > 0 for any neighbourhood U' oft'. 
This optimality condition allows a conclusion about the structure of any optimal 

solution. Let	. . , i,b,,, be an optimal solution to (2.21), (2.13)-(2.15) and assume that 
for some I' E both Ti -- t' and T, -- I' (for i 0 j) hold. Subtracting the respective 
conditions (2.26) we get

	

IT - t' - IT — t' = u - u 3 .	 ( 2.27) 

But this means that all such points t' are located on a hyperbola with focusses T an 
T3 and a real axis.of length Ju i — u. Thus, ifwe denote by Q i the set of all points 
t' E l for which Ti -- t' holds (this is actually the support of 'Ii), then we get the 
following result:
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Proposition 2. For any optimal solution i,•  of problem (2.21), (2.13)-
(2.15), the sets Qi are pairwise non-overlapping and the boundaries of these sets are. 
contained in the hyperbolas defined by (2.27). 

Finally, from (2.26) we obtain 

v(t') = ui - IT - t ' l	for t' E ci i ,	 (2.28) 

i.e. the graph of v is composed of cones with vertices in Ti at height u 1 and unit 
inclination. 

The densities bi at an optimal solution to problem (2.22), (2.18)-(2.20) then have 
the form

b1(ti) 
= ( b(t') if i' E ci, 

1. 0	else. 

For almost all t' E ci, the vector (b i (t'),. .. , bm(t')) is an extreme point of the polyhe-

dron

{flERm:/3,^!o and 

It is well known from the theory of capacitated linear programs (cf. [9]) that this property 
characterizes the extreme points of the feasible set defined by (2.18)-(2.20). The only 
difference is that in our setting the capacitating polyhedron is not constant. 

For to the problem (1.1)-(1.2) we get now the following final result: 

Any optimal solution of problem (2.21), (2.13)-(2.15) has according to Proposition 
2 the required set partition property and hence is an optimal solution of problem (1.1)-
(1.2). The districts are the supports of the measures t/, at the optimal solution. 

It should be noted that in this context the assumption Ti E ci (made in the verbal 
introduction of the problem) is not really necessary. All remains true if supply points 
are outside the region. 

3. The transportation flow problem 

During the last years Klötzler developed his concept of transportation flow problems 
(cf. [4]). It is based on the ideas of KantoroviE and Rubinten but goes an essential step 
beyond their model. In the objective functional (2.1) of the Kantorovie-Monge problem 
above a constant (i.e. location independent) transportation cost rate is implicitely 
assumed such that all transports go along straight lines (not necessarily within the 
region) and a transportation path or trajectory does not even occur in the model. 
Klötzler replaced this with a local transportation cost rate which may depend both on 
the location and the direction of transport. His general problem is formulated as follows: 
Minimize

fo r(t, dp(t))	 (3.1)€

subject to
E L(ci)	 (3.2)00
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and

in 
VC (t) djz(t) = JO a(t) dcx(t)	for all a E W,(cl).	(3.3) 

Here ci is a bounded strongly Lipschitz domain in 1E2 , and a is a (signed) measure on 
the ci-Algebra of all Lebesgue measurable subsets of ci such that 

in 
da = 0.	 (3.4) 

The real function r on ci x E2 is assumed to have the following properties: 
• r( . , w) is summable on ci for all w E V. 
• r(t,.) is positive homogeneous of degree one and convex on E2 for all t E Q. 
• 711 w 1 r(t,w) <721 w 1 for alit e ci and w e E2 with some positive constants 71,72 

The objective functional is defined by 

jr(t,d(t)) = sup {(u,) : u E L(ci), uT(t)w r(t,w) V  E E2}	(3.5) CO 

where (., .) denotes the duality pairing on L,(ci) x L(ci)*. The function r is the local 
cost rate and a is the common distribution of supply and demand. A "transportation 
flow" ji is an additive set function of bounded variation on ¶B. For details of the model 
we refer to [4] and the references given there. The dual problem to (3.1)-(3.3) has the 
following form: 

Maximize 

in 
u(t) da(t)	 (3.6) 

u e W(ci)	 (3.7) 

VTu(t)w <r(t,w)	a.e. in ci and for all w E E2	 (3.8) 

subject to 

and

We shall not deal here with this general case. Instead we make some specializations: 

First: We consider the case of a local cost rate depending only on the location but not 
on the direction of the flow. This means that r(t, w) has the form r(t, w) = (t) J wJ. For 
simplicity of notations we shall replace r(t, w) with r(t) Jwi. The above assumptions on 
r read then: 

• r( . ) is summable on Q. 
•	<r(t) 72 for all t E ci with some positive constants Y1,72 

Second: We consider a measure a which is the difference of a finitely-discrete and an 
absolutely continuous measure as in the Kantorovië-Monge problem. 

Now, if a transport from a supply point T to some point il E ci occurs (in the above 
terminology), then it always takes the shortest path in the "density field" defined by
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the function r. (Among all curves connecting Ti and i' this is the curve along which 
fr(i)dt is minimal.) 

With these specializations, the constraints (3.8) of the dual problem are turned into 

vTu(t)w <r(t)	a.e. in Q and for all w E E2, IWI = 1.	(3•9) 

Since the right-hand sides of the inequalities in (3.9) do not depend on w, this is equiv-
alent to

iVu(t)i < r(t)	a.e. in Q.	 (3.10) 

Now let us return to the Kantorovi-Monge problem. The constraints (2.3)-(2.4) 
may be replaced with

- (l, e) = a(e)	for all e  ¶B	 (3.11) 

where a = 00 - is now the common distribution of supply and demand. The feasible 
domain described by (2.2)-(2.4) is a proper subset of the feasible domain described by 
(2.2), (3.11): If 0 satisfies (2.3)-(2.4), then it also satisfies (3.11). And if additionally 
the measure 00 > 0 satisfies 

o(e,1l) - To(, e) = 0	for all e 	B, 

then '+o obviously satisfies (3.11), but not necessarily (2.3) and (2.4). (° could, by 
analogy to flow problems on graphs, be called a circulation.) But the optimal values of 
the problems (2.1)-(2.4) and (2.1)-(2.2), (3.11) are the same and an optimal solution to 
(2.1)-(2.2), (3.11) necessary fulfills (2.3)-(2.4). 

The dual problem to (2.1)-(2.2), (3.11) is the following: 

Maximize
ff, u(t) da(t)	 (3.12) 

subject to
U EC(1)	 (3.13) 

and
u(t) - u(t') < It - t'l	for all t, t' E Q.	 (3.14) 

Because of the symmetry of this inequality it follows that 

u(i) - u(t')i < i t - t 'i	for all t, t' E ci. 

This means that every feasible solution to the dual problem is a Lipschitz continuous 
function with Lipschitz constant 1. But such a function is differentiable almost every-
where and its gradient (where it exists) has a norm less than or equal to the Lipschitz 
constant, 1 in this case. So we can replace (3.13)-(3.14) with 

U E C(),	u differentiable a.e. in ci	 (3.15)
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and
IVu(t)I	1	a.e.	 (3.16) 

Now, if we compare the dual problems (3.12), (3.15)-(3.16) and (3.6)-(3.7), (3.10), 
we see that they are nearly identical. The right-hand side of (3.10) is more general 
than that of (3.16) (setting r(t) 1 in (3.10) gives (3.16)), and there is the much more 
essential difference in the spaces in (3.15) and (3.7). This is the main reason that the 
primal problems cannot be compared in a similar way. But this comparison makes 
it clear that indeed Klötzler's transportation flow problem is a generalization of the 
Kantorovië-Monge problem. 

4. Numerical experiments 

We have tried three approaches to the practical solution of the transportation flow 
problem and its dual as described in this paper (i.e. not in its original, more general 
form). Setting r to a constant value in ci then gives the Kantorovi&Monge problem. 
In this paper, these approaches are only outlined. Details may be the subject of a 
subsequent publication. 

The first approach is based on an idea by Klötzler. It starts from the dual problem 
which is replaced with a semi-infinite linear or nonlinear program. We proceed with the 
following steps: 

.. Triangulation of the domain ci: The domain is subdivided into triangles such that 
the intersection of any two triangles is either an edge or a vertex or void. 

• Restriction of the dual variables U: The space of dual variables is replaced with the 
subspace of continuous functions which are affine-linear in each triangle of the tri-
angulation. (This step is very similar to the ideas used in Finite Element Methods.) 

• Replacement of the measure a: The total mass of each triangle A , i.e. fn, da is 
concentrated in its vertices. Then for each vertex in the triangulation these values 
are summed. 

• Replacement of the function r: The function r is replaced with a constant rA in each 
triangle A of the triangulation. As we shall see below, this must be the minimum 
value of r in A. 

The variables of the problem are now the values of the function u in the vertices of the 
triangulation. Because of the assumption f- da = 0 the value of the objective functional 
does not change if u is changed by an additive constant. Thus we may fix the value of 
u in one (arbitrarily choosen) vertex. The objective functional itself turns into a linear 
function of the form

CeiUi	 (4.1) 

where the summation runs over all vertices of the triangulation, u i denotes the value 
of u in the i-th vertex and a i is the replacement value for a. Since the gradient of an 
affine-linear function is constant we -get from (3.9) 

	

dJw<r(t)	for all tE Ai, wEE2,IwI=1
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for the j-th triangle A j . The left-hand sides of these inequalities do not depend on 
so we can replace the right-hand sides with the minimum value rj of r in Aj and get 

dlw^rj	for all wEIE2 ,IwI==l.	 (4.2) 

The gradient d, = Vu of u in the triangle A, may be easily expressed in terms of the 
values u i in the vertices forming this triangle. 

As a consequence, the dual problem is replaced with a semi-infinite linear program: 
The number of variables is finite (equal to the number of vertices in the triangulation), 
the objective function (4.1) is linear, and for each triangle A j in the triangulation we 
have an infinite set of linear constraints of the form (4.2). The solution of such a 
problem is in principle not problematic. Since we are interested in the solution of the 
primal problem as well its seems reasonable to use a variant of the semi-infinite simplex 
algorithm as described in [10, 11] (for a short description, see also [51). But in the 
concrete situation the semi-infinite simplex algorithm does not work satisfactorily. The 
reason is that in each step of the algorithm a finite subproblem of (4.1)-(4.2) is solved 
by the dual simplex algorithm which leads to an optimal basic feasible solution to the 
dual of this subproblem. Unfortunately, the dual to the dual problem (4.1)-(4.2) (which 
should be considered as a replacement for the primal transportation flow problem) has 
no optimal basic feasible solution. As a consequence, the basis matrices of the partial 
problems tend to singularity. 

The equivalence of (3.9) and (3.10) suggests another approach based on the same 
discretization: to maximize (4.1) subject to the finite number of nonlinear constraints 

Idi 1 2	r.	 (4.3) 

The problem (4.1), (4.3) has a linear objective function and a finite number of nonlinear 
(but convex) inequality constraints. It can be solved, e.g., with an SQP method. As 
starting point we may use the last solution of (4.1)-(4.2) found with the semi-infinite 
simplex algorithm. 

The third approach is,based on an idea by Dewef3 (cf. [2]). The primal problem 
is replaced with a minimum cost flow problem on a suitably constructed graph. We 
proceed with the following steps: 

• Construction of a grid over l: The domain Q is covered with a regular grid. For 
simplicity, we assume that all supply points Ti are nodes of the grid. 

• Forming of a complete bidirectional graph: Temporarily, we build a graph with the 
above grid as the node set and arcs in both directions between all pairs of nodes. 

• Weighting the arcs of the graph: The arcs of the graph are weighted with the integral 
of r(t) along the straight line connecting the end nodes of the arc. This integral is 
computed approximately by a simple quadrature. 

• Reduction of the graph: Within this graph we compute, for all supply points, the 
trees of shortest paths to all other nodes. The graph is then reduced to the union 
of all these trees.
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• Distribution of supply and demand: Each node corresponding to a supply point 
is assigned the supply in this point. All other nodes become sinks. The demand 
distribution is concentrated in the sinks in such a way that supply and demand in 
the graph are balanced. 

As result we have a directed weighted graph with sources in the supply points and sinks 
distributed uniformly over Q. In this graph, we solve the minimum cost flow problem. 
The resulting optimal flow can directly be interpreted as an approximate solution to 
the transportation flow problem. 

Numerical experiments were done with a rather simple setting: The domain l is 
a rectangle and the triangulation used in the first and second approaches is regular. 
With the available hardware it was possible to solve problems with triangulations up 
to approximately 500 vertices and 850 triangles (semi—infinite linear programming and 
nonlinear programming approaches) and graphs with approximately 2000 nodes. The 
results are comparable but the computation times are not. Whereas the solution of a 
nonlinear programming problem with 475 variables and 864 quadratic constraints took 
about 25 hours on a Pentium 100 PC, the solution of the minimum cost flow problem on 
a graph with 1728 nodes and 156,000 arcs required only about 40 minutes. (These are 
the data of the examples given below, for other problems the relationships were similar.). 
So the conclusion is (for the moment) that the third approach is clearly superior. 

As an illustration, we give two examples. For both, the domain fi is the rectangle 
[0,4] x [0, 31. There are two supply points located at T1 = (, ) and T2 = (2, ) with 
equal supply a 1 = a2 = 6. The demand distribution is constant: b(t) = 1 for all t E Q. 
' 'i i.'i.' 'i	' ' .\. '. i ' I t •' f/	-. 
'i	I i	%	 I F I I F / / _____ 
Ii I. i	,	I	• .\. . i	. • .	/ ./ - -. -S_S - - 

it I	.I.	. .	.	.	F,. _•_• _ _ 

i t	j	I I I I	F / 

i t I ' I, • • • I	\ . . . .	-.	-.	-. - - -. -. . .' •'	. . .	-: . . . -. -. -. -. -. -. 
I. I i I. • • • •I,•	

.- - -	.- .-
I. I t • t. • • •	-.'-.	.' ' .' .- .- .	.-

\ 11 11 __.____ 

I 
I -

Figure 1: Kantorovi-Monge problem 

The first example (Figure 1) is a Kantorovië-Monge problem, i.e. the cost rate r(t) 
is constant and equal to 1. This problem could be solved explicitely. The border line 
between the districts Q, and ci 2 is the hyperbola with focusses in T1 and 2'2 that divides 
ci into two parts of equal area. 

The second example (Figure 2) is a Klötzler transportation flow problem with non-
constant cost rate r(t): It is set to a larger value (r(t) = 10) along the line connecting 
the points (2,0) and (4,2) on the boundary of ci, except for a small gap at the point 
(3, 1). In contrast to the first problem, an explicit solution for the second problem is
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not possible. It is not even clear whether the "free" boundary between the districts is 
again a hyperbola.

'	,	! .,	.,	•''!' ".".	'	! ' .".-
'	'.

. 
•	:' :' :'	.	.'	-. -	-. -. - • 

i.	I, .,	.,	• l I	•/	- -. -. -. -. - •	• l 
'	I , I	,?	• Ig • ' 

', ' :' ------------------.' 

III I	------------------I,.	'! I	-. -. -. - - -. . 
.	•	.	. 

II	I	
/ •••	.... .S	-	 - 

•,	I	•/ 'ft	'.,_" '. S...	 ,	- 

I	ft	ft - -	 .-	- - 

I II I	"----.---'--
-----'---'-- : . 

-- _- _)____)-)--.--)- ' I ' /• / /	I	I

Figure 2: Transportation flow problem 

(Both in Figure 1 and Figure 2, the left picture shows the flow obtained from the 
solution via nonlinear programming, the right picture shows the flow obtained from the 
minimum cost flow problem.) 
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