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Abstract. In the papers [6 - 8], the author has constructed the Riemann solutions to a two-
dimensional hyperbolic system of nonlinear conservation laws for any piecewise constant initial 
data having two discontinuity rays with origin as vertex. It has been found that, for some 
initial data, the Riemann solutions no longer lie in L' (R' x R+), and the non-classical waves 
(labelled as Dirac-contact waves) have arisen. But it remains open in [6 - 8] to verify that 
the non-classical solutions constructed satisfy the system considered. In the present paper, 
we borrow the new mathematical theory of generalized functions, chiefly initiated by J. F. 
Colombeau and Rosinger, to deal with the diffculty of the multiplication of distribution solu-
tions. The non-classical Riemann solutions we constructed in [6 - 8] satisfy the system in the 
sense of association. The present paper provides a good example of applications for this new 
mathematical theory in powerfully handling the product of generalized functions. 
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1. Introduction 

We are concerned with the two-dimensional hyperbolic system of nonlinear conservation 
laws

u + (uv) = 0)
((x,y,t) E R 2 x R)	 (1.1) 

Vj + (uv) = 0 J 

with initial data
(112, V2) for x,y>0 

(U, v)l t=o =

	

	 (1.2) 
(u i ,v i ) otherwise 

where (u,v i ) (i = 1,2) are constant states. We call (1. 1), (1.2) a Riemann problem. 

System (1.1) is the special form of the mathematical simplification of the two-
dimensional linearized model of the cochlea. We recall that in the absence of fluid 
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viscosity the linearized equations of motion in the fluid-filled inner ear (cochlea) read 

0tz op
(1.3) at ay 

9v Op
(1.4) 

Ott	Ov
(1.5) 

where (u, v) and p stand for the fluid velocity and pressure, respectively, while p is the 
(constant) density (see [9] and the references therein). Neglecting (1.5) and assuming 
p = puv, one finds that (1.3), (1.4) are reduced to the system (1.1). 

In the papers [6 - 8] we constructed the Riemann solutions to (1.1) for any piecewise 
constant initial data (1.2). In particular, some Riemann solutions contain the non-
classical waves (labelled as the Dirac-contact waves). In other words, these Riemann 
solutions no longer lie in L(1R2 x IR+), the space of locally bounded functions on 
R2 x R+, although the initial data belong to L°°(R2 ). This is distinctly different from 
that people investigated before (see [141). In [6 - 8], the non-classical Riemann solutions 
to (1.1), (1.2) were shown to possess high singularity on the Dirac-contact waves and 
can be viewed as the bounded functions in L°°(R2 x R+) plus the Schwartz generalized 
functions supported on the Dirac-contact waves. At this time, there arises a concurrent 
problem of how to define the product of two Schwartz generalized functions. According 
to L. Schwartz's theory, it is impossible to define the product of two arbitrary Schwartz 
generalized functions since the space of all Schwartz generalized functions is not an 
algebraic one [13]. Because of this difficulty, we failed to verify in [6 - 8] that the 
non-classical Riemann solutions constructed satisfy the system (1.1). In the present 
paper, we apply a new mathematical theory of generalized functions, chiefly introduced 
by J. F. Colombeau and Rosinger [1, 2, 12], to dealing with the multiplication of the 
distributions appearing in the non-classsical Riemann solutions to (1.1), (1.2), and have 
fully solved the open problem left in [6 - 81. This new theory of generalized functions 
is the extension of Schwartz generalized function theory and allows us to define the 
product of two arbitrary Schwartz generalized functions. It was later developed by 
Oberguggenberger [10, 111 and other people (see, e.c., [2 - 4, 5, 15]). We remark in 
passing here that in recent years, the non-classical waves have attracted great interest, 
and many people have paid attention to investigating them (see [16 - 21]). 

The program of this paper is as follows: 
In Section 2, for the reader's convenience, we shall give a glimpse of this new math-

ematical theory of generalized functions and then interpret in what sense the Riemann 
solutions we constructed in [6 - 8) satisfy (1.1), (1.2) in the framework of this new 
mathematical theory (cf. (2.3), (2.4)). In Section 3 we only pay our attention to a rep-
resentative case that u 1 ? 0 > u 2 and v 1 0? v2 (u 1 54 U 2, VI 0 v2 and u 1 v 1 54 u2v2) 
(at this time, both u and v are singular on the Dirac-contact waves and there arises 
the difficulty of the product of distributions). Then we verify that the non-classical 
Riemann solutions satisfy (1.1) in the sense of association.
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2. The new generalized function space (1) 

In this section we briefly describe the definition of the new generalized function space 
G(ci) introduced by Colombeau and Rosinger [1, 2, 121. 

Let ci be an open set in R" and we denote by EM JQJ the set of all the maps R(e, x) 
(0, 11 x ci -* C such that: 

(i) For any e > 0, the map R(c,x) is a C'-function of the variable x E Q. 

(ii) If D	k	k is any partial derivation operator and if K is any compact 

	

ax,	ox,, 

subset of ci, then there exists an integer N and two constants C > 0 and 77 > 0 with 
0 < tj < 1 such that sup EK I DR(c, x)I if 0 < c ev 

Next let A([ci] be the set of all elements R E EMEciI with the property that, for all 
D and K as above, we have an integer N such that for all q ^! N there exist Cq , 77q > 0 
with SUPZ EK IDR(e, x)I 

C'eq if 0 < E < 77q. Obviously, .,V[ci] is an ideal of the algebra 
Em [Q]. The new generalized function space (ci) is defined as the quotient algebra 

(ci) = EM(1l]1A1[ci). 

The operations in (ci) such as differentiation, addition and multiplication are those 
naturally defined on representatives; in particular, multiplication is possible in (ci) 
because AI[Q] is an ideal of the algebra Em [Q]. 

Two generalized functions G 1 , G2 E (ci) are said to be associated (in notation: 
C 1 C2 ) if there exist some representatives R 1 and R2 of C 1 and G2 , respectively, 
such that for all 0 E D(Q) 

iimf (Ri (e,x) - R2 (e,x))i,b(x)dx = 0. 

An element G E (ci) is said to have a distribution T E D'(ci) as macroscopic aspect, if 
C T, i.e. for all E D(Q) 

lim J 
R(e,x)b(x)dx = (T(), (A - x)) 

for some representative R of G. 
Now we are in a position to give in what sense the Riemann solutions we constructed 

in [6 - 8] satisfy (1.1), (1.2). First of all, we note that (1.1), (1.2) are invariant under 
the self-similar transformation

X - ax' 1 
y-4ay'	(a >0). 
t -4 at' J 

We should seek self-similar solutions of the form 

(u(x,y,t),v(x,y,t)) = (u(,ii),v(e,'q))	( = It, 17 = ti.
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Thus (1.1) changes into

—	+ (uv),1 = 0 1 

	

— v - ijv,7 + (UV)( = 0j	((e,ii e R2 )	 (2.1) 

and (1.2) into 

(u(,i,),v(e, ))	
(U2, V2) for e—oo,ii--*c,o	

(2.2) (u1, v1) for	 —oo or	.' -,	. 00. 

Definition 2.1. The Riemann solution (U, V) E 9(R 2) is said to satisfy (1.1), (1.2) 
if	

—U — 77U'? + (UV)	0	
(2.3) —V —	+ (UV) 0. J 

The sense in which (U, V) E (R) satisfies the initial data (1.2) should be investi-
gated carefully. In the present paper, we simply give the following justification: 

Let (R. (c, C, ), R,,(e, , ii)) be any representative of (U, V). If 

(R. (E, e, i'), R,, (E, e, )) 

converges to some function pair 

	

(u(e,'q),v(t,ii)) = (u(-),v(-)) € LOO (R2 x R+)
t	10C 

in (Vi (1R 2 ))' as E — 0, i.e. 

lim II R( ,) ,z7)ddij 
= if u(e,i()dedii C-0

(2.4) 
lim ff R(e, , i)ça(, i) ded1 = 

f
f 

v ( , i (e, ) ddi
C—O

2 

for each E V1 (R2 ), where 

Vl(R2)={pEC000(R2): ,(0)=0foralleERand(0,ii)=Oforall?leR}, 

and if

fX \	 Ix \ 
-) 

—4 uo(x,y) and v—,	—	(x, y)	in L 0 (R2 )	(2.4)2 

as t —, 0+, we say that (U, V) e 9(R 2) satisfies (1.2). 
We note that (2.4) is feasible for the Riemann solution to the system (1.1) since 

the non-classical wave appearing in the Riemann solution develops only from the dis-
continuity line x = 0, y ^! 0 or y = 0, x 0 of the initial data as time evolves.
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3. Verification of (2.3), (2.4) for non-classical Riemann 
solutions constructed in [6 - 8] 

In this section we shall verify that the non-classical Riemann solutions we constructed 
in [6 - 8] satisfy (2.3), (2.4). We only pay our attention to the case that u 1 ^! 0 > U2 and 
V1 ^! 0 >_ V2 (u 1 0 u2,v1 54 V2 and u 1 v 1 34 u 2 v2 ). Other cases can be treated similarly. 

At this time, the Riemann solution to (1.1), (1.2) is constructed as follows [6 - 8): 
(1) By the initial condition (2.2), there exists a sufficiently large circle in the 'i)-

plane, outside which the solution to (1.1), (1.2) looks like that of the Riema.nn problem 
for corresponding one-dimensional system of conservation laws, and what we should do 
is to determine the interaction in the circle of waves coming from infinity. 

(ii) There exists a Dirac-contact wave (denoted by 5 k ), which comes from infinity 
and is given by = 0,7 > 0, since u 1 0 > u 2 (u 1 > u2 ) (see [6 - 8]). Also, there is 
another Dirac-contact wave (denoted by 52), which comes from infinity and is given by 
77 = o,e > 0, since v 1 ^! 0 >_ v2 (vi > v2). 

(ill) Si and 52 hit at the point (0,0) (see the following figure). 
7)

(U2, V2) 

G= 
(ui,vi)	

62 

(0,0) 

Next we give the expressions of the elements R and R of the Riemann solution 
(U, V) E c(1R2 ) and verify that for ib E C10(R2) 

lim if [R(e, ,	+ (i),) — R.(,-,, 7))R(e, , ii)ibJ ded7) = 0 (3.1) 

lim ff [R(,1)(() + (ijt),7) -	 ii)Rv(,,bJ de d77 = 0. (3.2) 
e-O 

We first consider u 1 v 1 = 0 and then discuss the case that u 1 v 1 0. 

3.1 The case u 1 v 1 = 0. Without loss of generality, we assume that u 1 = 0 and let 
= u2H(,7)) 

where H(, ) = 1 for C, 77 > 0 and H(e, ) = 0 otherwise. From the construction above, 
we know that the Riernann solution to (1.1), (1.2) equals 

_,.	— f 77))
(U2,v2)	 for C > 0,7) > 0 

— 1 (u 1 , v 1 ) = (0, v i ) for C < 0,—no <7) < no or >0,7) <0.
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But (ii(e, re),	ii)) is not a solution to (1. 1), (1.2) in the sense of distributions (or asso-
ciation). In fact, (2.1) never holds true for	 in the sense of distributions

(or association) since 

ff2 [((e) + ()), ii) -	 = U2V2

0	
(3.4) 

00

AR2 [((t) + (i)(,ij) -	 = U2v2 

and u 2 v2	uv 1 = 0. Thus the Riemann solution to (1.1), (1.2) is much more than 

The right sides of (3.4) carry enough information for us to give the 

expressions of the elements R and R of the Riemann solution (U, V) E c(R2 ) to (1.1), 

Let TI , 7.'2 be two bounded linear functionals given by 

(Ti ,) = f (e) 0(^, 0) de	 (3.5) 

(T2 ,) = 
f s(

77) 0 (0, rj) d	 (3.6) 

for 0 E C000(1R2), where r and s are some continuous functions on [0,) yet to be 
determined below. It is easily seen that T2 is supported on the open half 77-axis = 
0, i > 0 and T1 is supported on the open half e-axis i	0, > 0. Now we define 

i) = (Ii * w i )(, i) + u 2 v2 (Ti * w 1 )(, ij) 

77) = ( * w2 )(,) + u 2 v2 (T2 * w2e)(,ij)	 . ) 

where wc(,71) =) Oj (^)O , (!') and O 1 , q5 E D(R) with fR 9l(e) d = f(e) de = 
1 (i = 1, 2). We rewrite (3.7) as 

Ru	7) = u2 J 9 1 (x)dx J i( ) d	 (3.8) 
-Ele	—ti/e

00 

+ U2V2I (-) I r( + cx)9i(x)dx EJ 
—/e 

R(eii)=v i +(v2 _ v i )f92(x)dxf 2 (y)dy	 (3.9) 
— ./e	—ti/c 

00 

+ U 2 V2 -62 I s( + Ey)2(y) dy. 
C (- 9J 

—i/e
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From (3.1), (3.2) we can determine r and s. To do this, we compute that for C000(R 2 ) , (3.8) and (3.9) give 

 
c Jf e-0 
tim	 (3.10) 

= U2 if 0(^, ) dd + U 2 V2 
f r(

^)O ( ^, 0) d 

urn 
R2

R(E, , ij)I(e, ij) dedri	 (3.11) 
 c—.O 

CO 00 

= v1 ff	, ) dd + (12 - vi) fJ , ) dd 
+ u2v2 

I s(
,7)0 (0,,7 ) d 

and

	

urn AR2 R0(e, , )R(e, ,	i) ddr 
e-0

00 00 

= U2V2 Ifeii dd i + uv2
	ff (e,92 (-f) 

	

00	00	CO 

x 7 Oi(x)dx 7 01(y)dy 
7 

s(+ey)(y)dydd 

	

—c/c	—,/c  

+ U2V2 lirn 77	)i (— ) 7 r( + ex)91 (x) dx 

—./c 

X (V I +(v2 - vi) 7 92(x)dx I 2()d) dd	

(3.12) 

—/c	 c 

(- ) —92 (-) 7 r(+cx)8i(x)dx 
0 JJR2	E	E 11 

x 7 s(+ey)2(y)dyded 
00 00	 CO 

= u2v2 7 J(e )ddrj + UV2 . A 
I 

s( 77)V) (0, ) d
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+U2V2(V1 + (V2 - v i )B) 
cc 

fr((, 0) d + uvAB r(0)s(0)(0, 0) 

where A = fR 02(e)(f °° 0 1 (x)dx)dc and B = f(j)(f, ci 2 (y)dy)dij. Appropriately 
choosing 0, and q, (i = 1,2) such that A = 0 and B =

V1 t)2 one gets at once from 
(3.12) that 

urn if R(	 (,ij)ddr = 22 JJ(e,) ded.	(3.13) -..o
00-

Using (3.10) and (3.13), it follows from (3.1) that j0' (r(e) - er'() + 1)0(e,0)de = 0 
which implies that r() - r '(C) + 1 = 0 (C 2 0), i.e., r() = ae - 1 ( > 0). Here a is 
any constant. 

Similarly, from (3.11) and (3.13) we deduce from (3.2) that s(ij) = b71 - 1 ( 77 2 0), 
with b arbitrary constant, for the Oi and q, (i = 1,2) chosen above. Therefore, (U, V) E 
9(R 2) satisfies (2.3). And (2.4) is trivial. Thus we have proved that (U, V) E 9(iR2) 
with l(e, i) + u 2 v2 T1 and i7(, i) + U 2 V 2 T2 as their macroscopic aspects, respectively, 
satisfies (1.1) and (1.2) in the sense of association when u 1 = 0 > u2 and Vi 2 0> v2. 

Remarks 1. We have infinitely many different Schwartz generalized functions T1 
and T2 defined above since r(e) = a - 1 and s(ij) = b7 - 1, and so the macroscopic 
aspects of U and V are infinitely numerous. In this sense the Riemann solution to (1. 1), 
(1.2) is not unique. 

2. The elements of the Riemann solution (U, V) E (R2 ) strongly depend on the 
choices of regularization process, which eventually depend on the system and the initial 
datum. Thus the ambiguity is removed in defining the multiplication of two distributions 
U, V e g(1R2 ) (see (3.13)). 

3.2 The case u 1 v 1	0. We set 

= Ui + ( 11 2 - ui)H(e,ii) 
= (3.14) 

v 1 + (V2 - Vi)H(.,71) 

and

(Ti 
,)= 10 00 

(ae-1)(,0)d
 (3.15) 

(T2,)
= J	(b	- 1)/(0,77)d 

0

where H is the same as (3.3) and a, b are arbitrary constants. As above, we can define 
U, V E 9(R 2) with ii(,i7) + pT1 and 5(,i) + pT2 as their macroscopic aspects, p = 
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u2v2 - u1v1 0. Let Ru and R,, be representatives of U and V, respectively, where 

, 77) = (i * w1)(e, 77) + p(Ti * w )(e, 77)

=u 1 +(u2 —u1) 
J 

91(x)dx f 01(y)dy 
—/e 

+ p & P) (a+aex_1)9i(x)dx J 
—/e 

, 77) = (J * w2)(, i) + p(T2 * w2e)(e, 77) 

=v i +(v2—VI)

00	 CO 

7 02(x)dx 7	2(y)dy 
— /e	—ti/c 

+ P-02(- )

CO 

7 (b77 + eby - 1)2(y) dy. 
—,/e

(3.16) 

However, (U, V) E G(R2 ) does not satisfy (1.1) in the sense of association. As a matter 
of fact, from (3.16) we compute that for 0 E C°°(R2) 

urn 
JJR 2 RtL(e, e, 7i)i'(e, ij) ded77 e—O 

= IL (u' + (u2 - 

+ urn JJR2  
O E 	 C) J (ae + aex - 1)91(x)dx	(3.17) 

=
u ' Jf2 (e,77)ded77 

+ ( 71 2 - II I) fJ77) ded77 + pf(a - 

urn 77	e ij)R(e, C, 77)J(, 77) ded77 

= u1v1 77	,77)ded77 + (u 2 v2 - uIvI)Jf(e77)ded77 

and

+ p(u 1 +(u2 - ui)A) I ( b?7 - 1)(0,77)d77	 (3.18) 
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+p(v + (v2 - vi)B) 
f 

(a - 1 )(e, 0 ) de + p2AB(O,0) 

where A = j'92()(f9 i (x)dx)d and B =	 After choosing fR
Oi and Oi (i = 1,2) such that A = ui—a'--	V1 u? and B = —a-- v2 7 from (3.17) and (3.18) one -_ 

gets at once that for 0 E C000(R2) 

urn JJR^ [(e,eii)((e	+ (i)
E (3.19)e-0

= 2 —p ABb,,(0,0). 

Similarly, 

urn JJR 2
 [(e, , )(() + (i) -	(e, , i) ° (, , i) , )] ddi7

C0 (3.20) 
= —p2AB(0,0). 

Thus, (U, V) E 9(R 2), with Ru and R0 as their respective elements, is not a solution 
to (1.1),(1.2). 

Indeed, at this time, not only is the solution to (1.1),(1.2) singular on the half lines 
= O,i > 0 and i = ü, C > 0, but also singular at the point (0,0). The right-handed 

sides of (3.19) and (3.20) contain information enough to make us give the expressions 
of the solution to (1.1), (1.2) at the point (0,0). In fact, we define two distributions p 
and I2 supported on the origin 

(',) =c i ',(0,0)	and	(i2,) =c2 (0,0)	(3.21) 

for t/.' E Ci0 (R2 ) , where c 1 and c2 are constants to be determined below. We set 
U, V E 9(R 2) with R and R as their representatives, respectively. Here R and R 
are determined by

R. 	1) =	e, 17) + (j I* w3)(e, 11)€

_93 (.) 
ç6 

E3	E (-)
(3.22) 

R. 	i) =	, ij) + (p2 * w4)(e, 77) 

= + C2 

_9 (-) 4 (-) 

where wje(,77) =	O()(!1) and 6t ,ci, E C(lR) with f9(e)de = j(e) d =

1 (i=3,4). 

It remains to verify that R and R,, given by (3.22) satisfy (3.1) and (3.2) for
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' e C(R 2 ). Actually, from (3.22) we have that for 0 E C10(R2) 

Jf 
= Jf	(c, , i)i(, ) ddi1 + c - A	7)9 (_ ) q (_ !L) dCdii 

ff1 2 V 

=11	(e, C,	7)) dC dii + c	(—c, -ci7)9()(7) 
E A 2 

= If 2 u(c,e, dedii + Ci(0,0) + 0(c) 

since i4'( —c , —cii) = (O, 0) - cC 0(0 , 0) - cij 0,( 0 , 0) + 0(c2), while 

AR 2 
R. (e, , ri)R(c, C ii)(C, ii) 

= AR 2	
C,	C, ii)'(C, 71) dCdii 

1 +Ci JfR 11)(C,i))93 _qY3 t
E  2 c 

1 + C2
ti

(,77)
\ 0.

c)	s ci E jJ 

+ CIC2—  JJR	(i)93 ) (_) q54 dCdii 
C 2	 \E)  e	c

' J/2	
( c ii(c ,e,ii) b (C,ii) dC dii + I + I + i. 

Now we choose Oi and & (i = 2,3) such that 

	

IR
82 (C)93 (C)dC= [C92(C) 93(C) dC =0
 Jill	 I 

JIL 2(C)3(C)dC=0	I 
I 

	

f
93(C) (1 82 (x)dx) dC . jii(ii) (f	2 (y)d) 

d77 = V2 — V 

(3.23) 

(3.24) 

(3.25) 

This can be done, e.g., by taking 92, 93 E C'°(R2 ) with supp92 C [0,1) and supp93 C 
[-1,0], and pi E C&'°(R2) with fp(77)di7 = 1 (i = 1,2), suppp 1 C [-2,—i] and 
suppp2 C [1, 2]. Set 43 = 92 and 02 = (1 - B)p i + Bp2 , with B = V1—V2 

From (3.16) 
and (3.25) it follows that

rr	/ C\ , (_!?• 'l i71 )ded7i =c	I'(C,11)93 (-j3	(E,C, 
ci 
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= IL2 '(—ee,	—e, —ei) ddi7 

= ft (—e, —)8(() + (V2 - v) f 92(x ) dx f2(y) dy 

co	 00 

+ b92 (e)J( - )02 (y)dy - 02()f2(Y)dY]ded77 

= 7 f  
f.2 ((oo) - e(0,0) - ei 7 (O,0) + 0(e2 ) )93((i) 

X I V I +(v2 _ VI) J92(x)dxf2(Y)dy	
(3.26) 

+ bpOz(e)	- )c52(y) d}dedii 

rl 

-PC I AR
92()93(e)(ii)J ç 2 (y)dy . {t1(0,0) - E)(O,0) 

- E770,7 (0, 0) + e2e2(o,o) + e2i(0,0) 

+ e2ii2b(0,0) + 0(e3)}dd71 

=0(e). 

Similarly, we have that 

12C = C2 - Jf '(,71)94 () (54 (_L)	 = 0(e)	(3.27) 

if we set

= 0 

IR 01 (^)04 (^) d =0 

f 4(ii) 
U17W0

 1 (y) dy d,7 - 1 ^04' (C) (1 01 (x) dx) dC =	
Ul 

and

I = C1C2 [f b (e, I7) 93	 9 /
	\
 03

' 	
q54	dd 

(-)	
r1 

JJ2	 (	 (3.28) 
= 0(e)
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if we set 

	

JR 

Ck 
03(C)O,'(^)A = 0 or fR	(i7)4(77)di7 = 0	(k = 0,1,2,3,4). 

Combining (3.26) - (3.28), we deduce from (3.24) that 

AR
AR

(3.29) 

= 	,	,	) dd + 0(c). 
 2  

Therefore, (3.23), (3.29) and (3.19) yield that 

lim JJR2 [Ru(c, , )((e	+ ( ,i)) - R(c, e )R(e, , )] ddi1 
C-0

	

= lim II {(e,e,i)((	+ (m) c-0 

-	, 7)(e, C,	ii)] ddrj + 3c i t,,(O, 0) 

= (3c i - p2 AB) 1',(0,0) 

=0 

for 0 e C000(R2) if c 1 = p2 AB. In the same way, we have that 0 E C'°(R2) 

lim JJR2 [Rv(c,,7)(() + (i)) - R (c ii)R (c ,e,	 = 0 
e-0 

for the same O i and q5, (i = 2,3,4) as above if c = p2 AB. This verifies that 
U, V e 9(R 2), with R and R as their representatives, respectively, satisfy (1.1) in 
the sense of association. The initial condition (2.4) is easily seen. We omit the details. 

Remarks. 3. The approximation process above guarantees that Tip = 0 (i,j = 
1, 2), but T, T2. 54 0 (when u 1 v 1 54 0). One can choose other approximations to define 
the product of U and V so that not only Tp = 0 (i,j = 1,2) but also T1 T2 = 0. 
However, it is more reasonable to define T1 T2 54 0 when u 1 v 1 56 0 since the intersection 
of the supports of T1 and 7'2 is non-void. The behavior of the solution to (1.1),(1.2) at 
the origin should be considered. 

4. It is easily seen that U, V E g(R2 ) have ii(, )+pTj +ci 1 and	)+pT2+c21z2€
as their respective macroscopic aspects. 

We conclude this paper with the following 
Theorem. The non-classical Rzemann solution., constructed in [6-8] satisfy (1.1) 

in the sense of associaton. 
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