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Some Operator Ideals 
in Non-Commutative Functional Analysis 

F. Fidaleo 

Abstract. We study classes of linear maps between operator spaces E and F which factorize 
through maps arising in a natural manner by the Pisier vector-valued non-commutative L'-
spaces S[EJ based on the Schatten classes on the separable Hubert space £2. These classes of 
maps, firstly introduced in [28] and called p-nuclear maps, can be viewed as Banach operator 
ideals in the category of operator spaces, that is in non-commutative (quantized) functional 
analysis. We also discuss some applications to the split property for inclusions of W-algebras 
such as those describing the physical observables in Quantum Field Theory. 

Keywords: Linear spaces of operators; Operator algebras and ideals on Hubert spaces; Clas-
sifications, factors 
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1. Introduction 
The investigation of classes of operator ideals in Hubert and Banach space theories has 
a long history. First, some interesting classes of maps between classical function spaces 
were considered, subsequently many classes of operators were intensively studied. Due 
to the vastness of the subject, we refer the reader to the monographies [24, 25, 27, 34, 
351 and the references quoted therein. Many of these classes of maps can be considered 
as operator ideals in the category of Banach spaces, as it is well exposed in [351, where a 
wide class of operator ideals is treated from an axiomatic as well as a concrete viewpoint. 
On the other hand, if a Banach space E is equipped with a sequence of compatible norms 
on all matrix spaces M(E), i.e. on matrices with entries in E, it can be viewed as a 
subspace of a C-algebra, that is a (concrete) operator space [41]. In this last context, 
the natural arrows between operator spaces are the completely bounded linear maps. All 
these ideas can be interpreted as a non-commutative (quantized) version of functional 
analysis as it is well explained in several papers (see, e.g., [2, 13 - 23, 33, 41, 44, 45]). 
Moreover, in the operator spaces context, interesting classes of completely bounded 
linear maps have been introduced and studied (see, e.g., [17 - 19, 21, 37, 38, 40]). These 
classes of maps can be naturally considered as operator ideals between operator spaces, 
i.e. in quantized functional analysis. This can be achieved by simply replacing the 
bounded maps (i.e. the natural arrows between Banach spaces) in the definition of an 
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operator ideal given in [35], by the completely bounded maps which are the natural 
arrows in the category of operator spaces. 

In this paper we study, for each 1 < p < +, classes Ol(E, F) of linear maps 
between operator spaces E and F which factorize through maps arising in a natural 
mariner by the Pisier vector-valued non-commutative LP-spaces SP[E ], based on the 
Schatten classes on the separable Hubert space P. These maps, called p-nuclear maps, 
were firstly introduced in [28] in order to investigate the general theory of factorization 
in the context of operator spaces. These classes of maps can be viewed as operator ideals 
in operator space setting. Namely, we show that all spaces 91 p are normed complete (i.e. 
Banach) operator ideals. We also give a geometrical description for the image of the 
unit ball T(E1 ) C F under a p-nuclear injective map T. The description of the shape 
of T(E1 ) parallels those arising from Banach space context (see [5]) for nuclear maps, 
or from operator space context (see 121]) in the case of metrically nuclear operators. 
Finally we discuss some applications to the theory of inclusions of W*algebras . More 
precisely, we present some applications to the characterization of the split property of 
inclusions N C M of W*algebras in terms of properties of the natural L2-embedding 
(considered in [5]) of N in the non-commutative measure space L2 (M). The various 
characterizations of the split property have interesting applications in Quantum Field 
Theory (see, e.g., [6 - 8, 43]). 

2. On spaces of operators 

For the reader's convenience, we collect some preliminary results about operator spaces 
which we need in the following. Details and proofs can be found in the cited references. 
In this paper, all operator spaces are complete as normed spaces if it is not otherwise 
specified. 

2.1 Operator spaces. For an arbitrary normed space X, X 1 denotes its (closed) 
unit ball. We consider a normed space E together with a sequence of norms on 
M(E), the space of the (nxn)-matrices with entries jnE. For a,b E Mn, v,v1 E M(E) 
and V2 E Mm(E), these norms satisfy 

ll avb IIn 5 Il a llIl v IlnIl b Il	and	11V1	V2IIn+m = max {ll v illn, ll V21Im} .	(2.1) 

where the above products are the usual row-column ones. Such a space, equipped 
with norms on the matrix spaces satisfying the above properties, is called an (abstract) 
operator space. 

Let T : E - F and T : M(E) - M(F) are given by T = T®id using the 
identification M(E) = E ® M. The linear map T is said to be completely bounded 
if II T llo := sup Il T ll < +00. Further, 9J(E, F) denotes the set of all completely 
bounded maps between E and F. Complete contractions, complete isometries and 
complete quotient maps have an obvious meaning. It is an important fact (see [411) that 
a linear space E, together with norms on each M(E), has a realization as a concrete 
operator space, i.e. as a subspace of a C-algebra, if and only if these norms satisfy the 
properties in (2.1). We note that, if dim(E) > 1, there would be a lot of non-isomorphic 
operator space structures on E (see, e.g., 133]).
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Given an operator space E and f = M(E'), the norms 

hun = sup {hI(f(v))(k)(,:)II : v E Mm(E) i and m E N}	
(2.2) 

((f(v))(1,k)(,1) := f(vkz) E Mmn) 

determine a canonical operator space structure on E, which becomes itself an operator 
space, called in [2] the standard dual of E. 

For any index set I, one can consider the linear space MI (E) of the set of (I x I)-
matrices with entries in E such that 

hlvIIM,E) := sup IIv A II MA(E) < + A-	-	- 

where A denotes any finite subset of I. For each index set I, M I (E) is, in a natural way, 
an operator space via the inclusion Mj(E) C B(?-I®2(I)) if E is realized as a subspace of 
B(7-I). Of interest is also the definition of ll(j(E) as the set of those elements v E MI(E) 
with v = limvA . Obviously, MI (C)	= B(e2 (I)) and Kj(C) K1 = . (e2 (I)), the 
set of all compact operators on e2(I). 

Given an index set I, we can define as usual a map X: M(E) -* 9J(E,Mj ), which 
is a complete isomorphism, by

(X(f)(v)) 3 = f,(v).	 (2.3) 

Moreover, if f € K(E), then X(f) is the norm limit of finite rank maps so X(Kj(E*)) 

C .(E, K 1 ) and therefore X(f)(v) e K1 for each v E E (see [16: p. 172)). 

Among the operator space structures on a Hilbert space H, we recall ([17]) the row 
and column Hilbert spaces Hr, H respectively, together with the self-dual OH structure 
introduced by Pisier [36, 391 by interpolation 

OH(I) := (Hc,Hr)112 

where the cardinality of the index set I is equal to the (Hilbert) dimension of H. Using 
the results contained in [39: Section 1], it is easy to show that (see [221) the norm of an 
element x E M(OH(I)) can be computed as	 - 

II X IIM(OH(1)) = hl(x1, 'kI)II M
1/2
 2	

(2.4) 

Moreover, a non-commutative version of the Cauchy-Schwarz inequality can be also 
proved ([221 and [39: Section 1]). Namely, if x E Mm(OH(I)) and y E M(OH(I)), 
then

hI(x, yk:)hIM,, :5 II x IIM(OH(I))IIYIIM(OH(1)) .	 (2.5) 

In the Formulae (2.4) and (2.5) the entries of the numerical matrices are as those given 
in (2.2).
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2.2 Tensor products between operator spaces. Let E, F be operator spaces, 
one can form other tensor products between E and F [16, 17]. We recall the (operator) 
projective tensor product and the spatial tensor product denoted respectively by E®AF, 
E ®min F. The Haagerup tensor product E 0, F is also of particular interest in the 
general theory of operator spaces. 

The projective tensor product allows one to describe the predual of a W-tensor 
product of von Neumann algebras in terms of their preduals. Namely, let N and M 
be W*algebras . Then the predual (NM) is completely isomorphic to the projective 
tensor product N ®A M. The detailed proof of the above results can be found in [16: 
Section 31. 

2.3 Metrically nuclear maps. The class of metrically nuclear maps 1(E, F) between 
operator spaces E and F has been introduced and studied in [18]. It is defined as 

91(E, F) = E* ®AF/kerX 
where X is the map -(2.3) which is, in this case, a complete quotient map. The metrically 
nuclear norm is just the quotient one (see [21: Theorem 2.3]). Another (more concrete) 
description of metrically nuclear operators has been given in [21] at the same time and 
independently. Moreover, also a geometrical characterization (Definition 2.6) has been 
presented in [21). All spaces 91(E, F) are themselves operator spaces which are complete 
if the range space F is complete. Moreover, the metrically nuclear maps satisfy the ideal 
property (see [21: Proposition 2.4]): 

2.4 Non-commutative vector-valued L P-spaces. A quantized version of vector-
valued spaces of functions has been introduced and studied by Pisier in [38, 40]. The 
vector-valued non-commutative L P -spaces are defined by interpolation as 

S[H, E] = (S00(H) ®min E, S, (H) ®A E' I I/p 
where S(H) denotes the Schatten class of order p on H. If the Hilbert space H is kept 
fixed, we always write Sp [E] instead of Sp [H, E]. 

We conclude with a result, quite similar to that contained in [16: Proposition 3.11, 
which will be useful in the sequel. Let H be a Hilbert space of (Hilbert) dimension 
given by the index set I. Making the identification H e2 (I) we get the following 
• Proposition 1. An element  in S[H,E] C M I (E) satisfies II U VSP IHEJ < 1 if and 
only if there exist elements a, b E S2 (H) C MI with 11 a 11s2 9 (H) = 11 b 11s2 9 (H) = 1, and an 
element v E M I (E) with II V IIM,(E) < 1 such that 

u = avb. 

Furthermore, one can choose v E Kj(E). 

• Proof. By [38: Théorème 2], it is enough to show only the "if"- part of the state-
ment. Suppose that u E M I (E) can be written as u = avb as above, and let e > 0 be 
fixed. Then there exists F(C) C I such that 

S2 [EJ	 E 

IbG1 - bG2 
MS2[E] J - 3IIvIIM,E
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whenever F1 ,F2 ,G 11 G2 j F(e) are finite subsets of I. Considering finite subsets 
F,G,F,G Cl, we get 

Ia PvbG - a'vbGII 
ii S,,(E] 

l(	_a'')vb't1 IIS,IE]

U + II (aF - aF)vbG 
"S [ +	

GvG aFv(b	- b GAG ) 
IIS(E]• 

Now, if F, G, F, G D F(e), we obtain

- a "vb'IIS[F. < 

Then {a'vbG}, with F,G C I finite subsets, is a Cauchy net in Sp [E] which converges 
to an element of SP [E] and must coincide with u  

3. p-nuclear maps 
In this section we study the basic properties of classes ¶fl(E, F) C .(E, F), 1 <_ p < 
+00, of linear maps between operator spaces E and F which are limits of finite rank 
maps. These maps, called p-nuclear maps, were firstly considered in [28) in connection 
with the general theory of factorization and were defined through operators arising 
by the Pisier non-commutative vector-valued L P-spaces S[H, E]. Although the case 
p = +00 seems to present no complications, for simplicity we deal only with the cases 
1 p < +c. 

In the sequel we indicate with x any element of C" (n any integer). If {a}. 1 C E, 
we denote the numerical sequence {II a4I} . i simply by. For any 1 p + 00, as usual, 
q = -2-I is the conjugate exponent of p (where q = +00 is the conjugate exponent of 
P = 1). 

We start with an elementary lemma whose proof is left to the reader 

Lemma 1. If 1 <p < +oo and r, s are positive real numbers, then 

1	1 
rs < —r' + _ 5q• 

P	q 

Now we consider the situation where 1 < p < +00 and q is the conjugate exponent 
of P.

Let A i E 911(E, s;) (i = 1,2) be completely bounded maps and consider the linear 
map between E and s; given by Ax = A 1 x e A2x (where we have kept fixed any 
identification H £2 H H). At the same way, let bi E S[E] (i = 1,2) and 
consider the element b E M(E) given by b = b1 6 b2. 

We are indebted to M.Junge for a suggestion relative to this point.



764	F. Fidaleo 

Lemma 2. In the above situation we get: 

(i) A e 9.Y1(E, 5;) with II 4 IIcb :5 IIAII9 

(ii) b e S[E] with I b IIs(E] = IIIj' 

Proof. The case with p = 1 in statement (i) is easy and is left to the reader. For 
the other cases in statement (i), taking into account [38: Théorème 2] and [40: Corollary 
1.3], we compute, for u,v E (M)1, II X JIM (F) < 1 and n integer, 

MU ,V Ax IIL(HIfløCn) = II MuV A I X II q(H ®Cn ) + IIMuvA2xIl9(H®cn) 

II A I X II i,(Sq(ii)) + IIA2XII4,.(Sq(H)) 

II A iII	+ IIA2IIb. 

Taking the supremun on the left, first on the unit balls (M) 1 , E1 and then on n E N, 
we obtain the assertion again by 138: Théorème 2]. The proof of part (ii) follows at the 
same way  

Let any identification £2	H	E 1 H be fixed and 1	p < +00. Suppose
that we have a sequence {A} 1 C 9)1(S(H),E). We define a linear operator A 
S(EY. 1 H) -* E as follows. Let . x E S( 1 H). First we cut the off-diagonal part of 
x. Then we define

Ax=APjxP	 (3.1) 

where P3 is the orthogonal projection corresponding to the 1-subspace in the direct sum 

We have the following 

Lemma 3. The map A : S(( 1 H) -* E defined as above is completely bounded 
and

iL4IIcb	IIAIIq 

where q is the conjugate exponent of P. 

Proof. It is easy to note that A is bounded as an operator between S( 1 H) and 
E. Hence, in order to compute its completely bounded norm, it is enough to pass to the 
transpose map A : E - S(e 1 H) which is of the same type as those described in 
Lemma 2. So, after a similar calculation, we get 

A IIo	11 A IIcb	IA JJq	IIAIIq 

which is the assertion U 

Now we are ready to define the classes of p-nuclear maps between operator spaces.
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Definition 1 [28: Definition 3.1]. Let E and F be operator spaces and 1 p < 
+. A linear map T: E -* F will be called p-nuclear if there exists a Hubert space H 
and elements b E S[H, E] and A E 9Jl(S(H), F) such that T factorizes according to 

T 
E  

S [H] 

where B X(b) E 9J1(E, S(H)) (see [40: Lemma 3.15]). We also define, for a p-nuclear 
map T,

v(T) = inf { IAIlcbIIbIIs,IHE.) } 
where the infimum is taken over all factorizations for T as above. The class of all 
p-nuclear maps between E and F will be denoted by 1(E, F). 

Remark 1. As the linear map X(b) is norm limit of finite rank maps, hence has 
separable range, without loss of generality we can reduce ourselves in Definition 1 to 
consider H £ and omit the dependance on H in the sequel if it is not otherwise 
specified. 

Remark 2. We have 'Yt(E,F) C .(E,F) as X(Kj (E)) C .(E,Kj) where, as 
usual, X is the map defined in (2.3). 

Now we show that the classes 91(E, F) are all normed linear spaces. 
Proposition 2. (1(E, F), v,) is a normed space for each 1 <p < +. 
Proof. If T = AX(b) E 1,,(E, F), one has 11 T 1 < II A [Ic&II bblsts . 1 and, taking the 

infimum on the right, one obtains 11 T 1 v(T). So v(T) is non-degenerate. Now we 
have only to verify the triangle inequality for z',. We start treating the cases p > 1. Let 
T1 E 1(E, F) (i = 1,2) and e > 0 be fixed and choose A i and b 1 such that 

hI A hIc6 = (-(T)(1 + 

Ib i IIs,1E . j = (v(T)(1 + 

We consider the linear map A : S. -* F defined as in (3.1) where any decomposition 
of £2	H	H ED H is kept fixed. We also put, under this decomposition of H, 
b :=	b2. Applying Lemmas 2 and 3, we obtain ll A lIcb	114[jq and [ bus lEl = 01p,
hence T1 + T2 = AX(b). By Lemma 1 we get

1 
v(T1 + T2) < ( 1I b 1 'i	+ Il b2Il	+ - ( h A 1 II + [A2 llb) P	IS,E	SlE]1	q 

<(1 +e)(v(T1 )+ i(T2)) 

and the statement follows as e is arbitrary. Now we consider the case p = 1 and suppose 
(	( that v	< i (Ti ) ui (T2 ). For each s > 1 we choose A 1 3) and b .a) such that 

1I A I16 = (v1 (T)(1 + 

= (vi(T1)(1 +
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where + - = 1. Again by Lemma 1, we get 

1 (T1	+T2)
	 1 

Noticing that the above inequality holds for each s > 1, we can take the limit as s goes 
to 1 (so t' automatically goes to +oo) and obtain 

V I (T1 + T2 ) < ( VI (TI ) + V I ( T2))(1 + e) 

which is the assertion U 

Actually, (Yt(E, F), v2 ) are all Banach spaces of linear maps between E and F (see 
below). Furthermore, one has for T E 91(E, F) a summation 

T=
lEN 

where {f} C E and {y} C F. It is easy to see that such a summation is uncondition-
ally convergent in the norm topology of T8(E, F). Moreover, if T E 91(E, F), then T 
is completely bounded (see Remark 2). 

4. Ideals between operator spaces 

As we have already mentioned, one can point out the properties which characterize 
classes of operator ideals also in non-commutative functional analysis, that is in operator 
spaces setting. Examples of such operator ideals have been studied in [17 - 19, 21, 37, 
38, 40] where it has been shown that some of these spaces of maps have also a natural 
operator space structure themselves. In this section we start with these definitions and 
show that the p-nuclear maps 91,, are examples of Banach operator ideals in the setting 
of non-commutative functional analysis. In order to do this, we follow the strategy of 
the celebrated monograph [35] of Pietsch. 

We indicate with 931 the classes of all completely bounded maps. Namely, 9)t(E, F) 
is just the space of completely bounded maps between the operator spaces E and F. 

The following definition is our startpoint. 

Definition 2. A subclass 1 C 931 will be said an operator ideal if 
(i) 1i € 1 where 1 is the 1-dimensional space, 

(ii) J(E, F) is a linear space for each couple of operator spaces E and F, 

(iii) 9J19)1 C 3 (ideal property). 

Moreover, let there exist quasi-norms p [30: Subsection 15.10] which satisfy the following 
conditions: 

(a) w(Ii ) = 1. 

(b) p(S + T)	 ,((S) + V(T)) ( > 1).



Some Operator Ideals	767 

(c) If  E 93(Eo,E),S E J(E,F),R E 9M(F,Fo), then 

cp(RST) :5 IIRIIcb'(S)IITIIcb 

with each (J(E, F), ) complete as topological vector space. 

Then we call (J, ) a quasi normed or Banach operator ideal according to K > 1 or 
K = 1, respectively. 

Now we show that the classes (el,,, v) of p-nuclear maps are Banach operator ideals. 
For the reader's convenience we split up the proof in two propositions. 

Proposition 3. Let E0 , E, F and F0 be operator spaces, T: E0 - E, S: E - F 
and R: F -* F0 linear maps. If T E 931(Eo,E), SE 91(E,F) and RE 9)1(F,Fo), then 
RSTE9Ip (Eo,FO ) and	 -	-	-	- 

v(RST)	IIRhIcbvp(S)IITIIcb. 
Proof. If S E 1(E, F) and e > 0, by Proposition 1 there exist a, b E (S2 ) 1 , I E 

Mco (E*) and A E 9Jt(S, F) 1 such that Ill Ilco u(S)+ tRIIoIITIlcb and S = AX(af(.)b), 
(X is the map given in (2.3)). Now 

RSTx = RAa(f(Tx)b 

where f o T E M(E) and Ill o TIIcb :5 jjfjj,bjjTjjcb. Then we get RST E 1(E0 , F0) 
and

zi(RST) 15 II RIIclIf 0 T flc	I RIIcbIIfIIcbII T IIcb	II RIIcb up(S )II T IIcb + C€

and the proof follows I 

Proposition 4. (91(E, F)), u) is complete as normed space. 

Proof. We have already proved in Proposition 2 that (91(E, F)), u) is a normed 
space for each p; so it is enough to show that any absolutely summable sequence {T,} C 
(1(E, F), ,i,) is summable in (91(E, F), vp). We begin with the cases p> 1. Let {T,} 
be an absolutely summable sequence (i.e. t°' v(Ti ) < +oo) where Ti = A 1 X(b) for 
some sequences {A 1 } C 9i1(S,F) and {b1 } C SP [E*] such that 

II A IIcb < (u(T) + and	II biIIs[E. ] < (vp(Tj) + 

and H £ as usual. Now we fix any identification H £	EDt?'H and define 

b=	b1 E M,,. (E-) 

It is -easy to show that b E S[EBt?'H, E] as norm limit of the sequence 

7N = b1 	... ebNe0...
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thanks to

	

N	 N	 +00 

aNII(®+HE.] = I IIbjII[HE.J 

(see [40: Corollary 1.3]). Moreover, we can define linear maps A N : S(EBY. 1 H) -+ F 
as in (3.1) which are completely bounded and satisfy, by Lemma 3, 

+00	 +00 

	

II A NIIb	II 'Ilci,	up(T1) + 
i=1 

By these considerations, one can easily show that the direct limit lirnAN defines a 
bounded map on UNSP (ED . 1 H) which uniquely extends to a completely bounded map 
A E 1(S(e°H),F) as UNSp(E) 1 H) is dense in S(H). Then we have 

b E S[°H, E*J S[H, E*] 

	

A e	S(e°H), F) 9Jl(S(H), F). 

Finally, if one defines T = AX(b), then T E ¶fl(E, F) and 

p-i 

	

1 +00	 p (+00

)+ 

	

vp(T—	 <C TN)	(	VP(Ti) 	i u(T1
i=N+1 

if N is big enough; that is {T} is summable in 91(E, F). 
For the case p = 1 we choose	-.

C 
II A iIIcb 15 1	and	II bdIs,[E . l < v1 (T1 ) + 

As in the previous case, we can construct OV, b E S1 [H, E1 and AN, A E 9R(Si (H), F) 
such that TN := ANX(aN) and T := AX(b) are all 1-nuclear maps. Furthermore 

Vl(T — TN) <
i=N+1 

if N is big enough. The proof is now complete I 

Summarizing we have the following 

Theorem 1. (91,,, v,,) (1 p < +oo) are Banach operator ideals. 

Proof. The proof immediately follows collecting the results contained in Section 3 
and in Propositions 3 and 4 I
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5. A geometrical description 

Analogously to metrically nuclear operators (see [21]), we give a suitable geometrical 
description for the range of a p-nuclear injective map. 

We start with an absolutely convex set Q in an operator space E and indicate with V 
its algebraic span. Consider a sequence Q {Q, } of sets with the following properties: 

(i) Qi	Q and every Q is an absolutely convex absorbing set of M(V) with 
Q C M,(Q), 

(ii) Qrn+n fl (Mm(V) Mn(V)) = Q yn Qn, 
(iii) For ..\ > 0 and x E Q,, x E AQ,, implies bx E A Q. and xb E )tQ for each 

numerical matrix b E (M) 1 .	- 

We say that a (possibly) infinite matrix f with entries in the algebraic dual V' of V has 
finite Q-norm if

	

If IIQ sup {IIf(q)II: q E Q, n e N,	<±00 

where f' indicates an arbitrary finite truncation relative to the finite set ; the enu-
meration of the entries of the numerical matrix f(q) is as that given in (2.2). 

Definition 3. An absolutely convex set Q C E is said to be (p, Q)-nuclear (1 < 
p < +00 and Q a fixed sequence as above with Qi = Q) if there exist matrices a, fi E S2, 
and a (possible infinite) matrix of linear functionals f E M(V') with IIf 11 Q <+00 such 
that, if x E Q, one has

lkIIM ( E)	II af(x8 IIM ( s9) .	 (5.1) 

We omit the dependence on Q if it causes no confusion. 

One can easily see that a (p, Q)-nuclear set is relatively compact, hence bounded 
in the norm topology of E and therefore V, together with the Minkowski norms de-
terminated by the Q's on M(V), is a (not necessarily complete) operator space. As 
in the metrically nuclear case contained in [21: Section 2] and the case of completely 
summing maps described in [40: Remark 3.71 one can reinterpret the above definition 
as a factorization condition. 

Proposition 5. Let E C B(7-) be a (concrete) operator space, Q C E a (p, Q)- 
nuclear set and V its algebraic span. Then the canonical immersion VLE is a p-nuclear 
map when V is equipped with the operator space structure determined by the sequence 
Q

(i) if there exists a completely bounded projection P : (71) - E when p 0 2 
(ii) without any other condition on E if p = 2. 

Proof. According to Definition 3, there exist matrices a,,6 E S2 ,, and a matrix 
I of linear functionals with 11f IIQ < + 00 satisfying the property described above. We 
define b = f/3, so b E S2 [V']. We consider W := cf(V)/35" and define on W a linear 
map A : W - E as Ax = v if x = cf(v)/3. This map extends firstly to all of W
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by continuity, and then to a completely bounded map between S,, and (fl) by the 
celebrated Arveson-Wittstock-Hahn-Banach Theorem [45]. So we obtain i = PAX(b) 
which is p-nuclear as PA is a completely bounded map between S2 and E (see (5.1)). 
In the case p = 2 we can extend A to all of 52 if one define Ax = 0 on W. Being 
S2 OH a homogeneous Hilbertian operator space (see [39: Proposition 1.5]), A is 
completely bounded and the proof is now complete I 

We now consider an injective completely bounded operator T : E - F and the 
sequence QT given by

QT = {T(M(E) 1 )}nEN. 

For such sequences the properties (i) - (iii) in the beginning are automatically satisfied, 
and, if T(E1 ) is a (p, QT)-nuclear set, we call it simply (p, T)-nuclear and indicate the 
QT-norm of a matrix of functional f by HAT-

As it happens in some interesting well-known cases (compact operators, nuclear and 
metrically nuclear maps), also for the class of p-nuclear maps we have a description in 
terms of geometrical properties (i.e. the shape) of the range of such maps. 

Proposition 6. Let E and F be operator spaces with F C (7i) and T: E - F 
a completely bounded injectzve operator. Then T E 91(E, F) if and only if T(E1 ) is a 
(p,T)-nuclear set in F when 

(i) there exists . a completely bounded projection P : (fl) -+ F when p 54 2, 
(ii) without any other condition on F if p = 2. 

Proof. It is easy to verify that, if T E 91(E, F) is injective, one can write for T a 
decomposition

T = AX(af(.)fi). 

Then a, foT' and /3 allow us to - say that T(E1 ) is (p, T)-nuclear (here we have chosen 
A such that II A flc6 = 1). Coñversely, if T(E1 ) is a (p, T)-nuclear set in F with a, 0 and f 
as in Definition 3, we can consider the matrix f o T E M(E') and define A = 5,, - F 
as in the proof of Proposition 5. Then we obtain for T the factorization T AX(b) 
where b:= a(f o T)/9 E S,,[E']I 

As in the case relative to metrically nuclear maps [21], the definition of a (p, Q)-
nuclear set may appear rather involved. This is due to the well-known fact that the in-
clusion M(V) 1 C M,,(Vi ) is strict in general. But, for an injective completely bounded 
operator T as above, a (p, T)-nuclear set T(V1 ) is intrinsically defined in terms of T. 

Remark 3. An interesting example in the cases with p 0 2 for which Proposition 
6 can be applied is when the range space is an injective C*algebra. 

A characterization of completely p-summing maps in terms of a factorization con-
dition is given in [40: Remark 3.7] and involve ultrapowers [26]. As ultrapowers of 
W-algebras of the same type may produce W*algebras of other type in general (see 
[9: Section II], for similar questions, or [35: Section 191 for the commutative case), 
one can argue that in general 9,,(E, F) 0 H,,(E, F), the completely summing maps 
considered by Pisier in [40], even if we always have fl,,(E,F) c fl,,(E,F). It would 
be of interest to understand if (and when) the above inclusion is in fact an equality.
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Other cases which could involve ultrapowers are the definition of factorable maps in the 
setting of quantized functional analysis, in a similar manner as that considered in [32]. 
Such a kind of factorable maps might be the true quantized counterpart of factorable 
maps of the Banach spaces case (see [32, 34, 35]; see also [19) for some related questions 
relative to the quantized case). Following [32, 35), one could consider those maps which 
factor according to the commutative diagram 

joT
'F" 

\B /A
LP(M) 

where i is the canonical completely isometric immersion of F in F" [2] and M is a 
W'-algebra whose non-commutative measure spaces LP (M) [31] should be equipped 
with a suitable operator space structure. The maps A and B inthe above commutative 
diagram should be completely bounded. Indeed, it has been shown in [23] that there 
exists only one canonical (i.e. obtained by interpolation between M and its predual 
Md.) operator space structure on the non-commutative LP space LP (M) when M and p 
are kept fixed. 

A complete analysis of the above framework, specially the study of quantized coun-
terparts of results of Banach space theory, would be desirable. We refer the reader to the 
monoghraph [28) for a complete exposition of the whole matter and for very interesting 
results concerning the general theory of factorization. 

6. The split property for inclusions of W*algebras. 
An application to Quantum Field Theory 

This final section is devoted to some applications of p-nuclear maps to the theory of the 
split inclusions of W'-algebras. Some natural applications to Quantum Field Theory 
will be also discussed. 

We suppose that all W'-algebras considered here have a separable predual. For 
standard results about the theory of W'-algebras see, e.g. [42]. 

An inclusion N C M of W'-algebras is said to be split if there exists a type I 
interpolating W'-factor F, that is N C F C M. The split property has been intensively 
studied [5, 11, 121 in the last years for natural applications to Quantum Field Theory 
[6 - 8]. In [5], canonical non-commutative embeddings 1, : M — L'(M) (i = 1,2) 
are considered. These embeddings are constructed, by a cyclic and separating (i.e. 
standard) vector Il E L2 (M) for M, in the following way: 

a EM	( . 1l,JaIl) E L' (M) 

a € M —* 1/4 aQ € L2(M).	-	 ( 6.1) 

The W'-algebra M is supposed to act standardly on the Hilbert space L2 (M) and, in 
the above formulae, L and J are the Tomita operators of M relative to the standard
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vector ft In this way the split property is analyzed considering the nuclear properties 
of the restrictions of i1), (i = 1,2) to the subalgebra N. The nuclear property and 
its connection with the split property has interesting applications in Quantum Field 
Theory (see [6 — 8]) . Following this approach, in [21] the split property has been exactly 
characterized in terms of the L'-embedding c1) 1 constructed by a fixed standard vector for 
M as above. The characterization of the split property in terms of the other canonical 
L2 -embedding cI 2 is also an interesting problem. Here we give some partial results 
(involving the theory of p-nuclear maps) which go towards a complete characterization 
of the split property in terms of the L 2 -embedding. The results relative to the L'-
embedding contained in [21] are also reported for the sake of completeness. 

Theorem 2. Let N C M be an inclusion of W .faciors with separable preduals and 
w E M a faithful state. Let (1 : M — L t (M) (i = 1,2) be the embcddzngs associated 
to the state w and given in (6.1). Consider the following statements: 

(i)	21N E 911 (N, (L 2(M)). 

(ii) 421N E 91(N,(L2(M)). 

(iii) 11N E 9t(N,(L'(M)). 

(iv) N C .M is a split inclusion. 

(v) 21N E 912(N,(L2(M)).

We have the following chain of implications: 

(z)	. (ii) = (iii)	(iv) = (v). 

In the above Theorem 2 we suppose that L t (M) (i = 1,2) are endowed with the 
following operator space structures: 

(a) as the predual of M°, the opposite algebra of M, for L'(M), 

(b) the Pisier self-dual OH-structure for L2(M). 

Proof of Theorem 2. Some of the above statements are contained in [21]. So we 
only deal with the remaining ones. 

(i) =. (ii): If 1)21N is 1-nuclear, then it has the form AX(b) where b E S1[N'] 2 and 
A : S 1 —* S2 is completely bounded. As S, [N*] N ®A Si [40], the assertion now 
follows by the ideal property of the metrically nuclear operators. 

(ii) . (iii): We start considering the linear map T: OH —+ L'(M) given by 

(Tx)(b) := (x, ih/4b*c?). 

We remark that the canonical L' embedding c1) I IN of N in L'(M) is precisely T4121N. 
As OH 0H [39] and the antilincar identification b E M° — b E M is completely 
bounded, it is easy to show that T is also a completely bounded map by (2.3) and (2.4). 

2 Indeed b can be chosen in S1 [N.] as 42 is a normal map [21, 22]. 
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The assertion now follows again by the ideal property of the metrically nuclear maps as 
011	S2 [40]. 

(iv)	(v): If there exists a type I interpolating factor F between N and M, then
2 factors according to

N	 s L2(M) 

T \2 /^ 1 
12(F) 

where W 2 arises from S2 [N.] and 'I' is bounded (see [5]). As 'P j is also completely 
bounded (see [39: Proposition 1.5]), the proof is now complete I 

We note that the results summarized in the above Theorem 2 are obtained for 
inclusions of W-factors. However, in some interesting cases such those arising from 
Quantum Field Theory (where the von Neumann algebras of local observables might 
have a non-trivial centre, see (4]), the above results also holds. 

We suppose that the net 0 —* 21(0) of von Neumann algebras of local observables 
of a quantum theory acts on the Hilbert space 7i of the vacuum representation and 
satisfies all typical assumptions (without a priori the split property) of Quantum Field 
Theory. The vector ci e R will be any standard vector for the net such as the vacuum 
vector which is cyclic and separating for each element 21(0) of {21(0)}OEK (see, e.g., 
[431). The following corollary is nothing but the application of the results contained in 
Theorem 2 to Quantum Field Theory. 

Corollary 1. Let 0 C int((5) be double cones in the Physical Space-Time and 
21(0) C 21(0) the corresponding inclusion of von Neumann algebras of local observables. 
Let A be the Modular Operator of 21((5) relative to the vector Q. Consider the following 
statements: 

(1) The set {LV /4 aci : a E %(0) 1  C 'H is (1,212l(o))-nuclear. 

(ii) The set {t' /4 aci : a E 21(0)j C 7i is (D 212j(Q) -decomposable (see [21 : Defini-
tion 2.6]). 

(iii) The set {( . aci, ci): a E 2i(0) } C (21(0)'). is 4 [21(0)-decomposable. 

(iv) 21(0) C 21((5) is a split inclusion. 

(v) The set {i.' 14 aQ : a E '21(0) 1 ) C 11 is (2,421j(0))-nuclear. 

We have the following chain of implications: 

(i) = ( ii ) = (iii)	(iv)	(v). 

Proof. It is enough to show only (iii)	(iv) whose proof is outlined in [5, 21]. If 
(iii) holds, then 4	is extendible. Hence the map 

71 : a 0 b E 21(0) 0 21((5)' —* ab E 21(0) V 21(0)'
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extends to a normal homomorphism of 21(0)21(0)' onto 21(0) V 21(0)'. But this 
homomorphism is in fact an isomorphism by an argument exposed in [4: pp. 129 - 130). 
Moreover, as 21(0)' A 21((5) is properly infinite [29], the assertion now follows by [11: 
Corollary 1] I 

Remark 4. The conditions contained in Theorem 2 and Corollary 1, which assure 
the split property, are weaker than similar conditions considered in [5]. 

We conclude with a characterization which is analogue to one contained in [5]. 

Proposition 7. A factor M with separable predual is a type I factor if and only 
if, for some (or equivalently for every) faithful state w E M., we have 

E 912(M,L2(M)). 

Proof. Suppose that there exists a faithful state w E M. such that cI2, is 2-nuclear. 
Then 12 ,w is automatically compact as norm limit of finite rank maps (see Remark 2) 
so, by [5: Corollary 2.9], M is a type I factor. Conversely, by Theorem 2, if M is a type 
I factor, 42, is 2-nuclear for each faithful normal positive functional w E M. I 

The results presented in this section are related to the description of the split prop-
erty for an inclusion N C M of von Neumann algebras in terms of properties of classes 
of linear maps such as canonical embeddings of N in non-commutative L P -spaces LP(M) 
of M (see [5, 6, 21)). The complete characterization of the split property in terms of the 
L'-embedding is contained in [21] whereas an analogous characterization in terms of 
the other L2 canonical embedding seems to be a very hard problem which is still open 
[23]. We hope to return to this question in the near future. 

Acknowledgement. We are very grateful to Marius Junge for many useful sug-
gestions and comments. 
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