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Orlicz-Pettis Theorems 
for Multiplier Convergent Series 

C. Swartz and C. Stuart 

Abstract. Orlicz-Pettis theorems have been established for multiplier convergent series where 
the multipliers come from co or P (0 < p < ). We show that these results as well as the 
classical Orlicz-Pettis theorem are corollaries of a general result based on the fact that all of 
these multiplier spaces have the canonical unit vectors as a Schauder basis. 
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1. Introduction 
Let A be a scalar sequence space which contains the subspace of all sequences which 
are eventually 0, and let X be a locally convex Hausdorif topological vector space. A 
series E x 1 is said to be A multiplier convergent in X if the series Eti x i converges in 
X for every t = {t} E ..\; the elements of the space A are referred to as multipliers. 
For example, when A is the space m0 of all sequences with finite range, A multiplier 
convergence is just subseries convergence. The classical Orlicz-Pettis theorem for locally 
convex spaces asserts that a series which is subseries convergent in the weak topology 
o(X, X') of X is actually subseries convergent in the original (or Mackey) topology of 
X [7]. More generally, we refer to a theorem as an Orlicz-Pettis theorem if the result 
asserts that a series which is A multiplier convergent with respect to the weak topology 

(X, X') is actually A multiplier convergent in some stronger locally convex topology 
on X. 

Several . Orlicz-Pettis type theorems have recently been established for multiplier 
convergent series where the multipliers come from some of the classical sequence spaces 
co or l' (0 < p < ) (see [6: Theorem 61 and [13: Theorem 3)). The proofs in these 
papers are quite different for the cases 1 p < c: and 0 <p < 1. In this note we point 
out that these multiplier convergent results as well as the classical Orlicz-Pettis theorem 
and some of its generalizations are corollaries of a general result which is based on the 
fact that all of these multiplier sequence spaces have the canonical unit vectors as a 
Schauder basis for an appropriate locally convex topology (i.e. they are AK-spaces). 
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2. Main results 

We begin by fixing some notation which will be used throughout the sequel. Let A 
be a vector space of real-valued sequences which contains all of the sequences which 
are eventually 0. The /3-dual A O of A is the space of all sequences .s = {s} such that 

s i t i converges for every t = {t} E A; if s E A and t E A, we write st = set, 
and note that A and A fl are in duality with respect to the bilinear map .s t. If E and E' 
are two vector spaces in duality with respect to a bilinear mapping, we denote the weak 
and strong topologies on E from this pairing by cr(E, E') and 3(E, E'), respectively. 
Other notation and terminology should be standard. 

Let (X, r) be a Hausdorif locally convex topological vector space and let E x, be a 
series with x, E X. The series E x 1 is said to be A multiplier convergent with respect to 
r (or TA multiplier convergent) if the series	tixi is r-convergent for every t E A. 

Now let E and E' be in duality with respect to the bilinear map (,.) and let 
be a A multiplier convergent series in E with respect to cr(E, E'). If t e A, let 

	

00	 n 
t i X i = a(E,E') — lirntx 

and define a linear map S : A - E by St = 'i t a x,. We have the following continuity 
property for S. 

Theorem 2.1.. The map  is (A,A)—Oi(E,E') continuous. 

Proof. Let {0} be a net in A which is a(A,A) convergent to  and x' E E'. Since 
t 1 (x',x 1 ) converges for every t E A, {(x', x)} E A and 

t(x',x) = (x', St) - 0. 

That is, SO - 0 with respect too(E,E')I 

Following Wilansky [11: Definition 11. 1.51 we say that any polar topology w(E,E') 
on E is a Hellinger- Toephtz topology if whenever F and F' are a dual pair and u : E - F 
is a(E, E')—a(F, F') continuous, then u is w(E, E')—w(F, F') continuous. For example, 
the Mackey and the strong topologies are Hellinger-Töplitz topologies. 

From Theorem 2.1 we have the following 

Corollary 2.2. The map 5: A - E is continuous for any Hellinger-Töplitz topol-
ogy on the dual pairs (A, A) and (E, E'). 

If T is any locally convex topology on A, we say that A is an AK-space or has the 
AK - property with respect to r if the coordinate functions t -	are continuous and 
t = r - limn te' for every t e A, where e is the canonical unit vector with 1 in 
the i 11' coordinate and 0 in the other coordinates (i.e., the {&} are a Schauder basis for 
A with respect to r). 

From Corollary 2.2 we obtain the following
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Corollary 2.3 (Orlicz-Pettis). Suppose w(A,A) is a Hellinger-Tôplitz topology on 
A, and A is an AK-space with respect to w, An ). If Z xi is A multiplier convergent 
with respect to o(E, E'), then E x i is A multiplier convergent with respect to w(E, E'). 

Proof. Let t E A. Since	tie' - tin w(A, An), 

S(E tie t ) = > t & x , - tixi 

in w(E,E') by Corollary 2.21 
The following special case of Corollary 2.3 covers many examples. 
Corollary 2.4 (Orlicz-Pettis). Suppose that A has a locally convex topology under 

which A is barrelled and an AK-space. If E x 1 is A multiplier convergent with respect 
to o(E, E'), then E xi is A multiplier convergent with respect to /3(E, E'). 

Proof. A' = A'
s

by [4: Proposition 3.9] so the original topology of A is f3(A, A) and 
the result follows from Corollary 2.3 U 

We give a number of examples covered by Corollary 2.4. 
Example 2.5. If A is a Banach [Frechet] AK-space, Corollary 2.4 applies; e.g. 

A = co, 1" (1	p < o), c.s, by0 [A = W [11: Section 1.2], a Köthe echelon space 
[5: Section 30.8]]. In particular, A = co or A = P (1 p < oo) gives the multiplier 
convergent result of [6: Theorem 61. There are many examples of Frechet AK-spaces. 
If A is an infinite matrix, denote by WA the linear space of all sequences that A maps 
into w, the space of all sequences. It is shown in [12: Theorems 4.3.8 and 4.3.12] that 
WA is a Frechet AK-space. Further, (IP, ) (0 < p < 1) is a barrelled AK-space 
[1] so if A = 1" (0 <p < 1), Corollary 2.4 gives the multiplier convergent result of [13: 
Theorem 31. Similarly, Corollary 2.4 applies to any barrelled subspace of (0, 11 Iii); 
examples of such barrelled subspaces are given in [8: Section 4]. Further examples of 
barrelled AK-spaces are given in the corollary to [2: Theorem 4]. 

We next show that the classical Orlicz-Pettis theorem for subseries convergent series 
follows from Corollary 2.3. A series >Jx1 in a topological vector space X is subseries 
convergent if the subseries E x, converges in X for every subsequence {x } of {z 2 }. 
If mo is the space of all sequences with finite range, then a series E x i is subseries 
convergent in X if and only if E x 1 is rn0 multiplier convergent. 

The space m0 is not an AK-space under its natural topology given by the sup-norm, 
but it is an AK-space under a locally convex topology introduced by P. Dierolf to treat 
Orlicz-Pettis theorems. We describe Dierolf's topology [3]. Let M be the family of all 
subsets M C E' such that M is a(E', E)-bounded and for every linear, continuous map 

T : (E', a(E', E))	(l i , a(l' , mo)) 
T(M) is relatively compact in (I', Iii). The Dierolf topology on 5 1 (E,E') on E is the 
polar topology on E of uniform convergence on the elements of M (see [11: Section 8.51 
and [5: Section 21.1]). The topology 8 1 (E, E') is stronger than the Mackey topology and 
Dierolf shows that it is the strongest polar topology on E such that a series in o(E, E') 
subseries convergent if and only if it is 8 (E, E') subseries convergent ([3: Theorem 2.2]; 
see also [3: Corollary 2.4] for a comparison with other polar topologies): 

The following property is easily checked (see [11: Theorem 11.2.2]).
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Proposition 2.6. 81 (E,E') is a Hellinger-Töplitz topology. 

We show that m0 is an AK-space under the topology 81 (mo,P). Actually, we 
establish an even stronger result. 

Proposition 2.7. For t E m0, 

8I(rno,11)_lirntkek 

uniformly for 111l00	1. In particular, (rno,Si (mo,1 1 )) is an AK-space. 
Proof. If M E M (relative to the duality between m0 and I'), then M is relatively 

compact in (11,	so lim,	= 0 uniformly for s E M [9: Theorem 10.1.15]. 
Thus, for s E M and t E rn 0 with 	1 we have I >k= n s k t kl	s, and the
result follows I 

From Corollary 2.2 and Proposition 2.6, we obtain a sharpened form of the Orlicz-
Pettis theorem for subseries convergent series. 

Corollary 2.8 (Orlicz-Pettis). If E xk is a(X, X') subseries convergent, then 
0	00 

1 (X,X') - lirntkXk =	tkXk 
k=1	k=1 

uniformly for tE rn 0 with	<1. In particular, >xk is 81 (X,X') subseries conver-



gent.

The last statement in Corollary 2.8 is Dieroif's version of the classical Orlicz-Pettis 
theorem for subseries convergent series. Dieroif shows that 61 is the strongest polar 
topology for the pair (X, X') such that the conclusion of the Orlicz-Pettis theorem 
holds. 

The uniform 61 convergence in Corollary 2.8 seems to be a new observation. By re-
stricting the t's in m0 to be sequences of 0's and l's, the uniform convergence conclusion 
implies, in particular, that E X k > X is Si unordered convergent [10: Proposition 10.1.1]. 

If E x i is subseries convergent, it is known that the set of "partial sums" {>jg X1 
C N) is compact [10: Theorem 10.1.31. We can use Corollary 2.8 to show that a set 

of partial sums using the larger set of multipliers {t E m0 : 11t1j.	11 is precompact. 
Proposition 2.9. Ifxk is i(X,X') subseries convergent, then 

= { >
t k x k : tErn0 with IltIIoo 

km= I	 f 
is 5 1 (X,X') precompact. 

Proof. Let U be a 5 1 (X,X') neighborhood of 0.and pick a 8 1 (X,X') neighborhood 
• of 0 such that V+V C U: By Corollary 2.8, there exists N E N such that	tkxk E 
• for n N and t E m0 with	< 1. The set 

F= {ik e k :	< land 1< N}



Orlicz-Pettis Theorems	809 

is precompact in 6 1 (mo, 11) since F is contained in a finite-dimensional subspace of rn0, 
is	DCX) bounded, and S i (mo,l') is weaker than II - 11,,. Therefore, S(F) is 81(X,X') 
precompact by Corollary 2.2. Hence, there exist z 1 , ...,	E F such that 

S(F) C U(Sz i + V). 

Let t E m0 with 11t1j. < 1. Then there exists j such that	t,x1 E Sz3 + V so 

St = tkxk = tkxk+	tkXkESZJ+V+VCSZ+U. 
k=1	k=I	k=n+1 

Hence, S C U', 	+ U) and Sis b1(X,X ) precompacti 
A series which is 100 multiplier convergent is often referred to as a bounded multiplier 

convergent series. We next show that Corollary 2.3 can be used to establish an Orlicz-
Pettis theorem for bounded multiplier convergent series. Again, 100 is not an AK space 
under the sup-norm, but it is an AK-space under another locally convex topology also 
introduced by Dierolf. We describe the topology by Dierolf. Let .i'.f be the family of 
all subsets N of E' such that N is o(E', E) bounded and for every linear continuous 
mapping

	

T : (E',o(E',E))	(1',a(l1,l°)). 

T(N) is relatively compact in (1',	i) [3]. The Dierolf topology 62 (E,E') on E is. 
defined to be the polar topology on E of uniform convergence on the elements of Al (see 
13: Corollary 2.4] for properties of the topology). 

The analogues of Propositions 2.6 and 2.7 and Corollary 2.8hold for 82. 
Proposition 2.10. 62(E, E') is a Hellinger-T5plitz topology. 

Proposition 2.11. For t e 100,

n 
62 (1,1) - lirn1 k e k = 

k=I 

uniformly for 11 t 100	1. In particular, ( 1 00 , 82 ( 1 00 , 1 1 )) is an AK-space. 

Corollary 2.12 (Orlicz-Pettis). If F, X k is a(X,X') 100 multiplier convergent, then 

	

CO	 CO 

62 (X, X') - lirn E t k X k =	tkXk 

	

k=n	k1 

uniformly for I E 100 with 11t1100	1. In particular, >xk is 62 (X,X') 100 multiplier€
convergent. 

The uniform convergence conclusion in the case of bounded multiplier convergent 
series has been previously observed (see, for example, [10: Corollary 8.2.7]). 

In contrast to Corollary 2.4 the conclusions to Corollaries 2.8 and 2.11 cannot be 
improved to convergence in the strong topology.



810	C. Swartz and C. Stuart 

Example 2.13. The series E e 1' in l (ma) is o(100,11) (ci(mo,l')) 1 (m0 ) mul-
tiplier convergent but not i3(l,l') = II Ic (/3(mo,l') =	oo) convergent. 

Although we cannot, in general, show that weakly multiplier convergent series are 
strongly multiplier convergent series, the "partial sums" of such series are often strongly 
bounded. 

Recall that a sequence space A is an All-space if the coordinate functions t —	are 
continuous and if	Ike1' : n E N} is bounded in A for each i E A [12: Definition 
10.2.11. 

Proposition 2.14. Let A be a barrelled AB-space with A C A'. If E Xk is a(X,X') 
A multiplier convergent and B C A is bounded, then the set of "partial sums" 

S(B) =
 { 

E t 1' x 1' : n EN and t E B} 

is 3(X, X') bounded.
TI	 1' Proof. Let P,1. : A — A be the section map P,,t = i/Ce . Then {P: ii E N} 

is pointwise bounded on A by the AB-assumption and is, hence, equicontinuous by the 
barrelledness assumption. Since A has the i3(A, A') topology, {P0 B: fl E N} is i3(A, A') 
bounded and, hence, /3(A, A) bounded since A 16 C A'. By Corollary 2.2 S(B) = {SPTIB 
n E N) is #(X, X') bounded I 

Example 2.15. Since 100 and in0 are a barrelled AB-space under the sup-norm 
and (100 ) = 11 C (10 )T = ba and m = 1 C (ma)' = ba [4: p. 69], Propositon 2.14 is 
applicable to both weak subseries and bounded multiplier convergent series. Likewise, 
Proposition 2.14 is applicable to all of the spaces listed in Example 2.5. Proposition 
2.14 is also applicable to the spaces bs, by , and c whereas Corollary 2.4 is not (see [4: 
pp. 68 - 691 for the topological and /3-duals of these spaces). 
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