Zeitschrift fur Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 17 (1998), No. 4, 795-803

.

Finite Chainability,
Locally Lipschitzian and Uniformly Continuous
Functions

S

G. Marino, G. Lewicki and P. Pietramala:

Abstract. We present a notion of a finitely chainable subset of a metric space X. We show
that Y is a finitely chainable subset of X if and only if f(Y) is a bounded subset of R for

any uniformly locally Lipschitzian or uniformly continuous real-valued function f on X. As a

corollary we reprove the Atsuji theorem in a slightly stronger form. .
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0. Introduction '

In infinite dimensional metric spaces not all continuous images of bounded sets are
bounded. Indeed, in 1948 Hewitt [1: p. 69] showed that in a metric space X each
continuous, real-valued function is bounded if and only if X is compact.

What happens for uniformly continuous functions? To explain better this problem
we begin with

Example 0.1. Let {e,}nen be the canonical basis of [; and let || - || denote the
Euclidean norm. Let X, be the segment joining e,, with e 41, i.e. X;, = {en +t(en41 —
en) : 0 <t <1}. Let X = U2, Xa. Equip X with two different metrics p and d
defined by

d(z,y) =z -yl
and .
2 "d(z,y) ifr,y € X,
p(z,y) =< 27%d(z,ent1) + Dnm + 27 ™d(em,y) if 2 € Xp,y € X5 (n < m)
27"d(y,en41) + Dnm + 27 ™d(em,z) ify € Xn,z € X;m (n < m)
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where Dy, ;m = Z;":-HIH 2‘jd(ej,ej+1). Finally, consider a function f : X — R defined
by '
f(z)=n+t ifz=-e,+t(ent1 — €n).
Note the following:
a) (X,d) and (X, p) are two bounded metric spaces.

b) d and p are equivalent but not uniformly equivalent metrics on X (i.e. for every
z € X and € > 0 there exist 6; > 0 and §; > 0, depending not only on € but
also on z, such that p(z,y) < € whenever d(z,y) < é; and d(z,y) < ¢ whenever
p(z,y) < 6.

c¢) f is a real-valued unbounded function on X.

d) f is a uniformly continuous function on the metric space (X, d).

e) f is a continuous but not uniformly continuous function on the metric space

(X, p).

The situation pointed out in Example 0.1 is not unexpected. Indeed, in 1956 Atsuji
[2: Theorem 2] showed that each uniformly continuous real-valued function on a metric
space (X, d) is bounded if and only if X is a finite chainable space, i.e. for every ¢ > 0
there are finitely many points p, ..., pr and a positive integer m such that any point of
X can be bound with some p; by a finite sequence of m + 1 points z = zq, ..., Tm = pj
of X satisfying d(zk—1,zx) <€ (k=1,..,m).

In this note we introduce and study a notion of a finitely chainable subset of a
metric space X. The main result of it is Theorem 2.1, which gives a characterization of
finitely chainable subsets of X. Also, we reprove the Atsuji theorem [2: Theorem 2] in
a slightly stronger form.

1. Finite chainability property

In the sequel, X denotes a metric space with a metric d, B(z,r) the open ball of a
centre r and radius r and A® = {y € X : dist(y, A) < €} the e-neighbourhood of a set
ACX. Let z,y € X and € > 0.

Definition 1.1. An e-chain of length m joining z with y is a finite sequence of
m + 1 points (not necessarily distinct) of X, z9 = z,...,zm = y satisfying d(zx,zx—1) <
e (k=1,...,m).

Definition 1.2 (Compare with [2: Definition 3}, where the case Y = X has been
considered). A subset Y of X is said to be X-finitely chainable if for each € > 0 there
are a finite set gy, ..., gy of points of X and a positive integer my = my(¢) such that
any point of Y can be bound with some ¢; (1 € j < I(€)) by an e-chain with length
my(e). The function my : (0,00} = N, ¢ — my(¢) is said link’s number function. It is
a non-increasing function.

Example 1.3. We can equip R with many metrics. For example, the functions

di(z,y) =l — (1)
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d2(z,y) = % ' (1.2)
d3(z,y) = |arctan(z) — arctan(y)| . (1.3)

are three equivalent metrics on R but only d, and d; are uniformly equivalent. The
following is easy to see:

a) (R,d;) is an unbounded and not finite chainable space.
b) (R, d) is a bounded but not finite chainable space.
c) (R,ds) is a bounded finite chainable space.

Now we summarize a few properties of X-finite chainable subsets.

Proposition 1.4. Let (X,d) be a metric space. Then:

1) The property to be X -finite chainable subset is an immersion property, i.e. if Y
18 X -finitely chainable, then Y is Z-finitely chainable for every metric space Z which
contains metrically X.

2) The property to be X-finitely chainable is hereditary, i.e. if Y is X-finitely
chasnable, then each subset Z of Y is X -finitely chainable.

3) Let {(Xj,d;),7 = 1,...,n} be a finite family of metric spaces. Then a subset
A = A; x ... x A, in the metric product space X = I_I;“=1 X; is X-finstely chainable if
and only 3f Aj is X;-finitely chainable for j=1,..,n

4) Let {(Xn,dn): n € N} be a sequence of metric spaces and let X = [[oe, X, be
the Cartesian product of X,, endowed with the metric !

had dn(zn,yn) '
d n}s n — 2—,; n nyJn .
Qanhlnh) = 227" S
For A, C Xn (n € N) consider the set A = [[o2, An. Then A is X-finite chainable
if and only if A, s X, -finitely chainable for every n € N. (This is a version of the
Tichonoff Theorem for finite chainability.)

5) The property to be X-finitely chainable is a metric property but not a topolog-
ical one, i.e. equivalent but not uniformly equivalent metrics can induce different X -
chainable subsets. For uniformly equivalent metrics the classes of X -finitely chainable
subsets with respect to them are the same.

6) The family of X -finitely chainable subsets of X contains the family of bounded
metrically convez subsets of X, whenever X is a complete metric space.

7) The family of X -finitely chainable subsets of X is contained (properly in generdl)
in the family of the bounded subsets of X.

8) If E 1is a normed space, then a subset Y of E is E-finitely chainable if and only
if Y is bounded.
9) Let Y be a subset of a complete metric space X. Then Y is relatively compact if
and only if Y is X-finite chainable and the link’s number function admits a mazimum.
10) Let (X,dx) and (Z,dz) be two metric spaces. Let f : X — Z be a uniformly
continuous function. Then f maps X-finitely chainable subsets of X into Z-finitely
chainable subsets of Z. '
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Proof. We only prove statements 4 - 10.

Statement 4: Necessity. Let A = [Joo, An be X-finitely chainable. We show that
A, is X,-finitely chainable for every n. Fix ¢ > 0 and consider = W;+_e) By the

X -finite chainability of 14, there exists a number j(n) of elements p',...,p’" € X and
m = m(n) € N such that any z = {z,} € A can be bound with some p' (1 <i < j(7))
by an 7-chain in X z° = z,..,2™ = p' satisfying d(z'"',z') < e (I = 1,..,m).
Then the n-th coordinate z, of z can be bound with the n-th coordinate pi, for some
i € {1,...,5(n)} with an e-chain in X, of length m(n) since

_ d l‘l_l,yl _ . . -
2 n#jl_) <d(z'"',z') <n implies dn(zil,zh) < 2"
n n rIn

n =
1-2np

Sufficiency. Let A, be X, -finitely chainable for every n. Take ¢ > 0 and fix n such
that Z:":n“ 2-F < %. Then the thesis follows from property 3) applied to 4; x ... x Ap
and from the fact that '

oo

_x  de(zr,yx) ok di(zk,yk)
_ k_e(Th Yk) k
d({zk}’{yk})—§2 1+ d(zk,y&) <,;2 1+ di(zk, y&) *

€
5

Statement 5: Examples 0.1 and 1.3 show that the property to be X -finitely chainable
is not a topological one. Now let d; and d;, be two uniformly equivalent metrics on X.
Let A be a subset (X, d; )-finitely chainable and let € > 0 be fixed. Then there exists
n > 0 such that di(z,y) < n implies dy(z,y) < €. On the other hand, there are
P1,--»Pin) € X and m(n) € N such that every z € X can be bound with some p; by
an 7-chain z = zo, ..., T;m(y) = p; such that di(z,2141) <n (I =0,..,m(n) — 1). Note
that dz(zy, z141) < €, and consequently A4 is (X, dz)-finitely chainable.

Statement 6: First of all, a bounded set A = [0,1] U {2} is R-finitely chainable but
not metrically convex. Now, let A be a bounded, metrically convex subset of X, i.e. for
any r,y € A there is a point 2z € A such that d(z,y) = d(z,2) + d(y,z). A theorem of
Menger [3: p. 41] states that a convex and complete metric space contain together with
z and y a metric segment whose extremities are z and y, that is a subset isometric to an
interval of length d(z,y). Hence we see that if z,y € A, there exist z = zq,..., 2, = ¥
such that

d(z,9) =Y d(zi-1,z:)  and  d(zion,m) <e. (1.4)
i=1
In addition, we can assume that (1.4) holds with
d(Zit1,2:) + d(Tig2, Tig1) 2 €.
Indeed, since
d(zi, Tiv1) + d(Tis1, Tive) = d(Ti, Tit2)
if A
d(Ii,Ii+1) + d(ziy1,Tiy2) <€
we can exclude ziy, from the chain. Hence by (1.4) it follows that Zf < d(z,y) <
(n + 1)c. Hence, any pair can be bound with an ¢-chain of length m(¢) < 2%.
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Statement 7: Note that Examples 0.1 and 1.3 furnish bounded but not X-finitely
chainable subsets. The boundedness of an X -finite chainable subset A follows from the
fact that A C U'"(e B(pj,ma(e)e) for fixed € > 0.

Statement 8: Every element z of a bounded set A C E can be bound with zero by
an e-chain with knots on the segment [0, z] of length m(e) < M“_ICNM_

Statement 9: For any € > 0 we have my(e) = 1. On the other side, let M =
max{my(€) : € > 0}. Fix ¢ > 0. Then there are finite number of points py, .. > Pi(e/M) €
X such that every point of Y can be bound with some p; by an a7 -chain with length

M. Thus Y C UI(E/M)B( 51 €).

Statement 10: Fix ¢ > 0. Let § = §(¢) be such that di(z,y) < & implies do(f(z),
f(y)) < €. Let Y be X-finitely chainable subset of X. Then there are finite number of
points ps, ..., pys) € X such that any y € Y can be bound with some p; by a §-chain of
length my(6). Then any point of f(Y) can be bound with some f(p;) by an ¢-chain of
length my(6) R

Now we want to examine some properties (frame, amount, length and so on) of the
chains with start knots fixed. In this way we will be able to define a non finite chain-
ability measure that will be useful to prove the connexion between X -finite chainability,
uniform continuity and uniformly local Lipschitz continuity of functions.

Let (X, d) be a metric space and let € > 0 be fixed. We denote by P(z,¢,n) the set
of all points in X which can be bound with z by an e-chain of length n, i.e.

P(z,e,n) = {y eX (1.5)

There exist {z,...,zp—1} C X such that
d(z,2)) < e,d(z1,22) < €,...,d(zn-1,y) < €

Moreover, we denote by P(z,e) the set of all points in X which can be bound with z
by an e-chain with an arbitrary finite length, i.e.

P(z,e) = | J P(z,e,n). | (1.6)

neEN

With this notation, step by step, it is easy to verify the following

Proposition 1.5.
a) P(z,e,1) = B(z,¢).
b) P(z,e,n + 1) = (P(z,e,n))* (so any P(z,€,n) is an open set).
c) P(z,e,n +1) = P(:c,e,n) for some n implics P(z,e,m) = P(z,e,n) for any
m > n.
d) (P(z,€))* = P(z,¢), i.e. P(z,€) is an isolated set, so if X is a connected metric
space, then P(z,¢€) = - X for any z € X and e > 0.

e) A relation Ron X x X defined by (z,y) € R if and only if € P(y,e) s an
equivalence relation on X x X. ,

f) The family {P(z,€) : z € X} is an uniformly isolated partition, i.e. (P(z,€))*N
(P(y,€))* = 0 ¢f P(z,¢€) # P(ye).
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g) (Uier P(zi,€))® = Uicr P(zi,€) for any indez set I.

h) If there is infinite number of distinct sets P(z,,e) (n € N) and (Z,d) is an
unbounded metric space, then a function f: X — Z defined by

4 0 ifz ¢ UnGNP(zms)
f(z)=1{ zn if 2 € P(zpn,g),n even
wn if £ € P(za,€),n odd

where wp, 2, € Z are fized points such that d(wn,2,) > n is an unbounded uniformly
locally Lipschitz function on X.

Now, let Y be a bounded subset of X. Denote by N(Y') the set of all numbers ¢ > 0
for which Y is chainable by e-chains with fixed finite length, i.e

There exist p1,...,pi(e) € X,my(e) € N
NY)={e> .(,) «© (1.7)
such that Y C U;_; P(pj,e,my(¢))
Of course, if € € N(Y), then the real interval [¢,00) is contained in N(Y'). Put
(YY) =inf N(Y). (1.8)

This is a measure of non finite chainability of Y and Y is X-finitely chainable if and
only if ¢(Y') = 0.

Moreover, the following is eaS}; to see:

a) ¢(Y) < diam(Y).

b) ¢(AU B) < max{c(A4),¢(B)}.

c) ¢(A) = c(A).

d) A C B implies ¢(A) < ¢(B).

* e) X is complete if for any decreasing sequence of X-finitely chainable closed sub-
sets {F,} one has N,enFn # 0.

2. The main results

In the sequel R is endowed with the Euclidean metric. For sake of completeness, we
recall that a function f : X — R is said to be uniformly locally Lipschitzian if there are
p > 0and L > 0 such that

z,y €-X with 0 < d(z,y) <vp} < L. (2.1)

f(z) - f)l
S“"{ d(z,y)

Theorem 2.1. Let (X,d) be a metric space and let Y C X. Then the followmg ,
conditions are equivalent:

(1) Y is X-finitely chainable.
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(ii) For any uniformly continuous function f : X — R, f(Y) is a bounded subset
of R. ‘

(ii1) For any uniformly locally Lipschitzian function f: X — R, f(Y) is a bounded
subset of R. ‘

Proof. By Proposition 1.4/8) and 10), (i) implies (ii). Of course, (ii) implies (iii).
So we show that (iii) implies (i). Suppose, on the contrary, that ¥ C X is not X -finitely
chainable. We will construct a real-valued, uniformly locally Lipschitzian function on

X, unbounded on Y. Fix a positive number g9 < ¢(Y). Then for any finite set of points
P1,...,pt and for any n € N,

]
Y\ |J P(pj,e0,m) # 0. . (2.2)

i=1
It can happen or not that there are finitely many points p,...,p1 € X such that

§
Y C U P(pj, o).
j=1
We examine both cases separately.

First case: There exist py,...,p; such that Y C U;‘:) P(pj,e0). Then by (2.2) for
some p; we have P(p;,e0,n) # P(pj,€o0) for any n € N. Hence, by Proposition 1.5/c),
P(pj,e0,n) # P(pj,€0,m) for any n # m. We define f : X — R by

f(z) =
0 if = ¢ P(p;,eo) (2.3)
d(z,pj) if z € P(pj,¢€o0,1)
(Tl - 1)50 + diSt(I,P(pj,Eo,n - 1)) ifzre P(pj,'Eo,n) \ P(pj:EOan - 1)
The function f is unbounded on Y and uniformly locally Lipschitziaﬁ on X \ P(p;,€0).
We show that f is uniformly locally Lipschitzian on X. Put p = g¢ and fix z;,z, € X

which satisfy
d(z1,z2) < p. (2.4)

We show that : :
[f(z1) — f(z2)] < 2d(z1,22). (2.5)

Since p; and € are fixed, to shorten notation, we will write P instead of P(p;,€o), Pn
instead of P(p;,€0,n) and Py = {p;}. Note that if there is { € {1,2} such that z; € P,
then z; € P, for some n € N. Put '

ng =Vmin{n€N: {zl',:zg}ﬂP,,¢@}. (2.6)
Without loss, we can assume that z; € P,,. By (2.4),

d(mg,P,,o) < d(.’L‘l,Iz) < €p.
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Hence {z1,z2} C Pa,+1 by Proposition 1.5/b). Moreover, by (2.6), {z1,22} C Pny+1 \
Pno—1 (if nog = 0, {z,,22} C P,). Note that, if z,,z5 € P,, \ Pn,—1 then, by the
definition of f,

[f(z1) = f(z2)] £ |d(z1, Pro-1) — d(z2, Pny—1)| < d(z1,22). (2.7)

Now suppose 13 € Ppo41 \ Pn, and ) € Py, \ Pay—; (hence ng > 1). By Proposition
1.5/b) '
d(.’l:g.,Pno_l) Z 9. (28)

We show that
€0 — d(z1,22) < d(z1, Prg-1) < 0. (2.9)

Since x; € Py,, d(z), Pny-1) < 0.

Now, suppose on the contrary that
d(zy, Prg—1) < €0 — d(z1,22).
Take y € Pp,—; such that d(z,,y) < €0 — d(z1,22). Then
d(z2, Png—1) < d(z2,y) < d(z1,y) + d(22,71) < d(22,21) + €0 — d(22,21) = €0,
which is a contradiction with (2.8). Note that in our case

|f(z2) — f(z1)| = |eo + d(z2, Pny) — d(z1, Pry-1)|
= &0 + d(IQ, Pno) - d(II,Pnu—l)

< €0 +d(z2, Pny) — (€0 — d(z1,22)) (2.10)
=d(I2,Pno)+d(.'L‘1,.'L‘2)
< 2d(z,z2)

which proves (2.5) if {z;,z2} NP # 0. Since f is constant on X \ P, the result is proved.

Second case: For every p,....,p1 € X, Y\ U;=1P(p,~,£o) # 0. By Proposition 1.5/f),
there is a sequence {yx} C Y such that P(yk,c0) # P(yn,€0) for k # h. Let us define
f: X —>Rby
0 ifz ¢ UneNP(yn,ﬁo)

2.11
n if £ € P(yn,¢o) ( )

@)=

Reasoning as in the case of the previous function, we can show that or {z,, z,} satisfying
(2.4) is contained in X \UneNP(yn, €0) or there exists a fixed n € N such that {z,,z,} C
P(yn,€0). Since f is constant on each P(yn,&0) and on X \ UneNnP(yn, o), (2.5) holds
true. The proof is complete B

Remark 2.2. We want to give two examples which show that it is necessary to
consider two cases examined in the proof of Theorem 2.1:
a) The space (X, d) from Example 0.1 satisfies the first case.

b) X = {Aen : n € Nand X € [1,2]}, where e, is the canonical basis of I, and
d(z,y) = ||z — yl|2, satisfies the second case.
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It is worth saying that in Theorem 2.1 we can replace R with the Euclidean norm by
any normed space (E, ||-||), E # {0}. Indeed, we can define g : X — E by g(z) = f(z)y
where y # 0 is a fixed element from E and f is as in the proof of Theorem 2.1.

Corollary 2.3. Let (X,d) be a metric space. Then X is compact if and only if X s
finite chainable and each continuous, real-valued function on X is uniformly continvous.

Proof. By Theorem 2.1, any real-valued continuous function is bounded on X.
Thus the result follows by Hewitt’s theorem B

Remark 2.4. Metric spaces (X, d) for which any real-valued, continuous function
on X is uniformly continuous are widely studied in literature and are known as UC
spaces (for references see [4]).

From Theorem 2.1 it is easy to reprove the Atsuji theorem [2: Theorem 2] in a
slightly stronger form. '

Corollary 2.5 (compare with [2: Theorem 2]). Let X be a metric space. Then
X is finitely chainable if and only if f(X) is a bounded subset of R for any uniformly
continuous or uniformly locally Lipschitzian function f on X.
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