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Abstract. We present a notion of a finitely chainable subset of a metric space X. We show 
that Y is a finitely chainable subset of X if and only if 1(Y) is a bounded subset of R for 
any uniformly locally Lipschitzian or uniformly continuous real-valued function f on X. As a 
corollary we reprove the Atsuji theorem in a slightly stronger form. 
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0. Introduction 
In infinite dimensional metric spaces not all continuous images of bounded sets are 
bounded. Indeed, in 1948 Hewitt [1: p. 691 showed that in a metric space X each 
continuous, real-valued function is bounded if and only if X is compact. 

What happens for uniformly continuous functions? To explain better this problem 
we begin with 

Example 0.1. Let {efl}flEN be the canonical basis of 12 and let ii - denote the 
Euclidean norm. Let X, be the segment joining e0 with e,,+ 1 , i.e. X,, = {e + t(en+i - 
e) : 0 < t 1}. Let X = Equip X with two different metrics p and d 
defined by

d(x,y) = li x - 1111 
and

2d(x,y)	 ifx,yEX 
p(x,y)	2"d(x,en+1)+Dn,m +2 m d(em ,y) if X  X,y E X 1 (n < m) 

!. 2'd(y, e+ 1 ) + Dn,m + 2 m d(em, x) if y E X,, x E Xm (ri <m) 
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vs rn-i where D,m =	2'd(ej,e+i). Finally, consider a function f : X -* R defined
by

1(x) = n + i	if x = e, + t(en+i — en). 

Note the following: 
a) (X, d) and (X, p) are two bounded metric spaces. 
b) d and p are equivalent but not uniformly equivalent metrics on X (i.e. for every 

x E X and e > 0 there exist 6 > 0 and 62 > 0, depending not only on c but 
also on x, such that p(x, y) < e whenever d(x, y) < Si and d(x, y) < whenever 
p(x,y) <(52. 

c) f is a real-valued unbounded function on X. 

d) f is a uniformly continuous function on the metric space (X, d). 

e) f is a continuous but not uniformly continuous function on the metric space 
(X,p). 

The situation pointed out in Example 0.1 is not unexpected. Indeed, in 1956 Atsuji 
12: Theorem 2] showed that each uniformly continuous real-valued function on a metric 
space (X, d) is bounded if and only if X is a finite chainable space, i.e. for every e > 0 
there are finitely many points p i ,..., pi and a positive integer in such that any point of 
X can be bound with some pi by a finite sequence of m + 1 points x = 0, ... X = 
of X satisfying d(xk_ 1 ,xk) < r (k = 

In this note we introduce and study a notion of a finitely chainable subset of a 
metric space X. The main result of it is Theorem 2.1, which gives a characterization of 
finitely chainable subsets of X. Also, we reprove the Atsuji theorem [2: Theorem 21 in 
a slightly stronger form. 

1. Finite chainability property 

In the sequel, X denotes a metric space with a metric d, B(x,r) the open ball of a 
centre x and radius r and AC = { y E X : dist (y, A) < 6) the 6-neighbourhood of a set 
AcX. Let x,yeXandc>0. 

Definition 1.1. An 6-chain of length in joining x with y is a finite sequence of 
M + 1 points (not necessarily distinct) of X, xo = x,..., Xrn = y satisfying d(xk, X k_1) < 
C (k=1,...,m). 

Definition 1.2 (Compare with 12: Definition 31, where the case Y = X has been 
considered). A subset Y of X is said to be X-finitely chainable if for each e > 0 there 
are a finite set q, ..., q,(e) of points of X and a positive integer my = my(E) such that 
any point of Y can be bound with some q, (1 j 1(e)) by an e-chain with length 
my(e). The function my : [0,] —* N, e - my(e) is said link's number function. It is 
a non-increasing function. 

Example 1.3. We can equip R with many metrics. For example, the functions 

d i (x,y) = Ix - y I	 (1.1)
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d2(x,y)	x — yI	 (1.2)
1 + Ix - 

d3 (x,y) = Iarctan(x) - arctan(y)I	 (1.3) 

are three equivalent metrics on R but only d 1 and d2 are uniformly equivalent. The 
following is easy to see: 

a) (R, d1 ) is an unbounded and not finite chainable space. 
b) (R, d2 ) is a bounded but not finite chainable space. 
c) (R, d3) is a bounded finite chainable space. 

Now we summarize a few properties of X-finite chainable subsets. 
Proposition 1.4. Let (X, d) be a metric space. Then: 
1) The property to be X-finite chainable subset is an immersion property, i.e. if Y 

is X-finitely chainable, then Y is Z-finitely chainable for every metric space Z which 
contains metrically X. 

2) The property to be X-finitely chainable is hereditary, i.e. if V is X-finitely 
chaznable, then each subset Z of Y is X-finitely chainable. 

3) Let {(X,,d,),j = 1,...,n) be a finite family of metric spaces. Then a subset 
A = A 1 x ... x An in the metric product space X = fl..1 X, is X-finitely chainable if 
and only if A, is X,-finitely chainable for j = 1, ...,n. 

4) Let {(X,d) : n E N) be a sequence of metric spaces and let X= [J	X, be 
the Cartesian product of Xn endowed with the metric 

00	d(x,y) 
d({x},{y}) =

n1	+d(x,y) 

For An C X, (n E N) consider the set A =A 1 . Then A is X-finite chainable 
if and only if A n is X-finitely chainable for every n E N. (This is a version of the 
Tzchonoff Theorem for finite chainability.) 

5) The property to be X-finitely chainable is a metric property but not a topolog-
ical one, i.e. equivalent but not uniformly equivalent metrics can induce different X-
chainable subsets. For uniformly equivalent metrics the classes of X-finitely chainable 
subsets with respect to them are the same. 

6) The family of X-finitely chainable subsets of X contains the family of bounded 
metrically convex subsets of X, whenever X is a complete metric space. 

7) The family of X-finitely chainable subsets of X is contained (properly in general) 
in the family of the bounded subsets of X. 

8) If E is a normed space, then a subset Y of E is E-finitely chainable if and only 
if Y is bounded. 

9) Let Y be a subset of a complete metric space X. Then V is relatively compact if 
and only if Y is X-finite chainable and the link's number function admits a maximum. 

10) Let (X,dx) and (Z,d) be two metric spaces. Let f : X - Z be a uniformly 
continuous function. Then f maps X-finitely chainable subsets of X into Z-finitely 
chainable subsets of Z.
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Proof. We only prove statements 4 - 10. 
Statement 4: Necessity. Let A = A, be X-finitely chainable. We show that 

An is X-finitely chainable for every n. Fix e > 0 and consider 71 2"(I+e) By the 
X-finite chainability of A, there exists a number j(ij) of elements p', ...,p.7(h1) E X and 
m = m(i) E N such that any  = {x} E A can be bound with some p' (1 <i <j(i)) 
by an is-chain in X x 0 = x,...,x m = p' satisfying d(x'',X I ) < e (1 = 1, ... ,ni). 
Then the n-th coordinate x,, of x can be bound with the n-th coordinate p, for some 
i e {1, ...,j(71)} with an e-chain in X,, of length m(i) since 

2	d(x',y) < d(x'',x') <i	implies d(x,x) <2	= 
1 +d(x',14,)	 1 - 2hi 

Sufficiency. Let An be X-finitely chainable for every n. Take e > 0 and fix n such 
that	n+1 2	< 1 . Then the thesis follows from property 3) applied to A 1 x ... x A 
and from the fact that

dk(xk,yk) <
	-k dk( xk,yk)	C 

d({xk},{yk}) =
+dk(xk,yk)

	

	 +dk(xk,yk) k=I  

Statement 5: Examples 0.1 and 1.3 show that the property to be X-finitely chainable 
is not a topological one. Now let d1 and d2 be two uniformly equivalent metrics on X. 
Let A be a subset (X,di ) - finitely chainable and let e > 0 be fixed. Then there exists 
i > 0 such that di (x,y) < ij implies d2 (x,y) < C. On the other hand, there are 
PI,••,P:() E X and m(77 ) E N such that every x E X can be bound with some p j by 
an 77 -chain x = XO,...,Xm(,) = p3 such that di(xj,xj+j) <j (1= 0,...,m(7)— 1). Note 
that d2(xi,xj+i) <c, and consequently A is (X,d2 )-finitely chainable. 

Statement 6: First of all, a bounded set A = [0, 1] U {2} is IR-finitely chainable but 
not metrically convex. Now, let A be a bounded, metrically convex subset of X, i.e. for 
any x, y E A there is a point z e A such that d(x, y) = d(x, z) + d(y, z). A theorem of 
Menger 13: p. 41] states that a convex and complete metric space contain together with 
x and y a metric segment whose extremities are x and y, that is a subset isometric to an 
interval of length d(x, y). Hence we see that if x, y E A, there exist x = X0, ..., Xm = 
such that

d(x,y)=d(x1_1,xi)	and	d(x1_1,x)<e.	 (1.4) 

In addition, we can assume that (1.4) holds with 

d(x+1,x1) +d(x1+2,x+1) > C. 

Indeed, since
d(x1,x1+i) + d(x1+1,x+2) = d(x1,x,+2) 

if
d( x 1, x 1+i) + d(xj+i,x+2)< C 

we can exclude x11 from the chain. Hence by (1.4) it follows that	< d(x,y) < 
diarn.) (n + 1)c. Hence, any pair can be bound with an c-chain of length m(c) < 2 
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Statement 7: Note that Examples 0.1 and 1.3 furnish bounded but not X-finitely 
chainable subsets. The boundedness of an X-finite chainable subset A follows from the 
fact that A C UB(p,mA(c)c) for fixed e > 0. 

Statement 8: Every element x of a bounded set A C E can be bound with zero by 
an c-chain with knots on the segment [0, x) of length m(c) < 

Statement 9: For any c > 0 we have my(c) = 1. On the other side, let M = 
max{my(c) : c > O}. Fix c > 0. Then there are finite number of points p, ...,PI(e/M) E 
X such that every point of Y can be bound with some p 1 by an h-chain with length 
M. Thus Y C uM)B(p,c). 

Statement 10: Fix c > 0. Let S = 8(c) be such that di (x,y) < S implies d2(f(x), 
f(y)) <c. Let Y be X-finitely chainable subset of X. Then there are finite number of 
points p, ..., P1(6) E X such that any y E Y can be bound with some p 1 by a 5-chain of 
length my(S). Then any point of 1(Y) can be bound with some f(p3 ) by an c-chain of 
length my(S) I 

Now we want to examine some properties (frame, amount, length and so on) of the 
chains with start knots fixed. In this way we will be able to define a non finite chain-
ability measure that will be useful to prove the connexion between X-finite chainability, 
uniform continuity and uniformly local Lipschitz continuity of functions. 

Let (X, d) be a metric space and let c > 0 be fixed. We denote by P(x, e, n) the set 
of all points in X which can be bound with x by an c-chain of length 11, i.e.

 ^ There exist {z i , ..., z_ } C X such that 
P(xcn)={YEXd(xz)<cd(zz)<cd(zy)<c } .

	
(1.5) 

Moreover, we denote by P(x, c) the set of all points in X which can be bound with x 
by an c-chain with an arbitrary finite length, i.e. 

P(x,c) =	P(x,c,n).	 (1.6) 
nEN 

With this notation, step by step, it is easy to verify the following 

Proposition 1.5. 
a) P(x,c,1) = B(x,c). 

b) P(x,c,n + 1) = (P(x,c,n))e (so any P(x,c,n) is an open set). 
c) P(x,c,n + 1) = P(x,c,n) for some n implies P(x,c,rn) = P(x,c,n) for any 

m n.
d) (P(x, E )) e = P(x, c), i.e. P(x, c) is an isolated set, so if X is a connected metric 

space, then P(x,c) = X for any x E X and c >0. 
e) A relation R on X x X defined by (x,y) E R if and only if x e P(y,c) is an 

equivalence relation on X x X. 
f) The family {P(x,c) : x E X} is an uniformly isolated partition, i.e. (P(x,c))c fl 

(P(y , c)) e = 0 if P(x,c)	P(y,c).
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g) (U 1 é J P(X 1 ,E)) e = UcIP(x,E) for any index set I. 
h) If there is infinite number of distinct sets P(x,c) (n E N) and (Z, d) is an 

unbounded metric space, then a function I : X —* Z defined by 

0	if x UnENP(Xfl,e) 
1(x) = Zn if x  P(x,e),n even 

t Wn ifxEP(x,e),nodd 

where Wn,Zn E Z are fixed points such that d(w,z) > n is an unbounded uniformly 
locally Lipschitz function on X. 

Now, let Y be a bounded subset of X. Denote by N(Y) the set of all numbers e> 0 
for which Y is chainable by c-chains with fixed finite length, i.e 

	

N(Y) { > 0 
There exist P1,,PI(e) E X,my(e) EN }

	
(1.7) 

=	such that Y C UP(p,e,my(e)) 

Of course, if e E N(Y), then the real interval [c, ) is contained in N(Y). Put 

c(Y) = infN(Y).	 (1.8) 

This is a measure of non finite chainability of Y and Y is X-finitely chainable if and 
only if c(Y) = 0. 

Moreover, the following is easy to see: 
a) c(Y) <diam(Y). 
b) c(A U B) 15 max{c(A), c(B)}. 
c) c(A) = c(A). 
d) A C B implies c(A) c(B). 
e) X is complete if for any decreasing sequence of X-finitely chainable closed sub-

sets {F} one has fl nENFn 54 0. 

2. The main results 

In the sequel R is endowed with the Euclidean metric. For sake of completeness, we 
recall that a function f : X — R is said to be uniformly locally Lips chitzian if there are 
p > 0 and L > 0 such that 

	

Sup { x,YExwith0<d(xY)<P}L.	(2.1) 

Theorem 2.1. Let (X,d) be a metric space and let Y C X. Then the following 
conditions are equivalent: 

(i) Y is X-finitely chainable.
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(ii) For any uniformly continuous function f : X - IR, 1(Y) is a bounded subset 
of. R.

(iii) For any uniformly locally Lipschitzian function f : X - R, f(Y) is a bounded 
subset of IL 

Proof. By Proposition 1.4/8) and 10), (i) implies (ii). Of course, (ii) implies (iii). 
So we show that (iii) implies (i). Suppose, on the contrary, that Y c X is not X-finitely 
chainable. We will construct a real-valued, uniformly locally Lipschitzian function on 
X, unbounded on Y. Fix a positive number Eo <c(Y). Then for any finite set of points 
pi, ..., pg and for any n  N,

Y\UP(pj, co, n)O.	 (2.2) 

It can happen or not that there are finitely many points p i , ..., pg E X such that 

Y c 

We examine both cases separately. 
First case: There exist p,...,p' such that Y C U=1 P(p,Eo). Then by (2.2) for 

some pj we have P(p,eo,n) 0 P(p,,co) for any n E N. Hence, by Proposition 1.5/c), 
P(p,,eo,n) 0 P(p,eo,m) for any n 54 m. We define f X - R by 

f(x) 

1 0	 if x V P(p,eo)	 (2.3) 
d(x,p,)	 if X  P(p,,Eo, 1) 
(n - 1)c + dist(x, P(p,eo,n —1)) if x E P(p3 ,co,n) \ P(p3 ,eo,n - 1) 

The function f is unbounded on Y and uniformly locally Lipschitzian on X \ P(p3 , Co). 
We show that f is uniformly locally Lipschitzian on X. Put p = Eo and fix x 1 , x 2 E 
which satisfy

d(xi,x2) < p.	 (2.4) 

We show that

	

f(xi) - f(x2 ) <2d(x i ,x2 ).	 (2.5) 

Since pj and Eo are fixed, to shorten notation, we will write P instead of P(p,, eo), Pn 
instead of P(p,, co, n) and P0 = {p}. Note that if there is I e {1,2} such that xt e P, 
then xi E P, for some n E N. Put 

	

no = min {n E N: {x i , x 2 } fl P,,	O}.	 (2.6) 

Without loss, we can assume that x 1 E P, 0 . By (2.4), 

d(x 2 ,P 0 )	d(x j ,x2 ) < eo.
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Hence {x i ,x2 } C P+i by Proposition 1.5/b). Moreover, by (2.6), {x 1 ,x 2 } C P 0 +i \ 
P, 0 _ 1 (if no = 0, {x 1 ,x2 } c F1 ). Note that, if x 1 ,x2 E P,, 0 \ P,20 _1 then, by the 
definition of f,

f(x i)-f(x 2)I Id(xi,P,,,_i)—d(x2,P,,,_i)I <d(x i ,x 2 ).	(2.7) 

Now suppose x 2 E P,, 0 +1 \ P,,, and x i E P,,, \ P,, 0 _ 1 (hence no ^! 1). By Proposition 
1.5/b)

d(x2,P,,0_1) ^! Co.	 (2.8) 
We show that

Co - d(x i ,x 2 )	d(xi,P,,,_i) <CO.	 (2.9) 

Since x 1 E P,, 0 , d(xi,P,,0_i) <CO. 

Now, suppose on the contrary that 

d(x i , P,, 0 _ 1 ) < Eo - d(x 1 , x). 

Take yE P,,, _ 1 such that d(x i ,y)<Co—d(x i ,x 2 ). Then 

d(x2,P,,0_i) < d(x 2 ,y) d(x i ,y) + d(x 2 ,x j ) < d(x 2 ,x i ) + Co - d(x2 ,x 1 ) = CO, 

which is a contradiction with (2.8). Note that in our case 

f( x2) — f(x i)l = Ieo+d(x2,Pn0)—d(xi,Pn0_i)I 

= Eo + d(x2 ,P,,) - d(xi,P,,,_i) 

Co + d(x2 ,P,,,) - (CO - d(x i ,x 2 ))	(2.10) 
= d(x2,P,,,)+ d(xj,x2) 

2d(xi,x2) 

which proves (2.5) if {x 1 , x2} fl P 34 0. Since f is constant on X\P, the result is proved. 
Second case: For every p, ...,p i E X, Y\U.. 1 P(p,co) 0 0. By Proposition 1.5/f), 

there is a sequence { yk} C Y such that P(yk,Co) 54 P(yh,Co) for k 54 h. Let us define 
f : X - R by

1(x) 
= { 

0 if x UflENP(yfl,CO)	 (2.11) 
n ifxEP(y,,,Co). 

Reasoning as in the case of the previous function, we can show that or {x i , X2) satisfying 
(2.4) is contained in X \U flE NP(Y fl , Co) or there exists a fixed n € N such that {x 1 , x 2 1 C 
P(y,,,eo). Since I is constant on each P(y,,,Co) and on X \ U flENP(Yfl, CO), (2.5) holds 
true. The proof is complete U 

Remark 2.2. We want to give two examples which show that it is necessary to 
consider two cases examined in the proof of Theorem 2.1: 

a) The space (X, d) from Example 0.1 satisfies the first case. 
b) X = {Ae,, : n € N and \ € [1,2]}, where e,, is the canonical basis of 12 and 

d(x,y) = Ix - 11112, satisfies the second case.
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It is worth saying that in Theorem 2.1 we can replace R with the Euclidean norm by 
any normed space (E, ), E 54 {O}. Indeed, we can define g : X - E by g(x) = f(x)y 
where y 0 is a fixed element from E and f is as in the proof of Theorem 2.1. 

Corollary 2.3. Let (X, d) be a metric space. Then X is compact if and only if X is 
finite chainable and each continuous, real-valued function on X is uniformly continuous. 

Proof. By Theorem 2.1, any real-valued continuous function is bounded on X. 
Thus the result follows by Hewitt's theorem U 

Remark 2.4. Metric spaces (X, d) for which any real-valued, continuous function 
on X is uniformly continuous are widely studied in literature and are known as UC 
spaces (for references see 141). 

From Theorem 2.1 it is easy to reprove the Atsuji theorem [2: Theorem 2] in a 
slightly stronger form. 

Corollary 2.5 (compare with 12: Theorem 2]). Let X be a metric space. Then 
X is finitely chainable if and only if f(X) is a bounded subset of R for any uniformly 
continuous or uniformly locally Lipschitzian function I on X. 
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