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Abstract. This paper deals with the asymptotic behavior of M-band scaling functions 
and M-band symbols jH as M - =for N > 2. This is followed by pointwise convergence, 
and LP -convergence (1 <p < oo) ofand the limit function g of	as M .- 
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1. Introduction 
For any integer M > 2, a function f is called M-refinable (or simply refinable) if it 
satisfies the refinement equation 

1(x) =

	

	c(s)f (Mx - s)	 (1.1)€
sEZ 

and f 1(x) dx = 1, where {c(s)}, called the mask of the refinement equation, satis-
fies the condition > c(s) = M and is of finite length. A function f is said to be 
orihonorrnal if it satisfies 

If(x)f(x_k)dx={	 (kZ). 

By a scaling function we mean an M-refinable and orthonormal function. For a given 
sequence {c(s)}, we define

H() =	c(s)exp(is).	 (1.2) 
sEZ 

Then H is called a filter of the refinement equation (1.1) or a filter corresponding to the 
scaling function 1. For any integer -N > 1, H is said to have N vanishing moments if 
there exists a Laurent polynomial H such that 

_M 1 N - 

H(z) = _ 	I H(z).	 (1.3) 
I M(l —z)j 
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For a scaling function 1 let a sequence of closed subspaces Vj (j E 7L) of square 
integrable function space L2 (R) spanned by the functions 

fi,k(X) = {Mu/21(Mix -k): k E z}.	 (1.4) 

Then {Vj } 3 €z is called a muliiresolutzon analysis of L2 (R) if it satisfies the following 
conditions: 

(i) V3 c Vji , and f E V3 if and only if f(Mx) E ,+j for all j E Z. 

(ii) U,EZV is dense in L 2 (R) and fl,Vj = { O}. 

(iii) {f( . - k)}kEz is an orthonormal basis of V0 for some of f E V0. 

We denote the wavelet space W3 (j E Z) by the orthonormal complement spaces 
of V3 in Vj so that the wavelet decomposition 

L2 =IJW,=Vk+IJWJ	 (1.5) 
IEZ	j>k 

holds. In fact, (1.5) suggests the decomposition 

f=>J9i=>gi+fk	 (1.6) 
JEZ	j2:k 

of f E L 2 (R) where g3 E W3 and 1k E Vk. 
The literature of wavelets is replete with analysis of 2-band (M = 2) scaling func-

tions. The wavelet theory when M = 2 can be found in the literature of wavelets (see 
Daubechies [21). When Al = 2, 14' is spanned by {2 3 (23 . —k)} k ez and the mother 
wavelet can be constructed from the 2-band scaling functions 0 in the form 

t,b(x) =	c1_k(-1)'(2x - k),	 (1.7) 
kEZ 

where ck are the coefficient of the 2-band scaling functions defined by (1.1). 
In short, the theory of wavelets for M = 2 has received considerable attention. 

However, the wavelet theory for M > 2 received much less attention. Bi et al. [1] 
and Heller [3] independently considered the design of filter with N vanishing moment 
and finite length. Bi et al. [1] also considered M-band scaling functions, M-band 
wavelets and constructed compactly supported orthonormal M-band wavelets. The 
major objective of this. paper is to investigate the asymptotic behavior of M-band 
scaling functions and M-band symbols as M —+ co. 

For any integer N > 1, let

2N—I 
NH(e) =	Na(s)exp(ise)9 1:
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be a solution of the equation

	

— I I2N - 1 + S
INH(,)2 = cos2N 

() N >	) sin2 ffl.
	

(1.8) 

We note that the solution of equation (1.8) in the form 

1 2N-1 

	

NH() =	Na(s)e	 (1.9) 

is not unique, but finite when N > 2. 
Daubechies [2] introduced scaling functions NO with symbol NH when M = 2, and 

wavelets N1,b defined by 

N1,b() = 
NH(- 

+ ir) exp (-^') 
N (),	

(1.10) 

where / is the Fourier transform of an integrable function f defined by 

= jex(—ixe)f(x)dx. 

For these wavelets NO, {2 2 t,b(2' . —k)}j , k Ez is an orthonormal basis of L2 (R). The 
Holder index of NO is about !N for large N, and it has N vanishing moments, that 
IS,

	

JR
xk(x)dxO	(0k<N-1). 

Moreover, for any N > 1, the scaling function NO has minimal support in the class of 
compactly supported scaling functions 0 for which we may find a compactly supported 
orthonormal wavelet b in V1 which has N vanishing moments and satisfies 

IR 
V;(x)O(x — k) dx = 0	(keZL) 

where Vi is the closed subspace of L2 (R) spanned by {/(2• —k)}kEz. 
We define

- 

Al 
(N_1+si) (2sin) 2 ' (0<s<N-1) (1.11)

	

Si	M 
3)+ . +.*M- t- 3 •j—I 

and

P(t) =	a(s)t.	 (1.12)
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By the Riesz lemma [2: P. 172/Lemma 6.1.3], there exists a unique solution H of the 
equation

sin M 
2N 

	

IH()I2 = ( P(2 P(2 - 2 cos ),	 (1.13)€
M sin 2 

such that
1 iMe N N—i	 1 MN-1 

H() 
= (M(i - et)) >	(s)e' =	c(s)e	(1.14) 

and >tJ i(s) zS has all roots in the open unit disk, where P(z) is a polynomial in z. 
Denote the solution of equations (1.13) and (1.14) by JH. Let NMO be the solution of 
the refinement equation (1.1) with the symbol MH. 

Bi et al. [1) and Heller [ 3 1 independently proved that NM0 is orthonormal, and repre-
sents a scaling function. Furthermore; NO has minimal support in the class of compactly 
supported scaling functions 0 for which we may find compactly supported orthonormal 
wavelets i E V1 (1	s	M — 1) such that 7,b 3 has N-vanishing moments and
{ ( . , k), ?,b 3 ( . , _k)} s; kEZ is an orthogonal basis of V1 , where V1 is a closed subspace 
of L2 spanned by {/M(M . — k} kEz. For this reason, we call NO as M-band scaling 
functions of Daubechies type. 

When M = 2, Daubechies [2] and Pollen [4] studied the 2-band scaling functions 
of Daubechies type. On the other hand, for M-band scaling functions of Daubechies 
type, Bi et al. [1] investigated the asymptotic behavior of the Holder index ofas NO 
N —	. For N = 2, Sun and Zhang [5] proved that the exact HOlder index of MO 

is 1 — h18) where 9 = {(2M2 + 1)1 1" .  The function	tends to a function g€
pointwise as M —* oo where g is given by

ifO<x<1 

—x+1—$ ifl<x<2 
1	otherwise 

They have also shown thatis locally linear on an open set with full measure and 
locally linearly dependent when M > 3. 

This paper deals with studying the asymptotic behavior of M-band scaling functions 
and M-band symbols H as M — , for any N > 2. More precisely, we investigate No 

the local polynomial structure ofon an open set with full measure, the asymptotic NO 
behavior of NH, and then the pointwise convergence and LP -convergence ofas NO 
M —	. In Section 2, we consider the local polynomial structure of 1MV0 on an open
set. Section 3 deals with the asymptotic behavior of M-band symbols NMH. This is 
followed by pointwise convergence and LP-convergence (1	p < oo) of NO . Finally, 
some remarks on the limit function g ofas M - oo are discussed. NO
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2. Local polynomial functions 

We say that a function supported in [a, b] is locally polynomial on an open set A C [a, b] 
if it is a polynomial on every connected component of A. 

Theorem 2.1. Let M > N andbe the solution of the refinement equation (1.1) NO 
with symbol jH. Then there exists an open set A C (0, N+-) with Lebesgue measure 
N +• 4 such that	is locally polynomial on A. 

Moreover, the above assertion holds for a more general class of refinable functions. 
A proof of this theorem is given by Bi et al. [1], and is omitted. 

Theorem 2.2. Let M - 1 > r j4 0 and 0 be the solution of the refinement equation 
(1.1) with symbol

l_&M N 
H(e)= (M(l_e)) Qr(e) 

where Qr(0) =1 and Qr() may be written as Qr(e) —o c(k)e'. Then there exists 
an open set A C (0,N + M r-r) with Lebesgue measure N +M r I such that 0 is locally 
polynomial on A. 

To prove Theorem 2.2, we need some lemmas. 

Let 0 be as in Theorem 2.2. We define 

41 (x) 	((x),...,(x+N-1))T
E (0,1)) 

(x) = ((x + 1),... , (x + N))T	
(x

 

and

mj=IR
x)(x)dx	(OjN-1). 

Let
A(x) = ((x + k )2 )o< . k < NI	and	A(x) = ((x + k) 2 ) O<j<N-I. 

Denote the transpose of a matrix (or a vector) A by AT. Then we have the following 

Lemma 2.1. Let M - 1 > r and 0 be as in Theorem 2.2. Then 

A(x)4)(x) = (mo,...,mN_1)
T
 - ( 1,x+N,...,(x+N)N_1)T(x+N)1

(2.1)€

	

A(x)(x) = (ma,.. .,m_i) T - (1x,... ,xN_1)7'(x)	 J 
N1	r on (0,1) and is polynomial on u3=o (j +	1)). 

Proof. We first note that 0 is supported on [0, N + -r] and 

detA(x)=	H	(j—i)0. 
O<i.(j<N-i
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Therefore, from the first formula in (2.1) we get 

I(x)	(det A(x))' A(x)(mo,... , mv_1) 

on ( -- , 1), where A* (x) denotes the adjoint matrix of A(x). Then the second assertion 
follows from (2.1). 

Now we prove (2.1). By taking the Fourier transform of both sides of the refinement 
equation (1.1), we obtain

- 

	

Therefore, D3 (2kir) = 0 for all k E Z\{0} and 0 j

	

	N - 1, where D = a is aac 
differential operator, and furthermore 

>(x+k)3 q(x +k) =j x3q(x)dx = rn	(0 j <N — i)	(2.3)€
kEZ  

by the Poisson summation formula. Then the first assertion in (2.1) follows from (2.3)1 

Lemma 2.2. Let be the same as in Theorem 2.2. Then there exist real numbers 
a(0),... , a(r) and polynomials PI,... , Pr with degree at most N - 1 such that 

() = a(j)(x) + P(x)	(0 j r, x E (0,1))	(2.4) 

and

	

1k	 \	k	 1k€
Ej 

+	
= J] a(e(x) + P (I	+ Mk-! 

	

•j=1	

k-2 k	
j=2	

k	
(2.5) 

+	fi a(cj)P, (j=i+3 M2 + Mki_2 
i=O l=k-i  

where ej E {0,1...,r} and  E (0, 1). 

Proof. By the refinement equation (1.1), we obtain 

fx+j\ (M-I)N+r 

--) =	
c,cb(x+j —1) =	cj_i(x +1)	(2.6) 

	

1=0	 1=0 

on (0,1). From Lemma 2.1, there exist polynomials Q3 E flN..I and numbers d3 (1 
j <N) such that

(x +j) = d(x) + Q 3 (x) (2.7) 

where llN1 denotes the class of polynomials with degrees at most N - 1. Then (2.4) 
follows from (2.6) and (2.7), and (2.5) follows by using formula (2.4) k times I
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For any e, E {0,1,...,r} and 1 <i < k, define 

Then A(e i ,.. . ,e,) C (0, -) when 6k j4 r. Furthermore, we have the following 

Lemma 2.3. Let A(e i ,... ,ek) be defined as above. Then 

A(e i ,... ,Ek)flA(6'1,... ,e.) = 0 
when ek,6, 7A r except k = k' and (ei,...,ek) = (e,. . 

Proof. Define
k

r 

j= 1 

Then it suffices to prove that 

,e,) > a(e j ,. . . ,Ek) 

We note that

k 
and	b(el,...,ek)	e=+-. Mj 

a(e,... ,e,) ^! b(c i ,... )6k) 

.7	 .7 

M3a(el,...,6k)=M3.+M1a(6j+l,...,6k)CM1A-+(0,1)

	

j=1	 j=1 

and

6 

	

j=1	 j=1 

Therefore the problem reduces to prove 

b(c i ,. . . ,6)	a(6'. . . ,e.) 

	

for the following two cases: (i) E	El and (ii) 6 = 6 and k = 1 or k' = 1. 
For the case (i), we get e', > 61, otherwise 

el + 
1

	

a(e'1 ,...	<	
M	

a(ei,... ,ek) 

which is a contradiction. Therefore, we have 

b(e i ,. . . ,6k) < e + 
1	

a(e,... 
M 

For the case (ii), k' must be one, otherwise 
k

r	r	El	r 

=M+(M_l)M=a(61) 

which is a contradiction. Therefore, we have 

k—I 

b(6 1 .... 6k)<+	
r	r-1	1 

—M
j=2 

and the lemma is proved U
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Proof of Theorem 2.2. We define 

o=O	U 
k=1 (.,,. ,k_I)E(O.1 

and

A= (N
i=O)(N1(.+(M-1 ))). 

Then 0 is local polynomial on A by Lemmas 2.1 and 2.2. By Lemma 2.3, we obtain 

IAI=(N_l)(l_Mrl)+N
k=1 (	' ' k-1 )€(0,1 ,.... ,)-

kE{0,1,1} 

=(N - 1)(1 - M— 1) +N (i —
	

(r+1 k-1 

=N+ M— l' 

This proves the theorem U 

3. Asymptotic behavior of M-band symbol 

We write
/ l_&Me \N 

	

H()=	 (3.1) 
and

=	aq(s)(e' - W.	 (3.2) 

Then we have the following 

Theorem 3.1. Let H() be defined by (3.2). Then am(0) = I and the limit of 
a M(s )M exists for 1 <s <N — 1 and

NN —1 

1imjH () = (\	• ) 

where a(s) = limM_oo aM(s)M	(0 s < N — 1). Furthermore, 

2 121.'\ 1/2 IM—(N — ' ) am(N - i)j 2—N+i (1 -	
)
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To prove Theorem 11, we need some lemmas. 
Define

A(k,$) - E (2N
1
 1+1)   (2k7r)- 'A(k - 1, s - 1)	(k > 2) 

and

A(1, s) = (2N- 
5 
1 +s )  (2ir)2' 

Then A(k,$) > A(k - 1,$) and IA(k,$) - A(k - 1,$)I < C,k- 2 holds for all k > 2, 
where C, is a constant depending on s only. Therefore, lim. A(k, s) exists for all 
0 < s N - 1. Denote its limit by A, (0 < s N - 1) (the explicit computation of 
A, will be given in Section 5). Then we have the following: 

Lemma 3.1. Let fa(s) be defined by (1.6). Then 

urn ma(s)M 2 ' = A,	(0 < s < N - 1).	 (3.3)€
M—oo 

	

Proof. First we prove the assertion when M is odd. Denote M' =	Then we
may write

a(s) = M2'	
( M 'fj (2N -1 +s) (2i)_2si) 

\j1 

< 
(M' (1 + 0 (_Sj)2)) 

= M2' (fi (2N - 1 + s) (2j 7r)-2sj 

1=1 '1+..+'M'3 j=1 

< 
(0 (	/ - 21-1 H(i+o)))2 

 

M' 

+M2'	 H (2N -1 +S\) (2j 7r)2" 
"	'Si 

/ M' 

= M2 ' ( E I1M 3 + A(Mls)) 
1=1 

where 0(/)2 denotes a term bounded by C(2j)2 for some constant C independent of
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M. Obviously, we have 

o JIM(S) 

C E (2N — 1 + si) (217r)_2(31M_2 
s=I	

SI 

x	 (^	, (2N —1 +si) 
(2j ) -23j 

S 
31+...+SI-1+31+1+...+3M'=S 

S 

CA(M',$)	(21lr)_2(5_M_2 

S = I 

CM2A(M',$). 

Hereafter the letter C would denote a constant independent of M which may be different 
at different instances. Therefore, we get M 2'a(s) -i A, as M — oo when M is odd. 

When M is even, we may write 

M2'a(s 

= E (N - 1 + SM12) (2M) —23MI2 

'M/20	
SM/2

\ (_'_'i	
M/2—I 

(2N - l+ sj	j7r 
) (2 sin	

2s 

Si
) ) 

E
(N_i + .SM/2) 45M12M25M121(s - SM12). 

M/20 '	SM/2 

Using the same procedure to prove the assertion when M is odd, we may prove that 
1(t) —. A t as M — oo for all 0 < t <N - 1. Thus also M 23 ja(s) — A. as M — co 
when M is even I 

Lemma 3.2. Let ja(N - 1) be defined by (1.11). Then 

2 21 ) . M 22 ja(N - 1) < ( - 
(2)2N) 

Proof. It is proved by Bi et ad. in [1] that 

M-1	 2 

H(
2irs\ I 

-4-V) =1.	 (3.4) 

We note that

CiM	2N	 2N	2 \ 2N 

1: 1 M(1 — e1(+.237n/M))	M sin 3=0
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when iei :5. Therefore, we get 

M—I 1_eiM	2N	2)2N

M(1 - e+23	(
( e R).	(3.5) 

3=0 

We recall that

	

I'H()I2 = sin
	2N N—i 

(Msin)
	22s 

NMa(s) (sin) 
2	a=O 

and a(0) = 1. Then it follows from (3.4) and (3.5) that 

(2 )2N 
M 22 ja(N - / MC 2(N 

7r

M-1 
X 22(' 1 ) \'	sin2

(3.6) M2sin2(+)

\ 2(N—i) 
= M_2N + 2 a(N - 02 2(N-1) (sin 

M 

—_-) 

Substituting = M in (3.6) gives the lemma I 

Proof of Theorem 3.1. Let

Q(t) =	A3t'.	 (3.7) 

By Lemma 3.1, we can write

=
	Ma(S)t"= 

where 13M (s) - A3 as M - no. We then set 

Q(t) = 
j' (-'). 

Then there exists a sequence {tjM }±l 1 such that 

=	(M2i_i.7M) 

1—

 

and tM 4 as M - co.
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Recall that P(t) > 0 when i > 0. Therefore, i, ' (0, oo), and t,,M (0, oo) as M is€

	

sufficiently large. When t = 2 -	- e'e , we may write 

M 2 t - tJ,M = 1M(e' - 1) - Oj,M] [f(e	- 1) - OJ ,MI X 13j,M 
where

/j2 —4tMM2 

	

2M	

I— 

OJIM	
j,M	 .. - 

Vti	as M	00. 
M 

-41 
M + 0j,M 

Furthermore, the real part of 9j,M is always less than zero when M is large enough. 
Therefore, the root of M(z - 1) - 0J,M is contained in the open unit disk and 

'. M(e - 1) - 9j,M 

is a trigonometrical polynomial with real coefficients. By the Riesz lemma [2: p. 
172/Lemma 6.1.3] we obtain 

H(e) ll {M(et_1)_9iMJ 

Hence

	

N–i	 N–i
ft + /\ lim V' M3aM(.$)t3 = [I (%	) 

	

M_. 
s0	 j= 1 

and the limit limM_M 3 aM (s) exists for all 0< .s <N - 1. 
We observe that

	

1—eq	N N–i 

JH () = M(1 - e1/M)) >(am (s)M) x (M(& M - 
3=0 

Then we find that

lim JH () = ( 1 ij

)NN-1
 a(s)(i)3. M-00 

We recall from Lemma 3.2 that 

: t3,M 
= M2a(N - 1) 2-2(N-1) 1	

) 2N). (2 

Then we obtain 

IM'	
IN	I
flaM(N -1)

	V=-T)	 2—,m 

	(2)2N) 1/2	
(3.8) 

Theorem 3.1 is thus proved I
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4. Pointwise convergence and LP-convergence 

The B-spline BN of degree N - 1 is defined with the help of the Fourier transform by 

1 - et 

—e 

)N 

Theorem 4.1. Let	be the solution of the refinement equation (1.1) with symbol 
H and 1 < p < . Then	converges pointwisely and in LP -norm to 

-	 g(x) = BN(X) 
+	

a(s)B(x)	 (4.1) 

	

where cr(s) = limM ..MaM (s) and	is the s-th derivative of BN. Furthermore,€
g is orthonormal. 

We need the following lemmas to prove this theorem whose proof will be given later. 
For a compactly supported integrable function f, the k-moment of f is defined by 

	

mk(f) = IR x k f (x) dx	(0< k <N—i). 

Then we have the following 

Lemma 4.1. Let NO be the solution of the refinement equation (1.1) with symbol 
f H. Then

N-I 

	

JLmmk() = mk(BN) +	cx(j)mt(B)	(0 < k < N - 1)	(4.2)€
j= I 

holds. 

Proof. Let D = i be a differential operator. Then for any compactly supported 
integrable function jr, we have Mk(f) = (D k f)(0) . Define 

M(O=  
CO 

	

ri 
	

(-). 

Then we have

hM(e) =(T1) hM () 

and

DkhM(e) = Mk	(DiJ)	(DhM) (h).
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Hence, we find 

(1— M)(Dk h M )(o) = M 1: ( k

) 
(D)(0)(DhM)(0). 

From Theorem 3.1, M-i(Dii)(0) — (-i)'j!a(j) as M —* 00 (0 < j	N — 1).€
Hence D k h M (0) (_l)kk!cx(k) as M —* 00 (0 < k < N — 1). 

We recall that

U  iMe \N 
MH \_ C	I MJ
N	)	 l_1e)) N 

Therefore, q ) = B()hM(c), and 

	

(D)(0) 
= k	

(D)(0)(D'hM)(0). 

Hence

k	k!	 N-i 
(Dk)(0) .

	(k_j)!(_	DBq(0) =	a(j)jx'B.?2(x)dx 
j=O 

and the lemma is proved I 

Lemma 4.2. Let d,,M (0 j N.— 1) be numbers such that 

NO ( x + j) 
---) 

= dwjçb(x) + Qj,M(x )	(x E (0, 1), 0 <:1 <N - 1)	(4.3) 

holds for a polynomial QJ,M E 'I N-i . Then 

= Urn dji = (-1)'a(N - 
 

,Oj

and

<2a(N— 1)1< (1_ (2) 2N) 1/2
	

(0 <j <N—i). 

Proof. We recall that 

(x+k)2 f(x+k)=mj (j1.i)	(0j N-1). 
kEZ 

Then we obtain

k'(.+k)=QjEHN_j	(0 	N-1) 
k €Z
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or, in matrix form,

1 \ /	(x + 1)	

/1)	

/ Qo() \ 

	

J 
V (2) )	 1 

Qi(x

x

) 

j 2	... N'	(z+N)	0	
QN—I(x)) 

on (0, 1). Therefore, we get

	

(x	i) =	 M() +	 (4.4) 

where Q, E HN1. It follows from Theorem 3.1 that 

e1M -j N N—I 

N MH() (M(e' - 1))	
aM(s)(e( - 

eiM	 MN-1 
= ci(N - 1) (1_ e' ) (eM - i)N_i +	o(1)eM 1:k=0 

where o(1) means a number tending to zero as M -	. From (2.4) and (4.4), there 
exist polynomials Q3 E H N_I such that 

Mo 
(x+j

=	c i(x + 1) 
i=0

.7 

= (_1) 1 ci(N - 1)	( 1 + o(1))jçi(x + 1) 
1=0 

(	 .7 

= (_1) N (N —1) E(-1)' 
() )

(x) 

+ o( 1)M0(x) 
+ Q(x). 

l=0 
This proves the first assertion. 

Observe that E 0 (—i)() = 0. Then we have 

(N)^ = NI (_ 1), (N)^. 

I3=0	 s0 

It is easy to see that
(N ) ^N< ( 

s 	i) Is=0 

when j < . Then from the identity 2N = (1 + i)" = E" (N' 
3=0s/ we get (	 N )12 -


2N when N is odd and (N/'_i) 

<2N-i Observe that 

N 
(N	

j 
(N_1)12) 

when N is odd
(0j <

	

\ j) - 
(N/2_1) 

N	when N is even. 

Thus, the second assertion follows from Theorem 3.11
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Proof of Theorem 4.1. It follows from (2.1) that 

A(x)j(x) = (mo(),... , 

where M4) (x)	((x),... ,	(x + N - 1)). Recall thatNO N	NO

 
° (_) 

Mk( NO )	>a(j)mk(B) 

by Lemma 4.1. Therefore, 

(x) ..	a(j)A' (x) (mo(B),... , 

pointwisely on (0, 1). This proves that 

(x) .. g(x) =(j)B(x). 

Obviously, by the dominated convergence theorem, the L P-convergence (1 <p < oo) of 
NM (x) reduces to prove that	(x) is uniformly bounded. Recall that 

M
\ J 

2N 1/2 

N) =d,M(x)+Qj,M(x) and dj,MI (12 
\	ir	J 

when M is sufficiently large and Qj,M is uniformly bounded by C. Thus we get 

sup	I(x)I <C (_ 
(^)2N)2k 

+C	 1-2 (2 )
2N)

 
7r	

j=O	
7r zEA(e, .....

2N 

2 -	.J 

It follows from the proof of Theorem 2.1 that 

U	U 
k=1 jE{O,1 .....N-}, I<^k-I	

M - i 
'k E{O.I .... . N- 2) 

has Lebesgue measure 1. This proves that NMO is uniformly bounded. Recall that NMO is 
orthonormal. Then the limit g ofin the L 2 -norm is also orthonormall
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5. The limit function 
In this section we will give a method to construct the limit function g in Theorem 4.1. 
Let

G(z) =	a(s)z'	and	Q(z) =	A,z'. 

Then, by the proof of Theorem 3. 1, we get 

	

G(iz)G(—iz) = Q(z).	 (5.1)
Let g be the limit of M o in Theorem 4.1. Then g is unique determined by G. 

Now we compute A, (0 < .s < N - 1) explicitly. Observe that g is orthonormal by 
Theorem 4.1. Then we have

+ 2k,, )1 2 = 1	( e R). 
kEZ 

By Theorem 4.1 and by the orthonormality of M O, we get	) = G(i)B,v(e) and 

Q( + 2kir)I( + 2k7r)1 2 = 1	for all e E R.	(5.2) 
k EZ 

Let B2N(x) = B2 p.r(x + N). Then B() = 03N()I 2 and the function defined by 
- EN-	(2s)	 i	 g - g(x) =	ASB2N (x) satisfies the interpolation condition, that means  takes the
value zero at integer lattice except (0) = 1. Hence A., satisfies the equation 

B2N(0)	B"2N(0)	...	2N_2)()

	(AN-i	

A/1\
B2N( 1 )	B2N(1)	...	n2N2)(1)	A	

(5.3) 

B N(N - 1 )	'N(N-1) ... b 22 (N1)	 I	0) 
The above equation can be solved by the following iterative algorithm. 

ALGORITHM: 
Step 1. Define B(s,) =	 (k)eikt and G0 () = 1. 
Step 2. Define A, = G,(0). 
Step 3. Define G,+1(e) = ( 2—	-	(G3() - A,B(s,)). 
Step 4. Return to Step 2ifsN-2 and stop ifs=N-1. 

From the above equation, we see that the solution of equation (5.2) is unique, and 
it is just equal to A,. This gives explicit description of A, where 0 <s < N - 1. 

Now we can show how to construct the coefficient a(s). First, we write 

	

N—I	N—I /  
Q(z) =	A,z2' = II  

	

3=0	 j=0 

Then a(s) satisfies

	

N—I	 N—I
f 

/__7_ 
z + /17\ 

	

s=0	 j=0 

This give a explicit construction of g in Theorem 4.1.
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Remark 1. From Theorem 3.1, we see that 

NN.-I 

limH() 
= 1

	
>o(s)(ie)3z=(e). 

Therefore,	() -4	) uniformly on any bounded set. 

Remark 2. Observe that the solution of equation (5.1) is not unique. In particular, 
the polynomial

N-i 

(z)=fl 
)=0 

Z±\ (5.4) 

also satisfies equation (5.1). After careful choice of positive or negative sign in (5.4), we 
can make Q to be a polynomial with real coefficients. Using the method of Theorem 
4.1, we may find a class of scaling functions	with the symbol 

/ 1 - e'	N N-i 

= M(i - e tc )) E aM(s)e 

satisfying equation (1.8) such that its limit function is	&(s)B(x) where (z) = 
N-i - 
=O a(.$)z 
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