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Asymptotic Behévior of M-Band Scaling Functions
of Daubechies Type

N. Bi, L. Debnath and Q. Sun

Abstract. This paper deals with the asymptotic behavior of M-band scaling functions ¥ ¢
and M-band symbols ¥ H as M — oo for N > 2. This is followed by pointwise convergence,
and LP-convergence (1 < p < o0) of Mo, and the limit function gof Mpas M — co.
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1. Introduction

For any integer M > 2, a function f is called M-refinable (or simply refinable) if it
satisfies the refinement equation

flg) = c(s)f(Mz — s) (1.1)
s€Z

and [ f(z)dr = 1, where {c(s)}, called the mask of the refinement equation, satis-
fies the condition 3 ., c(s) = M and is of finite length. A function f is said to be
orthonormal if it satisfies

1 ifk=0

/Rf(z)f(z—k)dw={0 rz0

By a scaling function we mean an M-refinable and orthonormal function. For a given
sequence {c(s)}, we define

(k € Z).

= % Z c(s)exp(isé). (1.2)

s€Z

Then H is called a filter of the refinement equation (1.1) or a filter corresponding to the
scaling function f. For any integer N > 1, H is said to have N vanishing moments if
there exists a Laurent polynomial H such that

H(z) = [ML(ZZTMZ)] " AG:). ' (1.3)
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For a scaling function f, let a sequence of closed subspaces Vj (7 € Z) of square
integrable function space L?(R) spanned by the functions

fix(e) = { M f(Miz — k) kez). (1.4)

Then {V;}jez is called a multiresolution analysis of L%(R) if it satisfies the following
conditions:
(i) V; C Vj41, and f € Vj if and only if f(Mz) € Vjy, for all j € Z.
(i) Ujez Vi is dense in L*(R) and ;¢ V; = {0}.
(iii) {f(- — k)}kez is an orthonormal basis of V} for some of f € V.

We denote the wavelet space W; (j € Z) by the orthonormal complement spaces
of V; in Vj4, so that the wavelet decomposition

r=Jw;=vi+ Jw; (1.5)
lez ik

holds. In fact, (1.5) suggests the decomposition

F=Y 9= 9i+f (1.6)

JEZ 2k

of f € L?(R) where g; € W, and fix € V;.

The literature of wavelets is replete with analysis of 2-band (M = 2) scaling func-
tions. The wavelet theory when M = 2 can be found in the literature of wavelets (see
Daubechies [2]). When M = 2, W; is spanned by {27%(2’ - —k)}«ez and the mother
wavelet can be constructed from the 2-band scaling functions ¢ in the form

P(z) =Y ea-e(~1)*(2z — k), (1.7)

k€Z

where ci are the coefficient of the 2-band scaling functions defined by (1.1).

In short, the theory of wavelets for M = 2 has received considerable attention.
However, the wavelet theory for M > 2 received much less attention. Bi et al. [1]
and Heller (3] independently considered the design of filter with N vanishing moment
and finite length. Bi et al. [1] also considered M-band scaling functions, M-band
wavelets and constructed compactly supported orthonormal M-band wavelets. The
major objective of this paper is to investigate the asymptotic behavior of M-band
scaling functions and M-band symbols as M — oo.

For any integer N > 1, let

1 2N -1
NH(E) =5 D na(s)exp(ist)

=0
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be a solution of the equation

INH(E) = cos?™ (g) Ng: (2N w1t s) sin?? (g) . (1.8)

We note that the solution of equation (1.8) in the form

2N -1

WH(E) =5 3 na(s)e't (1.9)

=0

is not unique, but finite when N > 2.

Daubechies (2] introduced scaling functions y¢ with symbol yH when M = 2, and
wavelets ny1 defined by

N$(E) = NH (—g + 7r) exp (—325) No (g) , (1.10)
where f is the Fourier transform of an integrable function f defined by
f€) = [ exp(—iz)f(z) da.

For these wavelets n1, {2%21{)(2j - —k)};jkez is an orthonormal basis of L2(]R) The

Holder index of n is about 2';'n32N for large N, and it has N vanishing moments, that
is,

/z*w(x)dz =0 (0<k<N-1).
R

Moreover, for any N > 1, the scaling function y¢ has minimal support in the class of
compactly supported scaling functions ¢ for which we may find a compactly supported
orthonormal wavelet ¢ in V; which has N vanishing moments and satisfies

/Rd)(z:)é(:c —k)dr=0 (keZ)

where V; is the closed subspace of L2(R) spanned by {v2¢(2- —k)}kez.
We define

Na)= > ]I (N —1~+sj,) (zsinjﬁ")"z” (0<s<N-1) (L1

55

N-1

P(t) = Ma(s)t. | (1.12) |

=0



816 N. Bi, L. Debnath and Q. Sun

By the Riesz lemma [2: p. 172/Lemma 6.1.3], there exists a unique solution H of the

equation
Mg\ 2N
HEP = [ 222 P2-2 1.13
|H (&) (Msin% ( cos ), (1.13)
such that
1 — eiM¢ N N-1 1 MN-1
— ~ isfz_ 1s€
H(E) (——M(l—e‘f)> ;)c(s)e m ; c(s)e (1.14)

and z:l:_o] €(s) z* has all roots in the open unit disk, where P(z) is a polynomial in z.
Denote the solution of equations (1.13) and (1.14) by ¥H. Let ¥ be the solution of
the refinement equation (1.1) with the symbol ¥H.

Bi et al. {1) and Heller (3] independently proved that ¥¢ is orthonormal, and repre-
sents a scaling function. Furthermore; #/¢ has minimal support in the class of compactly
supported scaling functions ¢ for which we may find compactly supported orthonormal
wavelets ¥, € V3 (1 < s € M — 1) such that ¢, has N-vanishing moments and
{¢(-,—k),¢s(-,—k)}s; kcz is an orthogonal basis of Vj, where V; is a closed subspace
of L? spanned by {VM ¢(M - —k}cz. For this reason, we call Mé as M-band scaling
functions of Daubechies type.

When M = 2, Daubechies (2] and Pollen (4] studied the 2-band scaling functions
of Daubechies type. On the other hand, for M-band scaling functions of Daubechies
type, Bi et al. [1] investigated the asymptotic behavior of the Holder index of ¥é as
N — oo. For N = 2, Sun and Zhang (5] proved that the exact Holder index of Mg
is 1— %‘L—” where § = {%(ZM2 + 1)}1/2. The function ¢ tends to a function ¢
pointwise as M — oo where g is given by

z+ X8 fo<z<1
9(z) = _z+1—36@ fl<z<2 -
0 otherwise

They have also shown that ¢ is locally linear on an open set with full measure and
locally linearly dependent when M > 3.

This paper deals with studying the asymptotic behavior of M-band scaling functions
Mo and M-band symbols ¥H as M — oo, for any N > 2. More precisely, we investigate
the local polynomial structure of ¢ on an open set with full measure, the asymptotic
behavior of ¥H, and then the pointwise convergence and LP-convergence of Mo as
M — co. In Section 2, we consider the local polynomial structure of ¥¢ on an open
set. Section 3 deals with the asymptotic behavior of M-band symbols ¥H. This is
followed by pointwise convergence and LP-convergence (1 < p < o) of M¢. Finally,
some remarks on the limit function g of ¥¢ as M — oo are discussed.
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2. Local polynomial functions

We say that a function supported in (a, 8] is locally polynomial on an open set A C [a, b]
if it is a polynomial on every connected component of A.

Theorem 2.1. Let M > N and ¥4 be the solution of the refinement equation (1.1)
with symbol X'H. Then there ezists an open set A C (0, N + ﬁ:ll) with Lebesque measure
N + ﬁ:} such that M¢ is locally polynomial on A.

Moreover, the above assertion holds for a more general class of refinable functions.
A proof of this theorem is given by Bi et al. [1], and is omitted.

Theorem 2.2. Let M —1 > r # 0 and ¢ be the solution of the refinement equation
(1.1) with symbol

1 eiMf

H(E) = (m)N Q;(c)

where Q.(0) = 1 and Q,(£) may be written as Q(€) = ;o c(k)e'*t. Then there ezists
an open set A C (0, N + 47~ ) with Lebesgue measure N + 3/ such that ¢ is locally
polynomial on A.

To prove Theorem 2.2, we need some lemmas.

Let ¢ be as in Theorem 2.2. We define

= (é¢(z),...,d(z -7
S’(I) = (¢(z),...,¢(z + N 1))T (z € (0,1))
®(z) = (¢(z +1),...,¢(z + N))

nzj=/l;1:j¢(1:)dx (0<j<N-=-1)

Let
A@) = ((z +kY)ogiuen—y  and - Alz) = (= +£)) o

JSN-1.
<kSN

Denote the transpose of a matrix (or a vector) A by AT. Then we have the following

Lemma 2.1. Let M — 1> r and ¢ be as in Theorem 2.2. Then

A(z)®(z) = (mo,... ,mN_l)T -(L,z+N,... (= + N)N_I)TdJ(:zz + N) } @.1)
. Z(x)@(z) = (mo,...,mN_l)T - (Lz,... ,:zN_l)TdJ(z)
on (0, 1') and ¢ ig polynomial on U?:ol (7 + (5,1))-

Proof. We first note that ¢ is supported on [0, N + ﬁ] and

detAz)= [[ G-d)#o0

0<i<j<N-1
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Therefore, from the first formula in (2.1) we get -

®(z) = (det A(z))™' A*(z)(mo,. .. ,mN_l)T

on (47=3,1), where A*(z) denotes the adjoint matrix of A(z). Then the second assertion
follows. from (2.1).

Now we prove (2.1). By taking the Fourier transform of both sides of the refinement
equation (1.1), we obtain
£ £

$(¢) = H(ﬁ)é(ﬁ). (2.2)
Therefore, D7 ¢(2km) = 0 for all k € Z\{0} and 0 < j < N — 1, where D = Zisa
differential operator, and furthermore

S+bdath) = [P4@)di=m;  (OS;SN-1)  (23)
kez R

by the Poisson summation formula. Then the first assertion in (2.1) follows from (2.3) i

Lemma 2.2. Let ¢ be the same as in Theorem 2.2. Then there ezist real numbers
a(0),...,a(r) and polynomials Py,..., P, with degree at most N — 1 such that

¢ (’”;2’) = a(j)é(z) + B(z) (0<ji<rze(01)) (24)

)

and

k k k
¢(zf4— ) ITotc)é(2) + P (Z

(2.5)
k=2 k k . .
J
+>° [[ «ep.,._. ( T+ M,‘_,._z)
=0 I=k—i j=i+3
where e; € {0,1...,r} and z € (O,i).
Proof. By the refinement equation (1.1), we obtain
o4 (M—=1)N+r b
¢( M’) = Y adlat+i-D= cid(z+1) (2.6)
1=0 =0

on (0,1). From Lemma 2.1, there exist polynomials Q; € IIy_, and numbers d; (1 <
j € N) such that

$(z +3) = djd(z) + Q;(z) (2.7)

where Iy _; denotes the class of polynomials with degrees at most N — 1. Then (2.4)
follows from (2.6) and (2.7), and (2.5) follows by using formula (2.4) k times B
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For any €; € {0,1,...,r} and 1 < i < k, define

k k
Aler,...,ex) = <._ % + m’ ' % +#) .
j=1 j=1
Then A(e1,...,ek) C (0, 37=) when &x # r. Furthermore, we have the following
Lemma 2.3. Let A(ey,...,ex) be defined as above. Then
Aler,...,ex) NA(E}, ..., €) =0
when ey, €}, # 1 ezcept k = k' and (e1,...,ex) = (€},...,€k).

Proof. Define
k €5 5 €y 1
0(61,...,6"): J it BN

(M —1)M* Mi

J—.
Then it suffices to prove that
a(eyy. .. ep) > aler,...,ex) => a(el,...,ex) 2 bler,. .., k)
We note that
J

J
M’a(ey,...,ex) = M’ + M? a(€1+"‘“’£")CM]Z;}

0,1
2 IM 2 +(0,1)
and
J J
Mib(ey,. .. ex) = M? M '+ Mib(ejq1,... 6x) C M?
ij=1 1=1

Therefore the problem reduces to prove
ber,---,ek) < aley, .- €%)
for the following two cases: (i) €] #€) and (ii) ¢y =¢] and k=1or k' = 1.
For the case (i), we get €] > €, otherwise

ey +1

a(ey, ... ) < < aler, .-, €x)

which is a contradiction. Therefore, we have

ber,...,ex) < atl

< a(el,. . €p)-
For the case (ii), k' must be one, otherwise

1

' ' & T T - T
“(‘1""’5k)<M+§Mi+(M_1)M* +(M—1)M a(e1)
which is a contradiction. Therefore, we have

k—
€ r r—1
b(51~~~;5k)SHl+ ,EQXJ—J_'-*-W-’-M" < a(e})
J:

and the lemma is proved 8

819

b ———— and ber,...,68) = + 45
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Proof of Theorem 2.2. We define

. O=U U : Aler, ..., €k)

k=1 (e¢y,..., ep_1)E(01, . r}k-1
e €{0,1...,r=1})

and
N-1

= (Ueo) U (U (- (=),

Then ¢ is local polynomial on A by Lemmas 2.1 and 2.2. By Lemma 2.3, we obtain

A== (1- )+ Ny 5 Aler,. )]

k=1 (ey,..cep_1)E(000,..., r}k-1
€ €{0,1...,r-1}

=(N-l)(1_ Mr—l) +N,§,(1_Mr_ 1) 7 (%)H

r

M-1

This proves the theorem B

3. Asymptotic behavior of M-band symbol

We write
_eiMe \N
41O = (30 ) MAE© (31)
and
NH(E) =Y am(s)(e® —1)". (3-2)

Then we have the following

Theorem 3.1. Let MH(¢) be defined by (3.2). Then am(0) =1 and the limit of
apm(s)M™° ezists for 1 < s < N —1 and

o0 (§) - (55) K eoner

s=0

where a(s) = limpy_wapm(s)M™° (0<s< N - 1) Furthermore,

2N> 1/2

2

™

|M—(N—l)aM(N.__ 1)' < 9-N+1 <1 -
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To prove Theorem 3.1, we need some lemmas.

Define
2 /2N —1+1 ol
A(k,s):Z( . )(2/:«)2,4(1:—1,5—1) (k> 2)
=0
and

Alys) = (2N ‘sl + s) (27)2".

Then A(k,s) > A(k — 1,s) and |A(k,s) — A(k — 1,5)| < C,k~2 holds for all k > 2,
where C, is a constant depending on s only. Therefore, limy_o A(k,s) exists for all
0 < s < N - 1. Denote its limit by A, (0 £ s < N — 1) (the explicit computation of
A, will be given in Section 5). Then we have the following;:

Lemma 3.1. Let ¥a(s) be defined by (1.6). Then
lim Ma(s)M™2*=A4, (0<s<N-1). (3.3)
M—oo

Proof. First we prove the assertion when M is odd. Denote M' = M=1 Then we

2
may write
s$1+...+spr=s =1 7
M’ 2
237
X U (1 +0 (M) >
M’ M’
S0 VD VN § 1 { Gl T
I=1 s14...+spr=s \j=1 Sj
+ M?s z H (2N 1+ 3]> (21”)_2”

Na(s) =M™ 3] (IMT (" ‘f.“")(zjn)-z’f)
(G H o)
ke i

M
= M?* (Z Lim(s) + A(M',s))

=1

where O( %] )2 denotes a term bounded by C (-1—)2 for some constant-C independent of
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M. Obviously, we have

0 < Iy m(s) .
<cC Z (2N —sl + SI) (2Ur)=20s1=1) pr=2
{
8;=1

it FsiatsiatoFa=s—9 JELIL <M J

ORI . Y G L)

S CAM',s) Y (2m) 2=t p-2

;=1

< CM72AM',s).

Hereafter the letter C would denote a constant independent of M which may be different
at different instances. Therefore, we get M~2*Ma(s) = A, as M — oo when M is odd.

When M is even, we may write

-2sM (s)
_ i (N -14 SM/Z) (2M)—23M/;
—0 Sm/2
SM/2= - .

M/2-1 . —2s;
(e 2N —1+s; L 4
2(s—spy2) J —
X (M E I I ( 5; ) (2smM> )

it Ao 1=s~omy2 j=1
S

D GRSE) PRV P

S
Spm/2=0 M/2

Using the same procedure to prove the assertion when M is odd, we may prove that
I(t) > Aras M — oo forall 0 < ¢ < N — 1. Thus also M~2*¥a(s) —» 4, as M — oo
when M is even i

Lemma 3.2. Let YMa(N ~ 1) be defined by (1.11). Then

M—2N+2 %a(N _ 1) S <1 _ (%) ) 2—2(N—1)‘

Proof. It is proved by Bi et al. in {1} that

M-1 ors\ |2

s=0

=1 (3.4)

We note that

= 1 —etME 2N sin—ﬁM 2N 2\2N
> 2

Z;) IM(‘].—C"(&*?’”/M))l \Msmi - (‘/‘r)

K
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when [¢] < 7. Therefore, we get

M-l 1~ ele 2N 9 2N
M(Q1 - ei(5+2ur/M))I 2 (;) (¢ e R).

=0
We recall that
2 sin M5 2sM . € 2
WHOP = (325 ) 3 2ats sin 2
8=0

Ma(0) = 1. Then it follows from (3.4) and (3.5) that

2N : 2(N-1)
1- (g) > MTINEZMyN — 1) (sm m)

T
M-1 ]
% 92(N-1) Z s _2{
= M? sin2(§ + 5
2(N-1)
_ M—2N+2 M (N 1)22(N—1) (sin B)
2

T

Substituting £ = 77 in (3.6) gives the lemma R
Proof of Theorem 3.1. Let

N-1
Q) =) At
=0

By Lemma 3.1, we can write

~ N-1 N-1
Pt)=Y Na(s)t* = > Bu(s)(M?t)’
=0 =0

where Bum(s) — As as M — oo. We then set

o= (52)

j=1

Then there exists a sequence {tj,M};V;ll such that

P(t) = H (U)

j=1 —t]-M

and'tjpm — tj as M — oo.

823

(3.5)

(3.6)

(3.7)
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Recall that I3(t) > 0 when t > 0. Therefore, t; € (0,00), and t; p & (0,00) as M is
sufficiently large. When t = 2 — ¢ — ™%, we may write

M2 —tjp = [M(e® —1)— 8, m] [M(e™™ —1) - 0im] x Bjm

~t;M — \/tiM — ‘lt}'MM2

Bim = oM — VT
M

PiM = T Oy

Furthermore, the real part of 8; » is always less than zero when M is large enough.
Therefore, the root of M(z — 1) — 6; p is contained in the open unit disk and

where

as M — oo.

—1

ﬁ M(e'f - l) - Bj.M

_0J.,M

j=1

is a trigonometrical polynomial with real cocfficients. By the Riesz lemma [2: p.
172/Lemma 6.1.3] we obtain

¥ = 1 Db ],

=1 —bim
Hence N1 i Nt
) ~, _ T (t+ V-,
lim M™%ap(s)t® = (——J)
M —o0 ;0 ]l:Il ,/—ZJ‘

and the limit limp oo M %ap(s) exists forall 0 < s < N — 1.
We observe that

wA (f7) - (M(ll:—:/’”))N g(aww-’) x (M(e/™ ~1))°.

Then we find that
N N-1

. M i _ 1- e‘e coN\S
dm 0 (3) = (5) X e
We recall from Lemma 3.2 that
N-1 . 9\ 2N
II = MTAN-DMyN —1) <27 ¥N-D [ _ (—) .
j=1 Tl ™

Then we obtain

[M~N+lap(N - 1) =

e (i-(") s

Moo

Theorem 3.1 is thus proved B
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4. Pointwise convergence and LP-convergence

The B-spline By of degree N — 1 is defined with the help of the Fourier transform by

B = (A=)

Theorem 4.1. Let Mg be the solution of the refinement equation (1.1) with symbol
MH and 1 < p < co. Then M converges pointwisely and in LP-norm to

9(z) = Bn(z) + Z a(s)BY () (4.1)

s=1

where a(s) = limpm —oo M~ *ap(s) and BEJ) i3 the s-th derivative of By. Furthermore,
g 13 orthonormal.

We need the following lemmas to prove this theorem whose proof will be given later.
For a compactly supported integrable function f, the k-moment of f is defined by

mk(f)=/n;x"f(z)dx (0<k<N-1)

Then we have the following

Lemma 4.1. Let M@ be the solution of the refinement equation (1.1) with symbol
MH. Then

N-1
Jim m(¥9) = mu(Bn) + Y a(i)mu(BY)  (0<kSN-1)  (42)
j=1
holds.

Proof. Let D = i% be a differential operator. Then for any compactly supported
integrable function f, we have my(f) = (D* f)(0). Define

h(€) = ﬁ ¥ (5.

hm(€) = NH (%) hy (%)

Drhw(©) = M Z( )@ () @*hn ().

Then we have

and
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Hence, we find
(1= M*)(D*hy)(0) = Z( ) DAENOND*har)O)

From Theorem 3.1, M~ ’(D’MH)(O) — (-1)Yjla(j)as M = 00 (0<j < N-1)
Hence D*hp(0) — (—1)*kla(k)as M - 00 (0< k< N —1).
We recall that v
Mprey = 1-—etMe NMI}
M@ = (e ) KEO.
Therefore, ¥g(€) = By (£)has(€), and

k

(D*¥3)(0) = }:( )(D’BN)(O)(D*%M)(O)

Hence

k

(D*3)(0) — W e BN (0) = 3" a(i) JE O

and the lemma is proved i

Lemma 4.2. Letd;m (0 <j < N.—1) be numbers such that

T+ .
Mg ( ’) =d;ul8(z) + Qimlz) (€(0,1,0Sj<N-1)  (43)
holds for a polynomial Q; p € In_y. Then

(=1 N

By = lim djm=(~ HN- ‘a(N—l)Z AN s

and
9\ 2N /
18,1 < 2% (N - 1) < (1—(;) ) (0<i<N-1)
Proof. We recall that

Y (@+ky Nz +k)=m;(N$) (0<j<N-1).
keZ

Then we obtain

Y ENs(-+k)=Q;e€llny  (0<j<N-1)
keZ
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or, in matrix form,

1 1 .1 g¢(1+1) 1 Qo(z)
1 2 ... N #(z +2 0 Qi(z
T e B M EYER B
1 2N-1 o NN-1 Ms(z + N) 0 Qn-i(z)
on (0,1). Therefore, we get
Moo +3) = SR t) 4 040 (44)

where éj € IIny_,. It follows from Theorem 3.1 that

eM

£ _
¥R = (37— ) ZaM<s)<e'f—1>’
MN-1

‘M
= et =0 (250 ) M -0 e S e

where o(1) means a number tending to zero as M — co. From (2.4) and (4.4), there
exist polynomials Q; € IIy_; such that

: i
N (i:/) =Y ciiNd(z +1)

=0

= (=D)"a(N =1) Y (1 +o(1))Ne(z +1)

=0
- ((—1)”-‘a(zv -0y (] )) Mo(2) + o()NB(z) + Qy(z)
. =0

This proves the first assertion.
Observe that Ei\; (—1)’(N) = 0. Then we have

,Z( (V)= N§< 1y (7 )‘
s (D)= (3)

when j < &. Then from the identity 2¥ = (1 + 1)V = Z?:o (’:’) we get ((N—A;)/2) <
oN-1 when N is odd and (N/2 1) < 2N-1  QObserve that

It is easy to see that

N .
(N) - ((N-l)/2) when N is odd

. 0<ji< .
J. (N/';'_l), when N is even. .. :

Thus, the second assertion follows from Theorem 3.1 B



828 N. Bi, L. Debnath and Q. Sun

Proof of Theorem 4.1. It follows from (2.1) that

A@)N(z) = (mo(X9),-..,mn—1(M8)”  on (N_l,l)

where ¥®(z) = (¥é(z),..., Mé(z + N - 1)). Recall that
N-1 )
me(M) — 3 a(i)mu(BY)
Jj=0
by Lemma 4.1. Therefore,
M LS 0 ()T
No(z) = > a(j)A™ (z) (mo(BR), ..., mn_1(BY)))
j=0
pointwisely on (0,1). This proves that
N-1 )
No(z) = g9(z) = Y a()BR ().

7=0

Obviously, by the dominated convergence theorem, the L?-convergence (1 < p < oo) of
Ma(z) reduces to prove that ¥¢(z) is uniformly bounded. Recall that

M¢(2‘+]) djm¥é(z) + Qjm(z) and |d,-,M|$<1_2(%)2N>1/2

when M is sufficiently large and @; um is uniformly bounded by C. Thus we get

1

9 .2N 1k k=1 9\ 2N 33
su o(z) < C 1—2(—) +C 1—2(—)
o N6 ( - ) 2;( -
2N
<c() .

It follows from the proof of Theorem 2.1 that

G U A(ela'u,ik)U(i\;—:—ll,l)

k=1 ¢;€{01,....N=1},1<i<k=1
ex €{0.1,...,N=2)

has Lebesgue measure 1. This proves that ¥¢ is uniformly bounded. Recall that Mo is
orthonormal. Then the limit g of ¥¢ in the L?-norm is also orthonormal B
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5. The limit function

In this section we will give a method to construct the limit function g in Theorem 4.1.

Let

N-1 N-1
G(z) = Z a(s)z® and Q(z) = Z A2
s=0 s=0
Then, by the proof of Theorem 3.1, we get

G(1z)G(-1z) = Q(2). (5.1)
Let g be the limit of 4 ¢ in Theorem 4.1. Then g is unique determined by G.
Now we compute 4, (0 < s < N — 1) explicitly. Observe that ¢ is orthonormal by
Theorem 4.1. Then we have

doliE+2kmP=1 (£€R).

keZ
By Theorem 4.1 and by the orthonormality of ¥ ¢, we get §(¢) = G(z{)EE(E) and
> Q€ +2km)By(E+2km)P =1  forall £€R. (5.2)

k€eZ

Let Byn(z) = Byn(z + N). Then Byn(€) = |Bn(€)[? and the function § defined by

§(z) = ZN 'A B(zs)(z) satisfies the interpolation condition, that means § takes the
value zero at integer lattice except §(0) = 1. Hence A, satlsﬁes the equation

Byn(0) Biy(0) ... B"’“;(O) Ao 1

Byn(1 B".(1 (2N-2)(4 A 0

21\."( ) 2N( ) . ( ) :l - : . (5.3)
Bon(N —1) Bjy(N=-1) ... ééiv"‘”uv—l) AN-1 0

The above equation can be solved by the following iterative algorithm.
ALGORITHM:
Step 1. Define B(s,£) = Y ycz Ban-24(k)e'*€ and Go(€) = 1.
Step 2. Define A, = G,(0).
Step 3. Define G,41(€) = (2 — e — €)™ (G,(¢) — A,B(s,£)).
Step 4. Return to Step 2if s< N —2 and stopif s =N — 1.
From the above equation, we see that the solution of equation (5.2) is unique, and
it 1s just equal to A,. This gives explicit description of A, where 0 < s < N —1.
Now we can show how to construct the coefficient a(s). First, we write

N-1 N-1 22 ¢t
Q(z) =) A =1] ( _tf).
=0 J=0 J

Then a(s) satisfies

N-1 N-1
Y et =] (— T ) :

s=0 1=0 k)
This give a explicit construction of g in Theorem 4.1.
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Remark 1. From Theorem 3.1, we see that

Jim NH (%) = (f;“)N Nfa(s)(ic)’ =§(e).

s=0

Therefore, ﬁ'?i)({) — g(€) uniformly on any bounded set.

Remark 2. Observe that the solution of equation (5.1) is not unique. In particular,
the polynomial
N-1 '
~ zx /=1
o= 11 (558 N
i=0

also satisfies equation (5.1). After careful choice of positive or negative sign in (5.4), we
can make @ to be a polynomial with real coefficients. Using the method of Theorem
4.1, we may find a class of scaling functions Nd) with the symbol

) _ Mg \N N .
NH(E) = (ML(I_—E) Z am(s)e’

s=0

satisfying equation (1.8) such that its limit function is Zf':_ol &(s)Bf\',')(x) where Q(z) =

oo 6(s)2”.
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