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On Inequalities of Friedrichs and Babuka-Aziz
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Abstract. In 1983, Horgan and Payne have published a paper entitled "On inequalities of 
Korn, Friedrichs and Babuka. Aziz". In that paper the two authors have proven a simple 
relation between the optimal constants occuring in the three inequalities under consideration. 
The analysis there is restricted to inequalities for functions of two variables only. In the present 
paper we will show that the results of Horgan and Payne concerning two of the inequalities have 
a counterpart in dimension three where, however, the situation is different in some aspects. 
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0. Introduction 

In dimension two, Friedrichs' inequality reads as follows. Let ci denote a bounded and 
simply connected open domain with boundary in the class C'. Let u, v denote pairs of 
square integrable conjugate harmonic functions defined on Q. Then (see [4]) there is a 
constant r depending only on the shape of the region ci such that 

f
u 2 dA rjv2dA,	provided that 

in u 
dA =0, 

and

fn 
V 2 dA < rju2dA,	provided that fv dA =0. 

To formulate the inequality of Babuka-Aziz, we have to introduce the real function 
spaces L2 (ci) and H'(ci). Here, L2 (ci) denotes the linear space of all square integrable 
real functions defined on ci, which is a Hilbert space with respect to the scalar product 
(u, v)o = uv dA and the associated norm. H0' (ci) denotes the Sobolev space consist-
ing of all real functions u which belong to L2 (ci) together with their first (generalized) 
partial derivatives u, k (k 1, 2), and which vanish at the boundary. 

Then, given any function p E L2 (fl) satisfying ft., pdA = 0, there is a vector function 
W = (w,,w2 ) with components w 1 ,w2 E H01 (Q) and a constant C depending only on 
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the shape of Q such that div w = p and 

2 
D(w) =

	

	f W,k Wj,k dA C [(divw)2dA.
in j,k=1 

(See [1: pp. 172 - 174]. A proof of the inequality in dimension three may be found in 
Ladyzhenskaya and Solonnikov [9: pp. 265 - 266].) 

In [6], Horgan and Payne have shown in particular that the optimal constants in 
the above inequalities are related by

r = C - 1. 

For further results obtained by Horgan and Payne we refer to 161 and to Horgan's review 
paper [7], and the references given there. 

In the present paper we will deal with analogous inequalities for functions of three 
variables. Q will now denote a three-dimensional bounded and simply- connected open 
domain. Unless otherwise specified, the boundary of Q is assumed to be in the class C2. 

Pairs u, v of conjugate harmonic functions are now replaced by pairs of functions p 
and vector-valued functions q = ( q i , q, q3 ) satisfying the equations 

	

rot  = —Vp	and	divq = 0.	 (1) 

In quaternionic analysis the latter are known as equations of Moisil-Teodorescu. As we 
will see, there are now two constants I' and r depending only on the shape of the domain 
Q such that for all sqare integrable solutions of equations (1) the following inequalities 
hold:	 r 

	

/ p2 dV r I q 2 dV,	provided that / pdV = 0, 

	

in	in	 in	 - 
and

	

I qI 2 dV rfp2 dV ,	provided that q.n=OonôI?. 

	

in	 n 
In the constraint q n = 0, ri denotes the outer unit normal to the boundary. 

Also in the space H () there are now two inequalities, namely 

D(w) Cf(divw)2dV	for W  Kerdiv1, 

and
D(w) <Cf Irotwl2 dV	for w EKerrot'. 

Here, Ker div and Ker rot denote the subspaces of all functions satisfying div w = 0 and 
rotw = 0, respectively, whereas Kerdiv 1 and Kerrot' are their orthogonal comple-
ments in H (Q) 3 with respect to the scalar product 

3 
D(w,z2) =	I Wj,k Wj,k dv.	 (2) 

Q j,k=1
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In Section 1 of this paper we will show that the optimal constants are related by 

	

r=C — i	and	f'=O—i. 

Then, in Second 2, we will study the close relation between the optimal constants and 
the spectrum of two associated eigenvalue problems. One of them is an eigenvalue 
problem already studied by the Cosserats' [2] in the context of linear elasticity, whereas 
the other one is a counterpart to Friedrichs' eigenvalue problem treated in [4]. Among 
others we will show that

	

r>i	and	F'>l 

for bounded and simply connected domains, and that r = 2 and F = 1 if Q is a ball. In 
Section 3 we will exhibit a connection with the Stokes equations. 

1. Relations between the optimal constants 

In what follows, our analysis rests upon results which are partly valid for bounded 
domains with Lipschitz-continuous boundary. We will, however, also quote some results 
from Dautray and Lions [3] and from Mikhlin [10) which are established there only for 
domains with sufficiently smooth boundary. Details will be specified below. 

Let us recall that the linear space C000(1), often also denoted by V(cl), consists of 
all infinitely differentable functions with compact support in ci, whereas H(Q) is by 
definition the closure of C000(fl) in the Sobolev space H 1 (ci). As is well known, we may 
introduce in H(l) also

3
1/2 (U, V), =	I U ,k V ,k dV	and	lull = (u,u)1 

k=1 

where the norm	is equivalent to the usual Sobolev norm	[. Analogously we 
introduce in Hol 	the forms D(,) and D( . ) already defined above. Clearly, Hol 
is a Hilbert space with respect to D( . ,.) and D(.)'/2. 

In our analysis the following results will play a basic role, where we refer to Girault 
and Raviart [5) for the operator div and to Dautray and Lions [3) for the Operator rot. 

Proposition 1 (see [5: p. 24]). Let ci denote a bounded and connected domain 
with Lipschitz-continuous boundary. Then the operator div maps Ho' (Q)3 onto the the 
space L(ci), where

L(cl) = {PE L2(ul)jpdV =o}. 

Let us now consider the image under the operator rot. If the connected domain ci is 
not simply-connected, then the result depends on the number of handles. For the sake 
of simplicity, however, we will restrict our attention to simply-connected domains.
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Proposition 2 (see [3: Chapter IX, p. 226]). Let Q denote a bounded and simply-
connected open domain with boundary in the class C 2 . Then the operator rot maps 
H (1k) onto the closed linear space Ho(div 0, ), where 

Ho(div0,) = { q e L2 (Q) 3 
I 

divq  = 0 and q . n = o}. 

Here div q = 0 together with q n = 0 is satisfied in the weak sense 

j
qv4dV=0	for all 4EC10(R3). 

We will make use of the fundamental decomposition of L2 (cl) 3 , namely 

= gradH'(fZ) ED Ho(div0,).	 (3)

(See, for instance, [3: Chapter IX, p.216].) 
We now turn to an orthogonal decomposition of the space H (l). It rests upon 

the identity

	

D(w,tD) = d(w,t)+.r(w,ti3)
	

for w,EH'(1)3 ,	 (4) 

where, by definition, 

d(w,th) = fdivwdivtiidV	and	 = in rot u; - rot z-v dV . 

On partial integration, identity (4) is easily verified for functions w, ili E C'°(1)3 . The 
latter space, however, is dense in H(1)3. 

From the obvious inequalities d(w) :^ D(w) and r(w) D(w) there follows that 
Ker div and Ker rot are closed linear subspaces of H (Q) 3 . Hence we may decompose 
H ()3 into three D( . , .)-orthogonal subspaces, namely 

Ho' 
(Q)3 = Ker div Ker rot W.	 (5) 

Note that the three subspaces are also pairwise orthogonal with respect to the bilinear 
forms d( . ,.) and r( . ,.) introduced above. 

From Propositions 1 and 2 it is clear that the operators div and rot are one-to-one as 
mappings of Kerdiv 1 onto L(Q) and of Ker rot 1 onto Ho(divO,), respectively. But, 
since all these spaces are Hilbert spaces as well, it follows from Banach's well known 
inverse operator theorem that the inverses of div and rot are bounded linear operators, 
too. Thus one obtains the following 

Proposition 3. Let Q denote a bounded and simply-connected open domain with 
boundary in the class C 2 . Then there are constants C and C such that 

and

D(w)	Cd(w) for all w 	WeKerrot (6) 

D(w) < Cr(w) for all w 	WKerdiv (7)
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whence due to (4) 

r(w)	(C - 1) d(w) and d(w) < ( - 1) r(w)	for all W E W. 

Thus D( . )' /2 , d( . )' /2 , and r(.)' /2 are equivalent norms in the subspace W, and the 
optimal constants in the inequalities (6) and (7) satisfy C > 1 and C > 1, respectively. 

Let us now consider equations (1). They may be written in weak form as follows. 
Find functions p E L2 (1) and q E L2 (1Z) 3 satisfying the variational equations 

fqrotcbdV = jpdivcbdV	for all 4E C00o(l)a	 (8) 

and	 r 
I q V4 dV = 0	for all I' E C000 (ST1).	 (9) 

Jc^ 

Inserting functions =	, cL E C000(Z) into equation (8), one obtains 

if p A
d^ dV = 0	for all 'ECl). 

Hence, by Weyl's Lemma, p is equivalent to a harmonic function, that is p E C(11), 
Lp = 0 in ft Inserting instead functions = rot ?k, d o = div, 0 E C(1)3 into (8) 
and (9), one gets 

Jq rot rot dV = 0 and j q Vdiv ' dV = 0,	whence j q dV = 0 

for all 0 E C0°°(cl)3 . (Here we have used Vdiv = A + rot rot.) Again by Weyl's 
Lemma, one obtains q e C(1l)3 , Lq = 0 in Q . Thus we see that any pair (p, q) E 
L2 (Q) x L2 (cl) 3 satisfying the variational equations is solution of equations (1) in the 
classical sense, too. 

If the pair p,q is a solution of (8), (9), then the same holds for the pair p+c, q+Vh 
where c denotes any real constant and h any harmonic function belonging to H' (a). 
There is a constant c such that p + c has mean value zero, and there is a uniquely 
determined Vh such that q + Vh E Ho(div 0, ). Indeed, due to the orthogonal de-
composition (3) we may write q = —Vh + qo, where h E H'(cl) and qo E Ho(div 0, Il). 
On insertin gq into equation (9) we conclude by Weyl's lemma that h is harmonic and 
q+Vh=qo E Ho(div0,). 

Thus we may restrict our attention to normalized solutions, that is we may look 
for solutions p and q, where p belongs to the linear space L(fl), and q to the linear 
space Ho(div 0, cl). These functions p and q, however, satisfy due to the orthogonal 
decomposition (3) the inequalities 

jp
2 dV j( + c)2 dV	and
	 in 1 q 1 2 dV < j I q + Vh 2 dV	(10) 

for any constant c and any harmonic function h E H'(fZ). 
So far we have seen that any solution p, q of the equations (8), (9) is harmonic, and 

that it can be normalized, imposing the constraints f.,pdV = 0 and q n = 0 on acI. 
Let us now exhibit the relation between those solutions and the subspace W introduced 
in the decomposition (5) of the space H01 (fl).
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Proposition 4. 

(a) Let p,q be. any solution of equations (8), (9). Then the following properties are 
equivalent: 

(i) p E L(Z) and q € Ho(divO,1). 
(ii) p € div W and q € rot W. 
(b) To any given p € divW there exists one and only one q € rot W, and to any 

given q € rot W there exists one and only one p € div W such that the pair p, q is 
solution of (8),(9). 

Proof. (a) First let us recall that the three subspaces in the orthogonal decom-
position (5) are also orthogonal with respect to the bilinear forms d( . ,.) and r( . ,.) so 
that

=div Hol 	= div W div Ker rot 

and
Ho(divO,)= rot H(cz)3 = rot We rot Kerdiv. 

Let now p, q denote any solution of (8), (9) satisfying conditions (i). Since C OO (Q) is 
dense in H (cl), equation (8) is satisfied in the form 

in 
qrotodV = 

11 
pdivodV	for all 0 E Hol 

as well. In particular there follows 

ja p 
div q dV = 0 V € Ker rot and in q rot q dV = 0 V € Ker div, 

whence p € div W and q E rot W. The converse statement follows from Propositions 1 
and 2. 

(b) Let p € div W be given and consider the variational problem to find w € W 
such that

/ rot w rot qdV = j pdivçdV	for all 4' € W.	 (11) 

Since, by Proposition 3, the subspace W is a Hilbert space also with respect to the scalar 
product r( . ,.) and the norm r( . )' /2 , and since the linear functional on the right-hand 
side of (11) is bounded in the latter norm, it follows from Riesz's representation theorem 
that there exists a uniquely determined w E W satisfying equation (11). That equation, 
however, is then satisfied for all 4' € H1 (Q)3, too. On setting q = rot w, the pair p,q is 
a solution of (8), (9). For given q E rot W, consider now the variational problem to find 
w E W such that

IQ divwdivodV = fa q rot 0 dV	for all 4' € W.	 (12) 

Then, again due to Proposition 3 and Riesz's representation theorem, there exists a 
uniquely determined function w € W satisfying (12) for all 4' € H(1l)3 . On setting 
p = divw, the pair p,q is a solution of (8), (9) 1
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Theorem 1. Let 0 denote a three-dimensional bounded and simply-connected open 
domain with boundary in the class C 2 . Then there are constants I' and F depending 
only on the shape of ci such that for any solution p, q of the variational problem (8), (9) 
the following inequalities hold: 

J
P2 dV rj Iq 2 dV	provided that I pdV = 0,	 (13) 

and	 p 

in
q 2 dV I' / p2 dV	provided that qri =0 on	 (14) 
 Jo 

The optimal constants F and r in (13) and (14) are related to the optimal constants C 
and C in (6) and (7) by

T=C-1	and	f =C — i.	 (15) 

Proof. In view of (10) it is sufficient to consider solutions p and q normalized by 
the conditions p E L(Q) and q E Ho(div 0, ci), so that p E div W and q E rot W. Then, 
due to Proposition 3, one obtains 

2 U p2 dv) = (fPdivwdv)2 

=  2 (jq.rotwdv) 

(C - 1) J0 1 q 1 2 dV j div w 2 dV 

or

in 
p 2 dV < (C — 1) in I q 12 dV	and	r<C-1. 

Now, choose any w E W and set q = rot w. By Proposition 4 there exists a conjugate 
function p E div W satisfying (8), (9), and one finds 

2 

(in

IqI 2 dv) q . rotwdV) 2  

= 2 (jPdivwdV) 

F 
j 

q 2 dV j(div w)2 x dA 

or	 r	 r /I rot w 1 2 dV < F I (div w)2 dV	and	C - 1 <1'. 
Jo	 Jo 

On combining both results one concludes that I' = C - 1. 
The proof of the relation F = C - 1 is very similar. Given any solution p and q, 

introduce w E W such that q = rotw to establish 1' C — i. Given any w EW, define 
p = div w and introduce the conjugate function q E rot w to obtain 0 - 1 < F U
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2. Associated eigenvalue problems 

In dimension two, associated eigenvalue problems were already studied by Horgan (see 
[8)). Later on another approach has been used by the present author (see [11]). To treat 
now the three-dimensional problem, we will proceed similar as in [11]. To begin with, 
let us consider the following eigenvalue problem in variational form. 

Problem I. Find functions w E H0'(cl), w 5L 0 and real numbers A such that 

D(w,çb)=Ad(w,)	for all EH().	 (16) 

This is a weak form of the classical eigenvalue problem 

Lw-AVdivw=O md 
w=0 onadf	

(17) 

Problem (17) plays a well known role in linear elasticity and is one of the problems 
already studied by the Cosserats' [2] one, hundred years ago. (For even earlier work 
see the references given there.) A modern and more complete treatment of problem 
(17) can be found in Mikhlin's work, where we refer to his survey paper [10] and the 
references quoted there. In Mikhlin's approach problem (17) is treated in operator form 
Aw = ABw which, however, can be seen to be equivalent with the variational eigenvalue 
problem (16). 

In view of (4), the eigenvalue problem (16) may be written in the form 

in 
rotwrotq5dV = ('A - i ) f divwdivqdV	for all 0 E H(d)	(18) 

or, if A 0 1, 

f divwdivdV =(A - 1) - ' frot w rot dV	for all 0 €H(d). 

From the orthogonal decomposition (5) it becomes clear that the eigenvalue problem 
splits into three independent problems in the pairwise orthogonal subspaces Ker rot, 
Ker div and W. Obviously, A 1 is eigenvalue to the eigenspace Ker rot, whereas Ker div 
may be interpreted as eigenspace to the eigenvalue A = oo. In view of Proposition 3 we 
thus arrive to the following 

Proposition 5. 
(i) A = 1 and A = c: are eigenvalues of infinite multiplicity to the eigenspaces 

Ker rot and Ker div, respectively. 
(ii) For any other eigensolutzon w, A there holds w E W and 

(C- 1)'	A - i	c — i,	 (19) 

where 0 > 1 and C > 1 denote the optimal constants introduced in Proposition S. 

For bounded spherical and ellipsoidal domains d the structure of the eigenvalue 
spectrum was investigated by the Cosserats' [2]. As to the general case we quote some 
of Mikhlin's results from [10] as follows.
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Theorem 2 (Mikhlin). Let Q be a bounded open domain with smooth boundary. 
Then there is a countable system {wk} of eigenfunctions Wk E H'(cl) which are orthog-
onal with respect to D( . ,.) and complete in H0' (a). All eigenvalues A other than 1, 2 
and oo have fini te multiplicity. They can accumulate only at A = 2. 

Remark. In Mikhlin's paper, the boundary is supposed to be "sufficiently smooth". 
The assumption C 2 should be sufficient. But for the sake of easy reference we will adopt 
the more restrictive assumption C' throughout this section. 

To illustrate the theorem we present one of the results of the Cosserats'. If 92 is a 
ball, then the eigenvalues A other than 1 and oo are given by 

(nEN). 
n 

Here, A n is eigenvalue of multiplicity 2n + 1, and the eigenvalues accumulate at A = 2. 
In the case of spherical shells and ellipsoidal domains, the eigenvalue spectrum exhibits 
the same structure. But it seems to be an open question wether for other bounded 
domains A = 2 could be eigenvalue of infinite multiplicity, too. 

On combining Proposition 5 and Theorem 2 we easily obtain the following 

Theorem 3. Let Q be a bounded and simply-connected domain with boundary in 
the class C°°. Then the optimal constants introduced in (6), (7) and (13), (14) satisfy 

r=C — i>i and r=C—i>i. (20) 

The smallest intervall [a, b] containing all eigenvalues A other than 1 and oo is related 
to the optimal constants by 

a=1+(C-1)'	and	b=C.	 (21) 

If Q is a ball, then

	

=2	and	I'=l.	 (22) 

Proof. Due to Theorem 2, there exists in W a complete D-orthogonal system 
{w,, I of eigenfunctions. They are orthogonal with respect to d( . ,.) and r(., .), too. In 
addition, D( . )' 12 and d( . )' /2 are equivalent norms in W. Thus we may assume that the 
eigenfunctions w, are normalized by d(w) = 1. Then any function w E W, w 0 has 
a representation

w =	cw	with c = d(w, w) 

(summation from 1 to oo) and one obtains 

	

d(w)	' c2€L.,n n 

which yields (21). Since the point of accumulation A* = 2 is contained in the interval 
[a, b], we infer in particular (20). If the domain Q is a ball, then a = 2 and b = 3, and 
one obtains (22)1
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The second eigenvalue problem under consideration is a counterpart to Friedrichs' 
eigenvalue problem for pairs of conjugate harmonic functions. In dimension three, 
however, we introduce the real linear space F consisting of all pairs f = (p, q) E 
L2 (fz) x L2 (fl) 3 satisfying equations (8), (9). Remember that those functions are har-
monic in Q. 

In the space F we define a scalar product and norm by 

(fl,f2)F = j(PIP2+q1 . q2 )dV	and	IIfII3 =j(p2+1q12)dV. 

Clearly, (F, (,)p, p) is a Hilbert space. Indeed, any sequence {fk} satisfying If - 
fkIIF - 0 as j ,k - :: is convergent in L2(Q) x L2 (cl) 3 . But as the functions 1k = 
(pk, q ) are solutions of equations (8), (9), the same holds for the limit function f = 
(p, q). / 

Besides of the quadratic functional If II we introduce also the quadratic functional 

QF(f) = in (p' - qI2)dV 

and we ask for stationary values of the quotient Q p (f) / Ill II . Thus we are led to the 
variational eigenvalue problem of finding functions f = (p, q) e F (f 0) and real 
numbers p such that 

in (pp — q - 4)dV = Mj(p+q . )dV	for all ()eF,	(23) 

where clearly 1,ul < 1. There are two eigenvalues which are independent of the shape 
of ci, namely p = 1 and p = —1. The eigenspace to It = 1 consists of all pairs 
p = const, q = 0, and the eigenspace to p = —1 of all pairs p 0, q = Vh, h E 
H 1 , Lh = 0. Any eigenfunction f = (p, q) to an eigenvalue p 54 ±1 is orthogonal to the 
latter eigenspaces and satisfies therefore the conditions p 54 0 and q 96 0 together with 
P E L(ci) and q C Ho(div 0, ci). 

If we restrict our attention to eigenvalues p 96 ±1, then we are led to the following 
Problem II. Find funtions f = (p,q) E F (f 54 0) whith p E L(ci) and q E 

Ho(div 0, ci) such that 

if 

pp dV = fo q dV	for all (, ) E F,	 (24) 

where	± and 7> 0. 

Theorem 3. To any eigenvalue A of Problem I other than A = 1 and A = co there 
is an eigenvalue > 0 of Problem II such that 

A=y+1 

and vice versa. If w is eigenfunction to A, then the pair p, q given by 

p=(A-1)divw	and	q=rotw	 (25)
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is solution of equation (24) to the eigenvalue = A - 1. Conversely, if the pair p, q 
is solution of equation (24) to the eigenvalue y > 0, then there is an eigenfunciion w 
of (16) to the eigenvalue A = y + 1 satisfying (25). The related eigenvalues y > 0 and 
A = y + 1 are of the same multiplicity. 

Proof. Let w, A denote a given eigensolution of Problem I where A 5k 1 and A 
so that w € W by Proposition 5. On setting 

p=(A-1)divw	and	q=rotw	 (26)€

we obtain from (18) equations (8), (9), namely 

j
q• rot dV = j p div dV	for all 0 € C,—(Q)3 

and

in 
q . VdV = 0	for all $EC()

 
Thus the pair (p, q) belongs to the space F. Note that p E divW C L(Z) and q E 
rot  C Ho(divOjl) by Proposition 2. Since, however, C00(f)3 is dense in H(1l)3, 
equation (8) is satisfied for = w, too. Thus we obtain for any pair (, ) E F the 
relation

I fldiv w dV = I q . rot w dV	 (27) 
iii	 Jn 

and in view of (26) 

jpJidV = (A_1)fq . 4dV	for all (,4)€F. 

Hence the pair (p, q) defined by (26) is eigensolution of Problem II to the eigenvalue 
= A - 1 >0. 

Conversely, let (p, q) E F be eigensolution of Problem II to the eigenvalue > 0. 
By Proposition 4 there holds p E div W and q E rot W. In particular, there exists a 
uniquely defined function w e W so that q = rot w. On inserting the latter function 
into equation (24) we obtain from (27) the equation 

in (p - 7divw) j3dV = 0	for all P E div W,	 (28) 

whence p = 7 divw. On inserting the two functionsp = 7 divw and q = rot  into 
equation (8), we find that w is solution of (18) to the eigenvalue A = + 1 I 

An immediate consequence of Mikhlin's results quoted in Theorem 2 is a compact-
ness result already stated in 1101. In our notation it may be formulated as follows: 

If restricted to the subspace W € H ()3, the quadratic functional 

Qw(w) = r(w) - d(w)
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is compact with respect to d(w). This means, given in W a sequence {w(k)} bounded 
in the sense d(w( k)) < M and converging weakly to zero, then 

Qw(w)—O	as k —'oo. 

This is easily seen as follows. As in the proof of Theorem 3 we introduce in W 
a complete orthogonal system {w} of eigenfunctions normalized by d(w) = 1 and 
numbered such that IA, - 211. Any of the functions w has therefore a representation 

n	d(w,w,) =	C)W,	with c =  
n 

where, due to the weal convergence to zero, c - 0 as k -* oo. Thus one obtains 

r(w) - d(w) =	- 2)(c)2 and d( w) =	(c)2 < M, 

where ( - 2) -+ 0 as n - oc. Compactness follows now by a well known argument. 
Given an integer N > 1, one obtains the estimate 

r(w( k)) - d(w (k) )I 	An - 21 (c(k))2 + lAN41 - 21 M. 
n<N 

In view of c -* 0 as k - 00, the finite sum at the right-hand side tends to zero as 
k -+ oo. The term IA N + l - 21 M, however, is as small as we want since IA N + l - 21 - 0 
as N -+ 00. 

Remark. Since d( . ) 1/2 and r( . )' /2 are equivalent norms in W, the quadratic form 
Qw() is compact with respect to r( . ), too. 

Due to Theorem 3 there is a completeness and compactness result for Problem II 
as well. The counterpart to the subspace W is now the subspace G C F defined by 

G = {(p , q ) E F1 P E L() and q E Ho(divo,cO}. 

Theorem 4. In the subspace C of the Hubert space (F, (., • ) F, 11 . 11 F) there exists a 
complete orthogonal system {f,.} of eigenfunctions I,. = (p,, q,,) to eigenvalues y,. > 0. 
If restricted to the subspace C, the quadratic form 

QF(f) = fo (P2 - Iq12)dV 

is compact with respect to each of the two forms 11 p 11 2 = j p2 dV and jjq112 = fIq I 2 dv. 
Proof. Let f = (p,q) E G be given. Due to Proposition 2 there exist functions 

w E W and ii, E W such that p = div w and q = rot ti,. Introducing representations in 
terms of eigenfunctions Wn as in the proof of Theorem 3, namely 

W = E Cn Wn	and	tii =
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where d(w) 1, c, = d(w,w), and Z n = d(ii,w), we obtain 

p=	c. div w n	and	q = E Erotw. 

Since, however, p and q satisfy equation (8) for any 0 E H0' (1), we find in particular 
the relations 

c = f pdivwn dV = fn q rot WndV = Zn fn
Irotw n I 2 dV = ( '\n — 

At the other hand, the pairs pr,, qn defined by p =	— 1)divw and qn = rotw
are eigenfunctions of Problem H to the eigenvalues y, = A n — 1. Hence we obtain 

q=jEnqn,	or 

That is, any f E G has a representation in terms of the orthogonal eigenfunctions 
In = (pr,, qn) to eigenvalues > 0. On inserting the series into the functional QF() 
we find

Qp(f) = i(' --y')c	and	II p II 2 = 

Since, however, y —p 1 and (1 — -ç') — 0 as n —* oo, the quadratic form QF(f) is 
indeed compact with respect to the quadratic form I1 p II 2 Due to Theorem I, however, 
the form II p II 2 may be replaced by the form 11 q 11 2 I 

3. An inequality related with the Stokes equations 

Given a bounded domain Q, the first boundary value problem for the Stokes equations 
reads

—iu+Vp = I 
divu=0 in 

u=0 on &I 

where p may be normalized by ft-, p dV = 0. 
When dealing with numerical algorithms for solving the Stokes problem in weak 

(variational) form, the following inequality between two norms of the pressure function 
p E L(1) plays an important role: 

11p112 < C	sup	(divq5,p)2
(29) 

EH(0)3	D() 

Here (., .) and	II denote the usual scalar product and norm in L2(l). 
There is a simple relation between the optimal constant C 5 in (29) and the optimal 

constant C introduced in (6), namely

C. = C.	 (30)
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This result is already stated in the lecture note [12]. The constant C controls in 
particular the convergence speed of certain algorithms, so that it is of interest to have 
informations on it. Therefore we will add here a proof of (30). 

(i) C* < C: Let p E L(1l) be given. Due to Proposition 1 and decomposition (5) 
there exists u E Hol 	u E Kerdiv1 such that p = divu. From inequality (6) we infer 

 (divu,p) 2 - IIdivu112 
I1pI12 

>
 IIvII 2 

D(u) - D(u) 
whence

I1p1I2	C	sup	
(div,p)2

for all pEL(Q), 
0EI1(fl)3	D(0) 

that is C 5	C. 

(ii) C = C*: In order to exclude the strict inequality C 5 < C, it is sufficient to 
consider functions p defined by p = div u&, where u, E W is eigenfunction to the 
eigenvalue Ak,

D(uk,ct) = A k d( U k, q5 )	for all	EH(1Z)3 .	 (31)
Let Uk be normalized by d(u k, U k) = 1. For those functions pit is possible to evaluate the 
supremum in (29) explicitly. Indeed, any given 0 E H (Q),	0, has a representation 

= au + 0r1 where the two components are, by construction, D-orthogonal and then 
due to (31) d-orthogonal, too. Thus we obtain 

	

(div,p)2 = (adivuk,p)2 = o2	and	D() > D(auk) = a2Ak. 
The supremum in (29) is attained if and only if	div Uk (& 54 0) so that 

1 < C	
sup (div,p)2 

=
C -

or	Ak < C. 

	

cEH(11)3 D(q5) IIII	Ak 

But due to Theorem 3, the constant C is the lowest upper bound to the eigenvalues Ak 
belonging to eigenfunctions Uk E W, whence C < C 5 . This completes the proof I 

Let us also notice that inequality (29) has a counterpart where div is replaced by 
rot and p by q, and where (.,.) and denote now the inner product and norm in 
L2 (cl) 3 . It reads as follows: 

There is a constant 0 5 depending only on Q such that for any q E Ho(divo,cz) 

(rot 0,
(32) 

	

E If' (fl)	D() 

The optimal constant in (32) is given by 

	

a. = a.	 (33)

The proof of (33) parallels the proof of (30). For given q there exists u I Ker rot such 
that q = rot u, which yields C	C. The eigensolution U k, A k has to be replaced by
the eigensolution U k, p, of

1 q 11 2 ^ ã

 

D(Uk, ) = pk r ( U k, )	for all 0 E Hol 

where Pk = 1 + (A k - 1) . It follows p . < C 5 and hence O < C as well.
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