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Abstract. In this paper we solve periodic and Cauchy problems for nonlinear evolution equa-
tions driven by time-dependent, pseudomonotone operators and a non-monotone perturbation 
term. Our proof produces as a by-product a useful property of the solution map for maximal 
monotone problems. Two examples of nonlinear parabolic problems illustrate the applicability 
of our work. 
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1. Introduction 
In this paper we prove two existence theorems for evolution equations defined in the 
framework of an evolution triple X ç H ç X e . The first theorem is about a periodic 
problem, while the second concerns a Cauchy problem. Our work here extends that 
of Hirano [8] who treats autonomous equations, with the operator A : X -p X being 
monotone and the conditions on the perturbation term I being more restrictive. Re-
cently Ahmed and Xiang [2] extended the result of Hirano [8]. Although some of their 
hypotheses are more general than ours (they do not assume that the embedding of X 
into H is compact and I takes values in X*), nevertheless they still require A to be 
monotone (analogous results can also be found in the works of Ahmed [1] and Ahmed 
and Xiang [3]). Moreover, our method of proof is different from that of Hirano [8] and 
Ahmed and Xiang [2] (which move along similar paths) and uses a general surjectivity 
theorem for the sum of two operators of monotone type. The use of this surjectivity 
result is made possible by an intermediate result of independent interest, which roughly 
speaking says that the property of pseudomonotonicity of A(t,.) can be 'lifted' in some 
sense to the Nemitsky operator A( . ) corresponding to A(t, x). 
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To complete our survey of the relevant literature, we should also mention the work of 
Vrabie [17) who considers autonomous systems assuming that the operator A generates 
a compact semigroup on H and the work of Gutman [7] in which A is an m-accretive 
operator on a Banach space X and the perturbation term is completely continuous from 
C(T, X) into LP (T, X). Related to the work of Gutman [7] is the recent one by Kartsatos 
and Shin [9] who study functional evolution equations driven by a time-dependent rn-
accretive operator on a Banach space which generates a compact evolution operator (the 
evolution oerator can be only equicontinuous, but then X and X are uniformly convex 
and the perturbation term is compact). In our hypotheses here, nothing implies that the 
operator A(t, x) generates an evolution operator, let alone a compact one. Similarly, our 
hypotheses on the perturbation term f(t, x) do not imply that its Nemytski operator is 
compact. 

2. Preliminaries 

By an evolution triple we mean three real spaces X C H C X such that: 
(a) X is a separable, reflexive Banach space. 
(b) H is a separable Hilbert space identified with its dual (pivot space). 
(c) The embedding of X into H is continuous and dense. 

Hence H*	H is embedded into X* continuously and densely, too. By	, 11 . 11 and 
we will denote the norm of H, X and X, respectively. Also, by (.,.) we will denote 

the inner product of H and by (,) the duality brackets of the pair (X, X*). The two 
are compatible in the sense that (,)IXxH = (,). 

Given an intercal T = (0, b], an evolution triple (X,H,X') and numbers 1 <p,q < 
with + = 1, we define 

Wpq (T) = {x E L(T,X) : i E 

The time derivative of x involved in the above definition of Wpq (T) is understood in the 
sense of vector-valued distributions. We furnish Wpq (T) with the natural norm 

IkII	= (II x II + IIthII) 
1/2 

Equipped with this norm Wpq (T) becomes a separable, reflexive Banach space. It 
is embedded continuously into C(T, H), i.e. every element in Wpq (T) has a unique 
representative in C(T, H). If in addition we assume that X is embedded compactly into 
H, then Wpg(T) is embedded compactly into LP (T,H). For further details on these 
issues, we refer to Zeidler [18]. 

An operator A : X - X is said to be pseudomonotone, if Xn Z x in X as 
n - and lim(A(x),x - x) :5 0 imply that (A(x),x - y) lim(A(x),x - y) for 
all y E X. If A is bounded (i.e it maps bounded sets in X into bounded sets in X*), 
then pseudomonotonicity is equivalent to saying that if x,,	x in X as n - co and

lim(A(x),x - x) < 0, then A(x) .Z A(x) in X and (A(x),x) - (A(x),x) (this
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property is usually known as generalized pseudomonotonicity, see Browder and Hess [61). 
A monotone hemicontinuous operator or a completely continuous operator A : X — X 
is pseudomonotone, and pseudomonotonicity is preserved by addition. 

Another closely related concept, suitable for the study of evolution equations, is that 
of L-pseudomonotonicity. So, let Y be a reflexive Banach space, L : D c Y -i Y a 
closed, densely defined, linear operator and K : Y -.- a bounded nonlinear operator. 
We say that K is L-pseudomonotone if, for { yn}n^i ç D such that y,, -Z y E D in Y, 
L(y) - L(y) in Y as n - cc and i(K(y),y —y)y . ,y 0, then K(y) .Z K(y) in 
Y* and (K(y),y)y.y -. (K(y),y)y.y as n -. cc. It is well-known (see, for example, 
Zeidler [ 18: p. 897]) that a linear operator L : D C Y - Y* is maximal monotone if 
and only if it is densely defined, closed and both L and L* are monotone. 

Our existence theorems will be based on the following surjectivity result which can 
be found in Lions [10] or B.-A. Ton [16]. 

Theorem 1. If Y is a reflexive Banach space, L : D c Y - Y is a linear, 
maximal monotone operator and K : Y — Y is an L-pseudomonotone operator which 
is coercive (i.e. lim1111_ (K(1 = +oo), then R(L + K) = Y* (i.e. L + K is 
surjective). 

Let
D1 ç L(T,X) — L(T,X*)	( + = 1) 

be defined by L i (x)=x for all  ED1, 

D 1 = ly E 12'(T,X) : E L"(T,X) and y(0) = y(b)}. 

Here as before the time derivative of x is understood in the sense of vector-valued 
distributions. Also, since Wpq (T) ç C(T,H), we see that the pointwise evaluations at 
t = 0 and t = b in the definition of D 1 make sense. Since the space C0'(T,X) is dense 
in LP(T, X), we see at once that D 1 is dense in LP (T, X). Also, 

DI c L(T,X) - L(T,X*) 

(recall that, for a reflexive Banach space Y and 1 r <cc, L'(T, Y) = L3 (T, Y) with 
+ is = 1) is defined by L i (v) = —) for all v E D =D 1 . Hence both L 1 and L are 

linear monotone and clearly L 1 is closed. Hence by what was said earlier, we have that 
L 1 is a maximal monotone linear operator. In a similar way we can show that 

L2 : D2 C L(T,X) — L(T,X*) 

defined by L2 (x) = ± for all x ED2, 

D2 = {y E L(T,X) : l E V(T,X*) and y(0) = o} 

is maximal monotone. Note that in this case - - 

D 9 LP(T,X) L(T,X.)
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is defined by L 2 (v) = —i' for all v E D, 

D = {w E P'(T,X) : tb E V(T, X*) and w(b) = o}. 

Finally, recall that on operator K : X - X is said to be demicontznuous if x —* x in 
X implies K(x) -Z K(x) in X' as n -oo. 

For the rest of this paper (X, H, X) is an evolution triple with X embedded com-
pactly into H (hence H is embedded compactly into X). The next proposition will 
make possible the use of Theorem 1. The hypothesis on the operator A(t, x) is the 
following: 

H(A) A : T x X - X is an operator such that: 
(i) i - A(t, x) is measurable. 

(ii) x - A(t,x) is pseudomonotone. 
(iii) IA(t, x)II. < a 1 (t) + c iII x II P1 a.e. on T (a i E L(T),c1 ^! O,p ^! 2, 1. + = 1). 
(iv) (A(t,x),x)	cx' - t9(t) for a.a. t E T and all x E X (c 0, t9 E L'(T)). 

Remark. The pseudomonotonicity of A(t,.) (hypothesis H(A)/(ii)) and the bound-
edness growth condition on A(t,.) (hypothesis H(A)/(iii)) imply that A(t,.) is demicon-
tinuous. 

Let A : LP(T,X) - L(T,X*) be defined by A(x)( . ) = A( . , x( . )) (the Nemitsky 
(superposition) operator corresponding to A(t, x)). Also, by ((.,.)) we will denote the 
duality brackets of the pair (L(T, X*) , LP (T, X)), i.e. ((u,y)) = f(u(t), y(t)) dt for all 
y  LP (T,X) and all u E L(T,X.). 

Proposition 2. If A : T x X - X' is an operator satisfying hypothesis H(A) 
and L : D = Wpq (T) LP(T,X) - Lg(T,X*) is the closed, densely defined, linear 
operator given by L(x) = a, then A : L P (T,X) - L(T, X. ) is demicontinuous and 
L-pseudomonotone. 

Proof. First we will prove the demicontinuity of A. So let x - x in LP (T, X) as 
n - oo. By passing to a subsequence if necessary we may assume that x(t) - x(t) 
a.e. on T in X as n - oo. Because of hypothesis H(A)/(ii), for every y E LP(T,X) 
we have (A(t,x(t)),y(t)) -* (A(t, x(t)), y(t)) a.e. on T. Then using the extended 
dominated convergence theorem (see, for example, Ash [4: Theorem 7.5.2, p.295]), we 
have ((A(x),y)) - ((A(x),y)) as n -* co. Since Y  LP (T,X) was arbitrary we have 
that A(x) -Z A(x) in L(T,X*) as n - no, hence A( . ) is demicontinuous. 

Next we will show the L-pseudomonotonicity of A for 

L: D = W(T) c V'(T,X) - 

defined by L(x) = :i. So let {x,x}> 1 c Wpq(T) and suppose x,, -Z x in LP (T,X) and 
L(x) -Z L(x) in L(T,X.) as n -i no. Hence x -Z x in Wpq (T) as n -i. on. Assume 
that i((A(x),x - x)) < 0. Set e(t) = (A(t,x(t)),x(t) - x(t)). Since Wpq (T) i s 
embedded continuously into QT, H), we have Zn -Z x in C(T, H) as n - no. So for
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every t E T, we have x(t) - x(t) in H as n - 00. Also, let N c T be the exceptional 
Lebesgue-null set outside of which hypothesis H(A)/(iiii) and (iv) holds. We have 

e() ^! c[[x(t)[I" - i9(t) - (a l (t) + Cl IIn( t)II) II x ( t )II	(t € T\N).	(1) 

Set C = It € T : lim(t) < O}. This is a Lebesgue measurable subset of T. Suppose 
that A(C) > 0, with A being the Lebesgue measure on T. From (1) it follows that for 
every t € Cfl(T\N) 54 0, the sequence {x(t)}> i is bounded in X. Since X is reflexive 
and x(t) - x(i) in H as n - 00, we deduce that x(t) Z x(t) in X as n - 00. We fix 
t E Cfl(T\N) and consider a subsequence {n}m>I of {e}>' such that lim nm (t) = 
Airnn(i) < 0 (of course, the subsequence in general depends on t). Exploiting the 
fact that A(t,.) is pseudomonotone, we have that (A(t,X nm (t)),X nm (i) —x(t)) - 0 a 
m - co, which is a contradiction to the hypothesis that t € C.	--	- 

So A(C) = 0, which means that 0 < lime(t) a.e. on T. Then from the extended 
Fatou lemma (see Ash [4: Theorem 7.5.2, p. 295]) we obtain 

0 /	n (t)dt	 /ent <0. 

6 Hence J0 e(t)dt - 0 as n - 00. Since 0	lim,,(t) a.e. on T, we deduce that 
(t) - 0 a.e. on T. Moreover, from (1) it is evident that t9(i) ,(t) a.e. on T 

with {19}> I being a uniformly integrable sequence. Thus 0 e;(i) t9-(t) a.e. on T 
and of course {9 }>i is uniformly integrable. Thus anew application of the extended 
dominated convergence implies that j'eJt)dt —p 0 as n —p 00. So finally we have 

= I (n(t) +2:(t))dt .0	as n	oo 

and thus by passing to a subsequence if necessary, we may assume that e(t) - 0 a.e. 
on T as n - 00. Because A(t,.) is pseudomonotone, we have 

A(i, x(t)) Z A(t, x(t))	a.e. on T in X 

and
(A(t, x(t)), x(t)) - (A(t, x(t)), x(t))	as n - 00. 

Then a final application of the extended dominated convergence theorem implies that 

A(x) - A() in V(T,X)	and	((A(x),x)) - ((A(x),x))€

as n—* no. Therefore A(.) is L-pseudomonotone I
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3. Existence theorems 

In this section we prove existence theorems for the two problems 

i(t) + A(t, x(t)) = 0 a.e. on T) 

x(0)=x(b)	1	(2) 

and

	

(t) + A(t, x(t)) = 0 a.e. on T }

	
(3)
X(0) = x0. 

The hypothesis on A(t, x) is that introduced in Section 2, namely H(A). 
In Hirano [8] and Ahmed and Xiang [2], in both problems the nonlinear term has 

the form A(t, x) + f(i, x) with f(t, x) satisfying hypothesis H(f) below. 

H(f) f : T x X -' H is a function such that: 
(i) t -. f(t, x) is measurable. 

(ii) x - f(t, x) is sequentially weakly continuous. 
(iii) If (t, x)1	a2 (t) + c2II x II' a.e. on T (a2 E L(T) , c2 > 0). 

(iv) Mt, x), x) ^! —c3 for a.a. t E T and all x E X (C3 > 0). 

In our case no extra generality is achieved by such a decomposition since the term 
A(t, x) + f(t, x) still satisfies hypothesis H(A). 

We start with the periodic problem (2). 

Theorem 3. If hypothesis H(A) holds, then problem (2) has a solution x e Wpq(T). 

Proof. Let
L1 : D 1 ç LP(T,X) V(T,X) 

be the linear maximal monotone operator defined by L(x) = 1 for x E D, 

= {x E Wpq (T) : x(0) = x(b)}. 

Also, let A: LP(T,X) -. L(T,X*) be the Nemytski operator corresponding to A(t,r), 
i.e. A(x)( . ) = A( . , x(-)), and let K = A : LP (T,X) - L(T,X*). 

Claim 1: K is L 1 -pseudomonotone. This is proved as Proposition 2. 
Claim 2: K( . ) is coercive. We have 

((K(x),x)) = ((A(x),)) ^! c[x"	- V9 111IILP(T,X) 

(see hypothesis H(A)/(iv)). From this it follows that K( . ) is coercive. Rewrite problem 
(2) as the equivalent abstract operator equation L 1 (x) + K(x) = 0. By Theorem 1 this 
equation has a solution x E D 1 . So	Wpq(T) is the desired solution of problem (2) I 

Now we turn to the Cauchy problem (3). We have the following existence result.
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Theorem 4. If hypothesis H(A) holds and x0 E H, then problem (3) has a non-
empty solution set which is compact in C(T, H). 

Proof. In the first part of the proof we assume that xo E X. Let A 1 : T x X — X* 
be defined by A j (t,x) A(t,x + x 0 ). Evidently, t —i A 1 (t,x) is measurable and 
x — A i (t,x) is demicontinuous. 

We claim that x —* A i (t,x) is also pseudomonotone. By what was said in Section 
2 (see also Browder and Hess (6: Proposition 4)) it suffices to show that if x,, x in 
X as n — cc and lim(A i (t,xn),xn — x) <0, then 

A 1 (t,x) -* A 1 (t,x) in X*	and	(Ai(t,xn),xn) — (A1(t,x),x)


as n — cc. Note that 

lim(A(t,x + x 0 ),x + Zo — (x + x 0 )) = lim(A i (t,xn),xn — x) :5 0 

and since A(t,.) is pseudomonotone, we have 

A i (t,xn )=A(t,xn+xo)-* A(t,x+xo)=Ai(t,x) 

in X and
(A(i, Zn + x0 ), x,, + x 0 ) — (A(t, x + x 0 ), Zn + XO) 

as ri —, cc. Hence we have 

lim(A(t, Zn + x 0 ), x) + (A(t, x + x 0 ), xo) 2 (A(t, x + xo), x) + (A(t, x + x 0 ), xo) 

from which it follows that (A i (t,xn),xn) -- (Ai(t,x),x). So indeed x —p A i (t,x) is 
pseudomonotone. Also, it is easy to check using hypothesis H(A)/(iii) and (iv) that 

Ai(t,x)II. < a(t) +ilIxlI'	a.e. on T (i E L(T),E1 >0) 

and
(Ai(t,x),x) 2 1I x IV' — 9(t)	a.e. on T (1> 0,i9 E L'(T)). 

Thus A 1 (t, x) satisfies the same kind of hypothesis as A(t, x). 

So if A 1 : LP (T, X) — L(T, X S ) is the Nernytski operator corresponding to A 1 (t, x) 
(i.e. A 1 (x)() = Ai(.,x())), by Proposition 2, A i ( . )is L2-pseudomonotone, where recall 
that L2 : D2 LP (T, X) — L(T, X) is the linear maximal monotone operator defined 
byL2 (x)= for all ZED2, 

D2 = { y E L"(T,X) : E L"(T,X) and y(0) = o}. 

Now let K 1 : L"(T,X) —' L(T, X) be defined by K i (x) = A i (x). 

Claim 1 : K1 is L2 -pseudomonotone. This is proved using the same arguments as - - 
Proposition 2.
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Claim 2 : K1 i3 coercive. Note that 

(( K 1 (x), x)) = ((A ' (x), x)) ^! F4 II X II'.p( T,x ) - 7 

where , > 0. Therefore K1 is coercive. Then consider the equivalent operator 
equation L2 (x) + K, (x) = 0. Invoking Theorem 1, we infer that the operator equation 
has a solution £ E D2 . Set x( . ) = £() + x0 . Then x E Wpg (T) and x is a solution of 
the Cauchy problem (3) when the initial condition x0 belongs to X. 

Now we remove the regularity condition on x0 and assume that in general xo E H. 
Let {x'}> c X and assume that x — x 0 in H as n — 00. Consider the Cauchy 
problem

	

i(t)+A(t,x())=0 a.e. onTj	
(4 

x(0)=x	(n>1).J 

From the first part of the proof, we know that for every n 2 1, the evolution equation 
(4) has a solution x, E Wpq (T). Multiply by x(t) and integrate over T to obtain 

((,x)) + ((A(x),x)) =0	(n 21).	 (5) 

From integration by parts for functions in Wpq (T) (see Zeidler [18: Proposition 23.23, 
p.422 - 423]) we have

b 

f	IXn(t)I2dt = IXn(b)I 2 — pxI 2	Ixn(b)I2 — /3	(6) 
0 

for some /3 > 0. Also, from hypothesis H(A)/(iv) it follows that 

((A(x), x)) > c II Xnp(T, x ) - 11t9 111 .	 (7) 

Using (6) and (7) in (5), we obtain 

c II X nI
pLP( T x )	IIhIILq(T,X.)fxnhILp(TX) + 91	 /3	/3 with	=	+ II'II,. 

From this inequality it is clear that the sequence {x}>, is bounded in LP(T,X). 
Then using hypothesis H(A)/(iii) we show easily that the sequence {*}> I is bounded 
in L(T,X.). Therefore we conclude that {x}>, is bounded in Wpq (T) and so, by 
passing to a subsequence if necessary, we may assume that x, 4 x in Wpq (T) as n —* 00. 
Then we have

	

i((A(x) + I(x),x — x)) < .I((i,x — x)).	 (8) 

Employing once again integration by parts for functions in Wpq (T), we have 

((,x — x e )) = 
2

— I x ( b ) — x(b)1 2 + Ix(0) - xI 2 + ((th,x - xe )).	(9)
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Since Wpq (T) is embedded continuously into C(T, H), we have x,, -Z x in C(T, H) and 
so x(0) = x' 4 x(0) in H as n —* oo. Hence r(0) = x0 . Also, from (9) we have 

	

- x c )) < 0.	 (10) 

Moreover, since Wpq(T) is embedded compactly into LP (T,H), we have x, -* x in 
LP (T,H) as n —	. So using (10) in (8), we have	((A(xn),xn — x))	0. But

by Proposition 2, A( . ) is L-pseudomonotone with L : D = Wpq(T) c LP(T,X) 
L(T,X*) defined by L(x) = x. So we have A(xn) 4 A(x) in L(T,X*) as n — 00. 
Hence in the limit as n —i oo, we have 

± + A() = 0 j

X(0) = 

which shows that x E Wpq(T) is a solution of problem (3) when x 0 E H. 
Finally we will show that the solution set S ç Wpq (T) c C(T, H) of problem (3) is 

compact in C(T,H). To this end let {xn}n> i c S. Then we have 

±, + A(x,) = h 

Z " (0) = x0. 

From the previous estimation we know that the sequence {xn}n> i is bounded in Wpq(T).€
Thus by passing to a subsequence if necessary, we may assume that x, 4 x in Wpg(T),€

— x in LP (T,H) and x(t) —* x(i) in H as n -+ oo. As above we can show that 

± + A(x) = 0 
X(0) = 

i.e. x E S. Now we will show that Zn . Z in C(T, H). 
In what follows, for any t E T by ((., -)) t we will denote the duality brackets of 

the pair (L([0,t],X),L([0,i1,X)). Also, by ()Lf,LP,t we will denote the duality 
brackets of the pair (L([0, fl, H), L([0, t], H)). From integration by parts for functions 
in Wpq (T) we have that

— x(t)1 2 + ( (A( X " ) — A(x),x — x)) . =0 

implies

I n(t) — x(t)1 2 
	

(A(t, x,,(t)), x,, ( t )  — x(t))l dt + ( (A(x),x — x)). 

From the proof of Proposition 2 we know that 

0 

K A ( t , X n( t )), X n( t) x(t))Idt = /	
( i ) I dt	0	as n
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Next we examine the limit behaviour of the sequence 

Isup ((A(x),x n _x))} I.. tET	 n>1 

We have

sup ((A(x),x— x)) = sup  (A(s,x(s)),x(s) - x(s))ds. 
tET	 LET

0 

Let

	

= / (A(s, x(s)), x(s) - x(s))ds	(n 21). 

Then Wn E AC 1 (T). Let t,, E T be such that (t) = Supg T cp n (t). We may assume 
that i - I E T. Then

= J (A(s,x(s)),x(s) - x(s))ds 

= / 

(x1o,t1( s )A (s, X(s)), xn(s) - x(s))ds 

= ((xo,1A(x),x - x)). 

Note that 

b Lq 
x1o, t j(s)A(s, x(s)) - x1og1(s)A(s, x(s))H ds

= 	IIA(s, x (s ))II ds --+* 0 111 * 
0 

as n -	. Hence x 1o, 1 A(x) -' xo, t1A(x) in L(T,X) as n - no. Therefore 

((A(x),x n -	= sup ((A(x),x -	—'0 
jET 

as n - no. Thus finally we have that SUPIET Ix(i) - x(i)I - 0 as n - no, i.e. x, -* x 
in C(T, H) as n - no and x E S. This proves that the solution set S of problem (3) is 
compact U 

The last part of the previous proof has an interesting consequence. More specifically, 
consider the evolution equation 

±(t) + A(i, x(i)) = g(1) a.e. on T }

€x(0) = x0 E H.
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Under a monotonicity condition on A(t, .), for every g E L(T, H) problem (11) has a 
unique solution x E Wpq (T) ç C(T,H). So we can define the map w : L(T , H) -+ 
C(T, H), which to each g E L(T, H) assigns the unique solution x E Wpg (T) c C(T, H) 
of problem (11). The next proposition establishes a useful property of that map w. But 
first we formulate the precise hypothesis H(A) 1 on A(t, x). 

H(A) A : T x X -* X is an operator such that: 
(i) t	A(t,x) is measurable. 

(ii) x - A(t, x) is demicontinuous and monotone. 
(iii) II A ( t , x)II < a 1 (t) + c1 II x II	a.e. on T (a i E L(T) , c 1	0, p > 2, 1 + = 1). Pq 
(iv) (A(t,x),x) > cflxP - i9(t) for a.a. t E T and all x E X (c> 0,i9 E L 1 (T)). 

Proposition 5. If hypothesis H(A) holds and x 0 E H, then the map 

w : L(T, H) - C(T, H) 

is completely continuous, i.e. continuous and maps bounded sets into relatively compact 
sets.

Remark. In the light of the recent counterexample to the embedding theorem of 
Nagy [12], due to Migorski [11], it is this proposition that should be used in [13 - 15] 
instead of Nagy's embedding theorem. In fact, the restriction that X is a Hubert space 
too is no longer necessary. So we can improve the results of [13 - 15]. 

4. Examples	 - 

In this last section, we present two examples from parabolic partial differential equations, 
which illustrate the applicability of our results. 

Example 1. Let T = [0, b] and Z c RN (N 3) a bounded domain with Lipschitz 
boundary I'. Let Dk = (k = 1,..., N) and D = (Dk) 1 . We consider the nonlinear 
parabolic problem 

ax N _E (Da(t, z, x, Dx) + ao(i, z, X)DkX) + f(t, z, x(t, z)) = h(t, z) in T x Z 

x(0, z) = xo(z) a.e. on Z	(12) 

x = 0 on T x r. 

The presence of the first-order derivatives makes it more difficult to establish the 
pseudomonotonicity of the operator A(t, .), which uses critically the compact embed-
ding of W''(Z) into L29 (Z). A typical example of the first order term is the term 
'Y N k=I (sin X )D k X with y E R. 

The hypotheses on the data of problem (12) are the followings. 

H(a) a :T x Z x R x R N - R (k = 1,...,N) are functions such that:
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(i)

 

(t, z) - ak( t , z ,x,17) is measurable.
(ii)

 
(x, 7) -+ aj(t, z, x, i) is continuous. 

(iii) Iak(t, z, x, 77)1 < )3 1 (t ) z)+ci (I x I"' +ll17ll — ') a.e. on Tx Z (3, € L(Tx Z), c 1 ? 
0,2 S p < oo, + I = 1). 

(iv) (ak(t,z,x,r,)—ak(t,z,x,r1'))(r,k-7) > 0 for a.a. (i,z) E Tx Z, all x € R 
and all 77,17+ E RN with '777'. 

(v) ak(t,z,x,71)llk ^! c2 77 ' - 19(t) for a.a. (t, z) € T x Z, all x E R and all 
r, € 1W" (i9 € L1(T)). 

H(ao) a0 : T x Z x R - R is a function such that: 
(i) (t, z) - ao(t, z, x) is measurable. 

(ii) Iao(t,z,x) - ao( t , z ) y)I 5 k(t,z)x - I a.e. on T x Z (k E L°°(T x Z)). 
(iii) Iao(t,z,x)I	a.e. on Tx Z (132 >0). 

H(f), f : T x Z x R - R is a function such that: 
(i) (t, z) -i f(t, z, x) is measurable. 

(ii) x -+ f(t, z, x) is continuous. 
(iii) lf( t , z, x)l	133 ( t , z) + C3 I x V"2 a. e. on T x Z (3 € L9 (T, L2 (Z)), c3 > 0). 
(iv) f(t,z,x)x >_ —c4 a.e. on Tx Z (c4 >0). 
Proposition 6. If hypotheses H(a), 11(ao) and H(f) 1 hold, h € L(T x Z) and 

x0 € L2 (Z), then problem (12) has at least one solution 

x € L(T,W"(Z)) x C(T,L2 (Z))	such that 
Ox	q 
 57 

€ L(T,W_I(Z)) 

and the set of such solutions is compact in LP (T, L2(Z)). 

Proof. For this problem the evolution triple consists of X = W0"(Z),H = L2(Z) 
and X = W—I(Z). Since 2 p < oo, by the Sobolev embedding theorem, X is 
embedded compactly into H. 

Let u 1 : Tx W0"(Z) x W,"(Z) - R be the time-dependent semilinear form defined 
by

u(t, x, y) 
= f	ak(t, z, z, Dx)Dky(z)dz. 

Z k=1 

Because of hypothesis H(a)/(iii), u(t, x,.) is bounded and linear, and so we can define 
a nonlinear operator A : T x X -+ X' by setting 

u(t,x,y) = (A(i,x),y) 

Note that by Fubini's theorem, t - (A(t, x), y) is measurable, and since y € X is arbi-
trary, we have that t -+ A(t, x) is weakly measurable, and because X is separable, by 
the Pettis measurability theorem t - A(t, x) is measurable. Also, because of hypothesis
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H(A)/(ii) and (iii), it is straightforward to check that x -.+ A(t, x) is demicontinuous. 
Moreover, from Browder [5] we know that x -* A(i, x) is pseudomonotone. 

Next, let v:TxX - H C X be defined by 

v(t, x)( . ) = ao(t, .,	DX(.). 

Again we can check that t -i v(t, x) is measurable. We claim that x - v(t, x) is 
completely continuous from WO "(Z) into W—l(Z). Because of the reflexivity of the 
spaces, we need to show that if x -Z x in W"(Z), then v(t,x) -' v(t,x) in W'(Z) 
as n - no. Suppose not. Then we can find e > 0, a subsequence {xm}m>i of {x}> 
and a sequence {ym}m>i c X = W01 ' (Z) with 11y,,11 = 1 such that for all in > 1 we 
have	 -

(v(t,m) - v(t,x),ym) > E.	 (13) 

Since N 3, from the Sobolcv embedding theorem we have that W0"(Z) is embedded 
compactly into L2P (Z) c L2 (Z) , and so we may assume that Xm X and Yin Il in 
L2 (Z) as in - no. For every k = 1,..., N we have 

f ao(t, Z, yn(Z))DtXm(Z)ym()dZ - fz ao(t, Z, x(z))Dt(z)ym(z) dz 

=f (ao(t,z,x(z)) - ao(t,z,x(z)))Dkx(z)y(z)dz 

+f ao(t,z,x(z))Dkxm(z)(Ym(z) - y(z))dz 

+f ao(t, z, x(z))(Dkx(z) - Dk x(z ))y( z ) dz 

+ f ao(t, Z, x(z))Dkx(z)(y(z) - ym(z)) dz. 

From Holder's inequality with three factors we have 

L (ao(t, z, x(z)) - ao(t, Z, X(Z)))DkXm(Z)ym(Z) dz 

k(i, z ) I X ( Z ) - x(z)I IDk X m (Z)I IYm()I dz 

:5 lI k IIIkm - xII2qIIDkxmlIpIlYmIl29 

--+0 	as in - no. 
Also, we have 

	

f ao(t,z,x(z))Dtx(z)(y(z) - y(z))dz	 - YII2q	0 

	

f ao(t, z, X(Z))(DkXm(Z) - Dk x ( z ))y ( z ) dz	0	- 

	

fz ao(t, z, x(z))DkX(Z)(Y(Z) - y(z))dz	 - YmII2 q	0
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as rn — , where IZI is the Lebesgue measure of the domain Z. So finally we have 

(v(t,xm) - V(t,X),ym) - 0	as m _ :_ 

which contradicts (13). Therefore x — v(t, x) is completely continuous as claimed. 
Now, if we define A2 (t, x) = A 1 (t, x) + v(t, x), we have that t —* A2 (t, x) is measur-

able and x — A 2 (t,x) is demicontinuous and pseudomonotone (see Zeidler [18: Propo-
sition 27.6/(f), p. 586]). In addition, we have 

1A2(t, x )II	II A i (i, x)II, + II v ( t , x )II	al (t) + c i IIxII P_1	a.e. on T 

with a 1 E L(T) and ci ^: 0. Note that because of hypothesis H(A)/(iv) 

(A 1 (t, x), x) ^! jc jxjj P — t9(t)	a.e. on T 

for some Z> 0 and 19 E L' (T). Also, for all y E W0l1'(Z), we have 

'N 
= fao (t, z, x (z)) (Dkx(z)) y(z)dz 

fl	IDx(z)I Iy(z)I dz 
Z k1 

/32IIDxJIpIIYIIq 

II X II IIvIl. 

for some	> 0. Since y E W0"(Z) was arbitrary, it follows that Iv(t,x)II.	flIIxII. 
Applying Young's inequality with c > 0, we obtain v(t, x )II	fi(e) + e )II x II"' with 
fl(e), c(e) > 0. So we have 

(v(t, x), x) ^! —II v(t , 41 II x II ^! —(e )II x II" - 

Finally we have 

(A(t, x), x) = (A 1 (t, x) + v(t, r), x) 

^ 1I x IV' - i9(t) — (c )II x II" - 132(e)IPXII 

= (E— (e ))II x II - 132(e )II x II - i9(t)	((a.e. on T) 
t))IkII" - 19e(t)	(by Young's inequality). 

Choose e > 0 so that (e) < a Thus we have checked that A2 (t, x) satisfies hypothesis 
H(A). 

Next let f: T x X — H be defined by 

= At , .,x(.)).
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Using the compact embedding ofW"(Z) into L2 (Z) and hypothesis H(f), we can 
easily see that f(t,.) is continuous. Set 

A(t, x(t)) = A2 ( t , X(0) + At, x). 

Clearly, A(t, x(t)) satisfies hypothesis H(A). Rewrite (12) as equivalent abstract evolu-
tion equation

(t) + A(t, x(t)) = h(t) a.e. on T 

X(0) = xo. 

Invoking Theorem 4, we conclude that problem (12) has a solution 

X  V'(T,W''(Z))flC(T,L2(Z))	
ox

. with	E V(T,W'(Z)) 
Olt 

and the solution set is compact in C(T, L2(Z)) 

Example 2. Again let T = [0, b] and Z c R" a bounded domain with Lipschitz 
boundary r. In what follows a = (a 1 ,	a,) E NN will be an N-multiindex and Ja I = 

a k . Also, for x E Wm P(Z) we set j(x) = (D0 x) 101 < m _ i , i9(x) = (D0 x)1 0 1 =m and 
(x) = (D0 x)0 <1 0 1< m _ i . As before we assume that 2 p < 00. 

The problem under consideration is the following: 

ax -	(-1)b0ID0Ao(i,z,(x),(x)) + f(t,z,x,(x)) = h(t,z) in Tx Z 
at

kI<m
x(O, z) = x(b, z) a.e. on Z	(14)


For all I/3Im-1, Dx=0onTxI'. 

The hypotheses on the data of that problem are the followings: 

H(A) 2 A,,: T x Z x RNm1 x	 IR with Nm_i = Nm =	and 
Nm = Nm - Nm_ i are functions such that:

(i)
 

(t, z) - A0 (t,z,i1,t.9) is measurable. 
(ii) (77, t9) - A0 (i,z,,7,t9) is continuous. 

(iii) A0(t, z, i, 9 )I	a i (t, z) + c i(IItiII"' + II 0 I1 P ) a.e. on T x Z (a i E L(T x 
Z),c i > 0). 

(iv) IaI=m (A0 (t,z,ij,i9) - A 0(t,z,9'))(i9 0 - i9) > 0 a.e. on T x Z, for all 

E	and all 10, t9 ' E R R- with t9 0 t9'. 

(v) E1 o 1< m A0(t , Z , T1, 19 ) ^! c19' - p(i,z) fir ala. (t, z) € Tx Z, all 77 E Rtv_1 

and 19€R R— (c2>0,EL'(TxZ)). 

H(f)2 I : T x Z x R	 R is a function such that:
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(i) (t, z) — At  z, x, ) is measurable. 
(ii) (x, ) - f(t, z, x, ) is continuous. 
(iii) If (t, z, x, )I < a2 (t, z) + c2 (IxIP1 2 + IIIV"2 ) a.e. on Tx Z (a2 E L(T x Z), c2 > 

0). 

(iv) f(t,z,x,e)x > —c3 >0 for a.a. (t, z) e Tx Z, all x  Randall C E RN_1. 

Proposition 7. If hypotheses H(A)2 and H(f) 2 hold and h E L(T x Z), then 
problem (14) has a solution 

	

X  L(T,W'(Z))flC(T,L2(Z))	with 
ax 

 € V(T,W—(Z)). 

Proof. For this problem the evolution triple is X = W-'P (Z),H = L 2 (Z) and 
X = W- ,,q (z). Note that X is embedded compactly into X. 

Let A 1 : T x X - X be defined by 

(A 1 (t, x), y) =

	

	J A (t, z, i(x), 9(x)) D a y(z) d.€
IoI^m 

Again t - A 1 (t, x) is measurable and x - A1 (t, x) is demicontinuous and pseudomono-
tone (see Browder [5]). Moreover, by virtue of hypothesis H(A) 2 /(iii) and (iv) we can 
check that A 1 (t, x) satisfies hypothesis H(A). Also, let f : T x X -+ H be the Nemitsky 
operator corresponding to f(t, z, x, ), i.e. 

At, x)(z)	f(t,z,x(z),(x(z)))	(x € W'(Z)). 

Exploiting the compact embedding of W"(Z) into W"(Z), we can easily see that 
f(t,.) is complete. Then

A(t,x(t)) = A i (t,x(t)) + 1(t, x) 

satisfies hypotheses H(A). We rewrite problem (14) as equivalent abstract evolution 
equation

i(t) + A(t, x(t)) = h(t) a.e. on T 
x(0) = x(b). 

By Theorem 3, this problem has a solution x € LP (T, W"(Z)) fl C(T, L2 (Z)) with 
ax € L(T,W_(Z)). 
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