On Some Uniform Convexities and Smoothness in Certain Sequence Spaces

Y. Cui, H. Hudzik and R. Płuciennik

Abstract. It is proved that any Banach space X with property A_2^c has property A_2 and that a Banach space X is nearly uniformly smooth if and only if it is nearly uniformly.*smooth and weakly sequentially complete. It is shown that if X is a Köthe sequence space the dual of which contains no isomorphic copy of l_1 and has property A_2^c , then X has the uniform Kadec-Klee property. Criteria for nearly uniformly convexity of Musielak-Orlicz spaces equipped with the Orlicz norm are presented. It is also proved that both properties nearly uniformly smoothness and nearly uniformly convexity for Musielak-Orlicz spaces equipped with the Luxemburg norm coincide with reflexivity. Finally, an interpretation of those results for Nakano spaces $l^{(p_i)}$ $(1 < p_i < \infty)$ is given.

Keywords: Fatou property, order continuity, nearly uniformly convexity, nearly uniformly smoothness, nearly uniformly *-smoothness, Musielak-Orlicz sequence spaces

AMS subject classification: 46 E 30, 46 E 40, 46 B 20

1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space and X^* be the dual space of X. By B(X) and S(X) we denote the closed unit ball and the unit sphere of X, respectively. For any subset A of X by conv(A) we denote the convex hull of A. In the sequel N, \mathbb{R} , \mathbb{R}_+ and \mathbb{R}_+^e stand for the set of natural numbers, the set of reals, the set of non-negative reals and the interval $[0, +\infty]$, respectively.

The following notions used in the paper can be found in [14: Chapter 1].

A sequence (x_n) in a real Banach space X is called a Schauder basis of X (or basis for short) if for each $x \in X$ there exists a unique sequence (a_n) of reals such that

 $\left\|x-\sum_{n=1}^k a_n x_n\right\|\longrightarrow 0 \quad \text{as } k\to\infty.$

Y. Cui: Harbin Univ. of Techn. and Sci., Dept. Math., Xuefu Road 52, 150080 Harbin, China; supported by Chinese National Science Foundation Grant

H. Hudzik: Adam Mickiewicz Univ., Fac. Math. and Comp. Sci., ul. Matejki 48/49, 60-769 Poznań, Poland

R. Pluciennik: Univ. Techn., Inst. Math., Piotrowo 3A, 60-965 Poznań, Poland

A sequence (x_n) which is a Schauder basis of its closed linear span is called a *basic* sequence.

A basis (x_n) of X is said to be an unconditional basis if every convergent series $\sum_{n=1}^{\infty} a_n x_n$ with $a_n \in \mathbb{R}$ is unconditionally convergent, i.e. for any permutation $(\pi(n))$ of N the series $\sum_{n=1}^{\infty} a_{\pi(n)} x_{\pi(n)}$ converges.

For a basis (x_n) of X, its *basic constant* is defined by $K = \sup_n ||P_n||$, where $P_n: X \to X$ are projections defined by

$$P_n\left(\sum_{i=1}^\infty a_i x_i\right) = \sum_{i=1}^n a_i x_i.$$

If (x_n) is a basis of X such that the series $\sum_{n=1}^{\infty} a_n x_n$ converges whenever (a_n) is a sequence of reals such that

$$\sup_n \left\|\sum_{i=1}^n a_i x_i\right\| < \infty,$$

then (x_n) is said to be a boundedly complete basis. It is known that (x_n) is a boundedly complete basis of a Banach space X if and only if (x_n) is an unconditional basis and X is weakly sequentially complete.

Recall that X is said to be weakly sequentially complete if for any sequence (y_n) in X such that $\lim_n x^*(y_n)$ exists for every $x^* \in X^*$, there is $y \in X$ such that $y_n \to y$ weakly.

Clarkson [5] introduced the concept of uniform convexity. The norm $\|\cdot\|$ is called *uniformly convex* if for each $\varepsilon > 0$ there is $\delta > 0$ such that for $x, y \in S(X)$ the inequality $\|x - y\| > \varepsilon$ implies $\|\frac{1}{2}(x + y)\| < 1 - \delta$.

A Banach space X is said to have the Kadec-Klee property if every sequence from S(X) weakly convergent to an element $x \in S(X)$ is convergent to x in norm. Recall that for a given $\varepsilon > 0$ a sequence (x_n) is said to be ε -separated if

$$\operatorname{sep}(x_n) = \inf_{m \neq n} \{ \|x_n - x_m\| \} > \varepsilon.$$

A Banach space X is said to have the uniform Kadec-Klee property if for every $\varepsilon > 0$ there exists $\delta > 0$ such that if x is a weak limit of an ε -separated sequence in S(X), then $||x|| < 1 - \delta$.

The notion of nearly uniformly convexity for Banach spaces was introduced in [11]. It is an infinite dimensional counterpart of the classical uniform convexity. A Banach space is said to be *nearly uniformly convex* if for every $\varepsilon > 0$ there exists $\delta \in (0,1)$ such that for every sequence $(x_n) \subset B(X)$ with $\operatorname{sep}(x_n) > \varepsilon$, there holds

$$\operatorname{conv}(\{x_n\}) \cap (1-\delta)B(X) \neq \phi.$$

It is easy to see that every nearly uniformly convex space has the uniform Kadec-Klee property, and every Banach space with the uniform Kadec-Klee property has the Kadec-Klee property. Huff [11] proved that X is nearly uniformly convex if and only if X is reflexive and has the uniform Kadec-Klee property.

A Banach space X is said to be nearly uniformly smooth if for any $\varepsilon > 0$ there exists $\delta > 0$ such that for each basic sequence (x_n) in B(X) there is k > 1 such that

$$\|x_1 + tx_k\| \le 1 + t\varepsilon$$

for each $t \in [0, \delta]$ (see [17, 18]). Originally, this property was defined in [20] in a different way. Prus [17] showed that a Banach space X is nearly uniformly convex if and only if X^* is nearly uniformly smooth.

For $x \in S(X)$ and a positive number δ , denote

$$S^*(x,\delta) = \{x^* \in B(X^*) : x^*(x) \ge 1 - \delta\}.$$

Let A be a bounded subset of X. Its Kuratowski measure of non-compactness $\alpha(A)$ is defined as the infimum of all numbers d > 0 such that A may be covered by finitely many sets of diameter smaller than d (see [1, 2]).

A Banach space X is said to be nearly uniformly *-smooth provided that for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in S(X)$, then

$$\alpha(S^*(x,\delta)) \leq \varepsilon.$$

A Banach space X is said to have property A_2 if there exists $\Theta \in (0, 2)$ such that for each weakly null sequence (x_n) in S(X), there are $n_1, n_2 \in \mathbb{N}$ satisfying $||x_{n_1} + x_{n_2}|| < \Theta$. It is well known that if X has property A_2 , then it has the weak Banach-Saks property (see [7]).

A Banach space X is said to have property A_{2}^{ϵ} if for any $\epsilon > 0$ there exists $\delta > 0$ such that for each weakly null sequence (x_{n}) in B(X), there is $k \in \mathbb{N} \setminus \{1\}$ satisfying $||x_{1} + tx_{k}|| < 1 + t\epsilon$ whenever $t \in [0, \delta]$. Prus [18] proved that X is nearly uniformly *-smooth if and only if X has property A_{2}^{ϵ} and contains no copy of l_{1} . Moreover, he also showed that if X is nearly uniformly *-smooth, then it has the weak Banach-Saks property.

The space of all real sequences x = (x(i)) is denoted by l^0 . A Banach space X is called a *Köthe sequence space* if it is a subspace of l^0 equipped with a norm $\|\cdot\|$ such that for every $x = (x(i)) \in l^0$ and $y = (y(i)) \in X$ satisfying $|x(i)| \leq |y(i)|$ for all $i \in \mathbb{N}$, there hold $x \in X$ and $||x|| \leq ||y||$.

X is said to have the Fatou property, if $0 \le x_n \uparrow x$ with $x_n \in X$, $x \in l^0$, $\sup_{n \in \mathbb{N}} \{ \|x_n\| \} < \infty$ imply $x \in X$ and $\lim_{n \to \infty} \|x_n\| = \|x\|$.

We say an element $x \in X$ is order continuous if for any sequence (x_n) in X such that $|x_n(i)| \to 0$ and $|x_n(i)| \le |x(i)|$ $(i \in \mathbb{N})$ we have $\lim_{n\to\infty} ||x_n|| = 0$. It is easy to see that x is order continuous if and only if $\lim_{n\to\infty} ||\sum_{i=n}^{\infty} x(i)e_i|| = 0$. The space X is called order continuous if every $x \in X$ is order continuous.

A mapping $\Phi : \mathbb{R} \to \mathbb{R}_+^e$ is said to be an Orlicz function if Φ is vanishing only at 0, even, convex and left continuous on the whole \mathbb{R}_+ (see [13, 16, 19]). An Orlicz function Φ is said to be an N-function if $\lim_{u\to 0} \frac{\Phi(u)}{u} = 0$ and $\lim_{u\to\infty} \frac{\Phi(u)}{u} = \infty$. A sequence $\Phi = (\Phi_i)$ of Orlicz functions is called a Musielak-Orlicz function. By $\Psi = (\Psi_i)$ we denote the complementary function of Φ in sense of Young, i.e.

$$\Psi_i(v) = \sup \left\{ |v|u - \Phi_i(u) : u \ge 0 \right\} \qquad (i \in \mathbb{N}).$$

For a given Musielak-Orlicz function Φ , we define a convex modular

$$I_{\Phi}(x) = \sum_{i=1}^{\infty} \Phi_i(x_i)$$

for any $x \in l^0$. A linear space l_{Φ} defined by

$$l_{\Phi} = \left\{ x \in l^0 : I_{\Phi}(cx) < \infty \text{ for some } c > 0 \right\}$$

is called the Musielak-Orlicz sequence space generated by Φ . We consider l_{Φ} equipped with the Luxemburg norm

$$||x|| = \inf \left\{ \varepsilon > 0 : I_{\Phi}\left(\frac{x}{\varepsilon}\right) \le 1 \right\}$$

or with the Amemiya-Orlicz norm

$$||x||_0 = \inf \left\{ \frac{1}{k} (1 + I_{\Phi}(kx)) : k > 0 \right\}.$$

To simplify notations, we assume $l_{\Phi} = (l_{\Phi}, \|\cdot\|)$ and $l_{\Phi}^0 = (l_{\Phi}, \|\cdot\|_0)$. Both l_{Φ} and l_{Φ}^0 are Banach spaces (see [3, 16]).

We say a Musielak-Orlicz function Φ satisfies the δ_2 -condition ($\Phi \in \delta_2$ for short) if there exist constants $k \ge 2$ and a > 0 and a sequence (c_i) in \mathbb{R}_+ such that $\sum_{i=1}^{\infty} c_i < \infty$ and the inequality

$$\Phi_i(2u) \le k\Phi_i(u) + c_i$$

holds for every $i \in \mathbb{N}$ and every $u \in \mathbb{R}$ satisfying $\Phi_i(u) \leq a$.

In the sequel h_{Φ} stands for the space $\{x \in l^0 : I_{\Phi}(lx) < \infty \text{ for any } l > 0\}$ equipped with the norm induced from l_{Φ} . To indicate that it is considered with the Orlicz norm, we write h_{Φ}^0 .

Let us recall three results which will be used in the following.

Lemma 1 (see [9]). If $\Phi = (\Phi_i)$ is a Musielak-Orlicz function with all Φ_i being finitely valued, Φ satisfies the δ_2 -condition and (x_n) is a sequence in l_{Φ} such that $I_{\Phi}(x_n) \to 0$ as $n \to \infty$, then $||x_n|| \to 0$ as $n \to \infty$.

Lemma 2 (see [6]). If a Musielak-Orlicz function $\Psi = (\Psi_i)$ satisfies the δ_2 condition, then for each $\lambda, \varepsilon \in (0,1)$ there is $\theta \in (0,1)$ and a sequence (h_i) in \mathbb{R}_+ with $\sum_{i=1}^{\infty} \Phi_i(h_i) < \varepsilon$ such that

$$\Phi_i(\lambda u) \leq \lambda \theta \Phi_i(u)$$

holds for every $i \in \mathbb{N}$ and $u \in \mathbb{R}$ satisfying $\Phi_i(h_i) \leq \Phi_i(u) \leq 1$.

Lemma 3 (see [3, 8, 21]). If $\Phi = (\Phi_i)$ is a Musielak-Orlicz function with all Φ_i being finitely-valued N-functions, then for each $x \neq 0$ in l_{Φ}^0 there is k > 0 such that

$$||x||_0 = \frac{1}{k}(1 + I_{\Phi}(kx)).$$

For more details on Musielak-Orlicz spaces we refer to [3] or [16].

2. Results

We start with some general results which improve the result of Prus [18] that nearly uniformly *-smooth Banach spaces have the weak Banach-Saks property.

Theorem 1. If a Banach space X has property A_2^{ϵ} , then X has property A_2 .

Proof. For $\varepsilon = \frac{1}{2}$ there is $\delta \in (0, 1)$ such that for each weakly null sequence (x_n) in S(X) there is k > 1 such that

$$||x_1 + tx_k|| < 1 + \frac{t}{2}$$
 $(t \in [0, \delta]).$

Hence

$$||x_1 + x_k|| = ||x_1 + \delta x_k + (1 - \delta)x_k|| < 1 + \frac{\delta}{2} + (1 - \delta) = 2 - \frac{\delta}{2} = \Theta < 2$$

and the statement is proved \blacksquare

Now we will present the following useful remark.

Remark 1. A Banach space X is reflexive if and only if X contains no isomorphic copy of l_1 and X is weakly sequentially complete.

Indeed, since l_1 is not reflexive, a reflexive Banach space cannot contain an isomorphic copy of l_1 . Moreover, any reflexive Banach space X is weakly sequentially complete. If X contains no isomorphic copy of l_1 , by the well known Rosenthal theorem, for every sequence (x_n) in B(X) there exists a subsequence (z_n) of (x_n) which is a weakly Cauchy sequence. So, if X is additionally weakly sequentially complete, we get that (x_n) is relatively weakly sequentially compact. Hence X is reflexive

Corollary 1. A Banach space X is nearly uniformly smooth if and only if X is nearly uniformly *-smooth and weakly sequentially complete.

Proof. It is obvious that X is nearly uniformly *-smooth and weakly sequentially complete if it is nearly uniformly smooth. Assume now that X is nearly uniformly *-smooth and weakly sequentially complete. Since nearly uniformly *-smoothness of X implies that X contains no copy of l_1 , by Remark 1, X is reflexive, whence nearly uniformly *-smoothness coincides with nearly uniformly smoothness \blacksquare

So, we can now easily understand why c_0 is not nearly uniformly smooth although it is nearly uniformly *-smooth.

Theorem 2. Let X be a Köthe sequence space. If X^* contains no isomorphic copy of l^1 and has property A_2^e , then X has the uniform Kadec-Klee property.

Proof. Since X^* contains no isomorphic copy of l^1 , for every sequence (x_n^*) in $B(X^*)$ there is a weak Cauchy subsequence $(x_{n_k}^*)$. It is obvious that the sequence $(x_{n_k}^* - x_{n_l}^*)$ is weakly null. By the assumption that X^* has property A_2^{ε} , there are n > k > 1 such that

$$\|x_1^*+t(x_k^*-x_n^*)\|<1+\frac{t\varepsilon}{32}\qquad (t\in[0,\delta])$$

(see [18]). Let (x_n) be a sequence in S(X) with $sep(x_n) > \varepsilon$ and $x_n \to x \in X$ weakly. Then $sep(x_n - x) > \varepsilon$. We need to show that $||x|| < 1 - \eta(\varepsilon)$, where $\eta(\varepsilon)$ depends only on ε . Put $K = \frac{32+2\delta\varepsilon}{32+\delta\varepsilon}$. By the Bessaga-Pelczyński selection principle, there exists a subsequence (z_n) of $\{x_n - x, x : n \in \mathbb{N}\}$ with $z_1 = x$ being a basic sequence with basic constant less or equal to K. Put $X_0 = \overline{\operatorname{span}}\{z_n : n \in \mathbb{N}\}$. Let us consider the sequence (z_n^*) of the norm preserving extensions from X_0 to the whole X of the coefficient functionals for the basic sequence (z_n) . Then $\langle z, z_n^* \rangle \to 0$ as $n \to \infty$ for any $z \in X_0$. Indeed, $z = \sum_{i=1}^{\infty} z_i^*(z)z_i$ for any $z \in X_0$, whence

$$\begin{aligned} \|z_n^*(z)z_n\| &= \left\|\sum_{i=n}^{\infty} z_i^*(z)z_i - \sum_{i=n+1}^{\infty} z_i^*(z)z_i\right\| \\ &\leq \left\|\sum_{i=n}^{\infty} z_i^*(z)z_i\right\| + \left\|\sum_{i=n+1}^{\infty} z_i^*(z)z_i\right\| \\ &\to 0 \quad \text{as} \quad n \to \infty. \end{aligned}$$

Since $||z_n|| > \frac{\varepsilon}{2}$ for all n, this yields $z_n^*(z) \to 0$ as $n \to \infty$.

Let us write $\langle x, z_k^* \rangle$ for $z_k^*(x)$ and take n > k > 1 large enough such that $|\langle x, z_k^* \rangle| < \frac{\varepsilon}{32}$ and $|\langle x, z_n^* \rangle| < \frac{\varepsilon}{32}$. Notice that $||z_1^*|| \le K$ and $||z_k^*|| \le 2K$ for k > 1. Hence, taking into account that $||x + z_k|| = 1$ for k > 1 and applying property A_2^{ε} for X^* , we get

$$\left\|z_1^* + \frac{\delta}{2}(z_k^* - z_n^*)\right\| \le K\left(1 + \frac{\delta\varepsilon}{32}\right)$$

and consequently

$$\begin{aligned} \|x\| &= \langle x, z_1^* \rangle \\ &= \langle x + z_k, z_1^* \rangle + \frac{\delta}{2} \langle x + z_k, z_k^* - z_n^* \rangle - \frac{\delta}{2} \langle x + z_k, z_k^* - z_n^* \rangle \\ &= \left\langle x + z_k, z_1^* + \frac{\delta}{2} (z_k^* - z_n^*) \right\rangle - \frac{\delta}{2} \langle x + z_k, z_k^* - z_n^* \rangle \\ &\leq \left\| z_1^* + \frac{\delta}{2} (z_k^* - z_n^*) \right\| - \frac{\delta}{2} \|z_k\| + |\langle x, z_k^* \rangle| + |\langle x, z_n^* \rangle| \\ &< K \left(1 + \frac{\delta \varepsilon}{32} \right) - \frac{\delta \varepsilon}{4} + \frac{\delta \varepsilon}{16} \\ &= K \left(1 + \frac{\delta \varepsilon}{32} \right) - \frac{3\delta \varepsilon}{16} \\ &\leq \left(1 + \frac{\delta \varepsilon}{16} \right) - \frac{3\delta \varepsilon}{16} \\ &= 1 - \frac{\delta \varepsilon}{8} \end{aligned}$$

which finishes the proof

Lemma 4. Let $\Phi = (\Phi_i)$ be a finitely-valued Musielak-Orlicz function such that Φ^* satisfies the δ_2 -condition. Then for every $\varepsilon > 0$, $\lambda \in (0,1)$ and $K \ge 1$ there are $(h_i)_{i=1}^{\infty} \subset \mathbb{R}_+$ and $\theta \in (0,1)$ such that $\sum_{i=1}^{\infty} \Phi_i(h_i) < \varepsilon$ and the inequality

$$\Phi_i(\gamma u) \leq \gamma \theta \Phi_i(u)$$

holds for all $i \in \mathbb{N}$ and $u \ge 0$ satisfying the inequalities $\Phi_i(h_i) \le \Phi_i(u) \le K$ and all $\gamma \in (0, \lambda]$.

Proof. It is known from [6] that our lemma is true for K = 1 under the additional assumption that $\Phi_i(1) = 1$ for all $i \in \mathbb{N}$. Let $a_i > 0$ be such that $\Phi_i(a_i) = K$ for all $i \in \mathbb{N}$ and define $\phi_i(u) = \frac{1}{K} \Phi_i(a_i u)$ for all $u \in \mathbb{R}$ and $i \in \mathbb{N}$. Then $\phi = (\phi_i)$ is a Musielak-Orlicz function such that $\phi_i(1) = 1$ for all $i \in \mathbb{N}$. Since, denoting by ϕ_i^* and Φ_i^* the complementary functions of ϕ_i and Φ_i , respectively, there holds

$$\phi_i^*(u) = \frac{1}{K} \Phi_i^*\left(\frac{K}{a_i} u\right)$$

for all $i \in \mathbb{N}$ and $u \in \mathbb{R}$, we know that ϕ^* satisfies the δ_2 -condition. By the above mentioned result from [6] there are $(h'_i)_{i=1}^{\infty} \subset \mathbb{R}_+$ and $\theta \in (0,1)$ such that

$$\sum_{i=1}^{\infty} \phi_i(h'_i) < rac{arepsilon}{K}$$
 and $\phi_i(\gamma u) \leq \gamma heta \phi_i(u)$

for all $\gamma \in (0, \lambda]$, $i \in \mathbb{N}$ and $u \in \mathbb{R}$ satisfying $\phi_i(h'_i) \leq \phi_i(u) \leq 1$. Setting $h_i = a_i h'_i$ for each $i \in \mathbb{N}$, we easily see that it is just the desired result \blacksquare

Theorem 3. If $\Phi = (\Phi_i)$ is a Musielak-Orlicz function with all Φ_i being finitelyvalued N-functions, then l_{Φ}^0 is nearly uniformly convex if and only if Φ and Ψ satisfy the δ_2 -condition.

Proof. We need only to prove the sufficiency. Since l_{Φ}^0 is reflexive, it suffices to prove that l_{Φ}^0 has the uniform Kadec-Klee property. Let $\varepsilon > 0$ be given and take any sequence $\{x_n\} \subset S(l_{\Phi}^0)$ with $\operatorname{sep}(x_n) > 2\varepsilon$ and $x_n \xrightarrow{w} x$. It is clear that for any $m \in \mathbb{N}$ there is $n_m \in \mathbb{N}$ such that

$$\sup\left(\left(\sum_{i=m+1}^{\infty}x_n(i)e_i\right)_{n=n_m}^{\infty}\right)>2\varepsilon.$$

This follows by the fact that $x_n \xrightarrow{w} x$ implies that $x_n \to x$ coordinatewise. Hence for any $m \in \mathbb{N}$ there is $n_m \in \mathbb{N}$ such that

$$\left\|\sum_{i=m+1}^{\infty} x_n(i)e_i\right\|_0 \ge \varepsilon \qquad (n \ge n_m).$$
(1)

By Lemma 3 there are $k_n \ge 1$ and $k \ge 1$ such that

$$||x_n||_0 = \frac{1}{k_n}(1 + I_{\Phi}(k_n x_n)) \qquad (n \in \mathbb{N})$$

and

$$||x||_0 = \frac{1}{k}(1 + I_{\Phi}(kx)).$$

Then $K = \sup_n k_n < \infty$. Indeed, since $||x||_0 > 1-\delta$, there is $i_0 \in \mathbb{N}$ such that $x_0(i_0) \neq 0$. If $K = \infty$, we can assume without loss of generality that $\lim_{n \to \infty} k_n = \infty$. Hence

$$1 = \frac{1}{k_n} (1 + I_{\Phi}(k_n x_n))$$

=
$$\lim_{n \to \infty} \frac{1}{k_n} I_{\Phi}(k_n x_n)$$

\ge
$$\lim_{n \to \infty} \frac{1}{k_n} \Phi_{i_0}(k_n x_n(i_0))$$

\to \infty

which is a contradiction.

By the δ_2 -condition of Φ and inequality (1) there is $\delta > 0$ such that

$$\sum_{i=m+1}^{\infty} \Phi_i(x_n(i)) \ge \delta \qquad (n \ge n_m).$$
⁽²⁾

Put $\lambda = \frac{K}{K+1}$. Then, by Lemma 4, there is $h = (h_i)_{i=1}^{\infty}$ with $\sum_{i=1}^{\infty} \Phi_i(h_i) \leq \frac{K}{2}$ and a number $\theta \in (0, 1)$ such that

$$\Phi_i(\gamma u) \leq \gamma(1-\theta)\Phi_i(u)$$

for all $\gamma \in [0, \lambda]$ and $u \in \mathbb{R}$ satisfying $\Phi_i(h_i) \leq \Phi_i(u) \leq K$. Take *m* large enough such that

$$\left\|\sum_{i=m+1}^{\infty} x(i)e_i\right\|_0 < \frac{\delta\theta}{8}$$
(3)

and

$$\left\|\sum_{i=m+1}^{\infty}h_ie_i\right\|_0 < \frac{\delta\theta}{8}.$$
 (4)

Since $\frac{k}{k_n+k} \leq \frac{k}{k+1} \leq \frac{K}{K+1}$ for any $n \in \mathbb{N}$, we have

$$\Phi_i\left(\frac{kk_n}{k+k_n}x_n(i)\right) \leq \frac{1-\theta}{k_n+k}\,k\Phi_i(k_nx_n(i))$$

whenever $|x_n(i)| \ge h_i$. Therefore,

$$\sum_{i=m+1}^{\infty} \Phi_i\left(\frac{kk_n}{k+k_n}x_n(i)\right) \le \sum_{i=1}^{\infty} \Phi_i(h_i) + \frac{1-\theta}{k_n+k}k\sum_{i=1}^{\infty} \Phi_i(k_nx_n(i)).$$
(5)

It is obvious that

$$\|x_{n} + x\|_{0} = \left\|\sum_{i=1}^{m} x(i)e_{i} + \sum_{i=m+1}^{\infty} x(i)e_{i} + x_{n}\right\|_{0}$$

$$\leq \left\|\sum_{i=1}^{m} x(i)e_{i} + x_{n}\right\|_{0} + \left\|\sum_{i=m+1}^{\infty} x(i)e_{i}\right\|_{0}$$

$$\leq \left\|\sum_{i=1}^{m} x(i)e_{i} + x_{n}\right\|_{0} + \frac{\delta\theta}{8}$$
(6)

for m large enough. Moreover, by (3) - (5), we get for $n \ge n_m$

$$\begin{split} \left| \sum_{i=1}^{m} x(i)e_{i} + x_{n} \right\|_{0} \\ &\leq \frac{k_{n} + k}{k_{n}k} \left(1 + \sum_{i=1}^{m} \Phi_{i} \left(\frac{kk_{n}}{k_{n} + k} (x(i) + x_{n}(i)) \right) \right) \\ &+ \sum_{i=m+1}^{\infty} \Phi_{i} \left(\frac{kk_{n}}{k_{n} + k} x_{n}(i) \right) \right) \\ &\leq \frac{k_{n} + k}{k_{n}k} \left(1 + \frac{k_{n}}{k_{n} + k} \sum_{i=1}^{m} \Phi_{i}(kx(i)) + \frac{k}{k_{n} + k} \sum_{i=1}^{m} \Phi_{i}(k_{n}x_{n}(i)) \right) \\ &+ \frac{1 - \theta}{k_{n} + k} k \sum_{i=m+1}^{\infty} \Phi_{i} \left(\frac{kk_{n}}{k_{n} + k} x_{n}(i) \right) + \sum_{i=m+1}^{\infty} \Phi_{i}(h_{i}) \right) \\ &= \frac{1}{k} + \frac{1}{k_{n}} + \frac{1}{k} \sum_{i=1}^{m} \Phi_{i}(kx(i)) + \frac{1}{k_{n}} \sum_{i=1}^{m} \Phi_{i}(k_{n}x_{n}(i)) \\ &+ \frac{1}{k_{n}} \sum_{i=m+1}^{\infty} \Phi_{i}(k_{n}x_{n}(i)) + \sum_{i=m+1}^{\infty} \Phi_{i}(h_{i}) - \frac{\theta}{k_{n}} \sum_{i=m+1}^{\infty} \Phi_{i}(k_{n}x_{n}(i)) \\ &\leq \frac{1}{k} \left(1 + \sum_{i=1}^{m} \Phi_{i}(kx(i)) \right) + \frac{1}{k_{n}} (1 + I_{\Phi}(k_{n}x_{n})) \\ &+ \sum_{i=m+1}^{\infty} \Phi_{i}(h_{i}) - \frac{\theta}{k_{n}} \sum_{i=m+1}^{\infty} \Phi_{i}(k_{n}x_{n}(i)) \\ &\leq 2 + \frac{\delta\theta}{8} - \delta\theta. \end{split}$$

Therefore, combining (6) and (7), we obtain

.

$$\|x_n + x\|_0 \leq 2 + \frac{\delta\theta}{8} - \delta\theta + \frac{\delta\theta}{8} = 2 - \frac{3}{4}\theta \qquad (n > n_m).$$

Hence, by $x_n \xrightarrow{w} x$ and the lower semicontinuity of the norm with respect to the weak topology, we deduce that

$$\|x\|_0 \leq \lim_{n \to \infty} \left\|\frac{x_n + x}{2}\right\|_0 \leq \frac{1}{2}\left(2 - \frac{3}{4}\theta\right) = 1 - \frac{3}{8}\theta.$$

This contradiction finishes the proof

Theorem 4. For any Musielak-Orlicz function $\Phi = (\Phi_i)$ with all Φ_i being finitelyvalued N-functions the following statements are equivalent:

- (a) l_{Φ} is nearly uniformly smooth.
- (b) l_{Φ} is nearly uniformly *-smooth.
- (c) Φ and Ψ satisfy the δ_2 -condition.

Proof. $(c) \Rightarrow (a)$: By Theorem 3, l_{Ψ}^0 is nearly uniformly convex, so its dual l_{Φ} is nearly uniformly smooth. Therefore, we need only to prove that $(b) \Rightarrow (c)$. We will show that (b) implies the δ_2 -condition for Φ . If Φ does not satisfy the δ_2 -condition, we can construct $x \in S(l_{\Phi})$ such that $I_{\Phi}(x) \leq 1$ and $I_{\Phi}((1 + \frac{1}{n})x) = \infty$ for every $n \in \mathbb{N}$ (see [12]). Take a sequence (i_k) of natural numbers such that $i_k \uparrow$ and

$$\sum_{i=i_k+1}^{i_{k+1}} \Phi_i\left(\left(1+\frac{1}{k}\right)x(i)\right) \ge 1 \qquad (k \in \mathbb{N}).$$

Put

$$x_{k} = (0, 0, \dots, 0, x(i_{k} + 1), x(i_{k} + 2), \dots, x(i_{k+1}), 0, 0, \dots) \quad (k \in \mathbb{N})$$

Then it is obvious that

$$\frac{k}{k+1} \le ||x_k|| \le 1 \qquad (k \in \mathbb{N}).$$

Moreover,

$$x_k \longrightarrow 0$$
 weakly. (8)

Indeed, for every $y \in (l_{\Phi})^*$ we have $y^* = y_0^* + y_1^*$ uniquely, where y_0^* is the regular part of y^* and y_1^* is the singular part of y^* , i.e. $y_1^*(x) = 0$ for any $x \in h_{\Phi}$ (see [10]). The functional y_0^* is generated by some $y_0 \in l_{\Psi}$ by the formula

$$y_0^*(x) = \langle x, y_0 \rangle = \sum_{i=1}^\infty x(i)y_0(i) \qquad (x \in l_{\Phi}).$$

Let $\lambda > 0$ be such that $\sum_{i=1}^{\infty} \Psi_i(\lambda y_0(i)) < \infty$. Since $x_k \in h_{\Phi}$ for any $k \in \mathbb{N}$, we have

 $\langle x_k, y^* \rangle = \langle x_k, y_0^* \rangle$

$$=\sum_{i=i_{k}+1}^{i_{k+1}} x(i)y_{0}(i)$$

$$\leq \frac{1}{\lambda} \left(\sum_{i=i_{k}+1}^{i_{k+1}} \Phi_{i}(x(i)) + \sum_{i=i_{k}+1}^{i_{k+1}} \Psi_{i}(\lambda y_{0}(i))\right)$$

$$\rightarrow 0 \quad \text{as} \quad k \rightarrow \infty,$$

i.e. (8) holds.

Since the space l_{Φ} is nearly uniformly *-smooth, it has property A_2^{ε} , i.e. for any $\varepsilon > 0$ there exists $\delta \in (0, 1)$ such that for each weakly null sequence (z_n) in $B(l_{\Phi})$ there is m > 1 such that

$$\|z_1 + tz_m\| \le 1 + t\varepsilon$$

whenever $t \in [0, \delta]$ (see [18]). Take $k_0 \in \mathbb{N}$ such that $\frac{2}{k+1} < (1-\varepsilon)\delta$ if $k \ge k_0$. We have for $k \ge k_0$

$$1 + \delta \varepsilon \ge \|x + \delta x_k\| \ge \|(1 + \delta)x_k\| \ge (1 + \delta)\frac{k}{k+1}$$
$$= (1 + \delta)\left(1 - \frac{1}{k+1}\right) > 1 + \delta - \frac{2}{k+1}$$

whence $\frac{2}{k+1} > (1-\varepsilon)\delta$. This is a contradiction which finishes the proof of the fact that (b) implies the δ_2 -condition for Φ .

Next, we will show that (b) implies the δ_2 -condition for Ψ . By the above part of the proof, we can assume that l_{Φ} is nearly uniformly *-smooth and Φ satisfies the δ_2 -condition. So, l_{Φ} is order continuous. Moreover, any Musielak-Orlicz space l_{Φ} has the Fatou property and consequently, it is weakly sequentially complete. So, in view of Corollary 1, l_{Φ} is nearly uniformly smooth and consequently reflexive. This yields the δ_2 -condition for $\Psi \blacksquare$

Theorem 5. Let $\Phi = (\Phi_i)$ be a Musielak-Orlicz function with all Φ_i being finitelyvalued N-functions. Then Φ and Ψ satisfy the δ_2 -condition whenever l_{Φ}^0 is nearly uniformly *-smooth.

Proof. Since l_{Φ}^{0} is nearly uniformly *-smooth, it has property A_{2}^{ε} , i.e. for any $\varepsilon > 0$ there exists $\delta \in (0,1)$ such that for each weakly null sequence (z_{n}) in $B(l_{\Phi}^{0})$ there is $m \in \mathbb{N} \setminus \{1\}$ such that

$$\|z_1 + tz_m\|_0 \le 1 + t\varepsilon$$

for all $t \in [0, \delta]$. Let $\theta \in (0, 1)$ be such that $1 + \delta \varepsilon < (1 + \delta)\theta$. If Φ does not satisfy the δ_2 -condition, then there exists $x \in S(l_{\Phi}^0)$ and a sequence $\{n_i\}$ of natural numbers $n_i \uparrow$ such that $n_1 = 1$ and

$$\left\|\sum_{i=n_k}^{n_{k+1}} x(i)\right\|_0 \ge \theta \qquad (k \in \mathbb{N})$$

(see [4]). Define

$$x_k = \sum_{i=n_k}^{n_{k+1}} x(i) \qquad (k \in \mathbb{N}).$$

Then we can prove in the same way as for the Luxemburg norm (see the proof of Theorem 4) that (x_k) is a weakly null sequence. Therefore, there is $k_0 \in \mathbb{N}$ such that for all $k \geq k_0$

$$1 + \delta \varepsilon \ge \|x + \delta x_k\|_0 \ge \|(1 + \delta) x_k\|_0 \ge (1 + \delta)\theta.$$

This is a contradiction which shows the necessity of the δ_2 -condition of Φ for the nearly uniformly *-smoothness of l_{Φ}^0 .

The necessity of the δ_2 -condition of Ψ can be proved in the same way as for the Luxemburg norm in Theorem 4, since the Amemiya-Orlicz norm has the Fatou property

Recall that the Nakano space $l^{(p_i)}$ is the Musielak-Orlicz space l_{Φ} with $\Phi = (\Phi_i)$, where

$$\Phi_i(u) = |u|^{p_i} \qquad (1 < p_i < +\infty, i \in \mathbb{N}).$$

Corollary 2. For both the Luxemburg and the Amemiya-Orlicz norms the following statements are equivalent:

- (a) $l^{(p_i)}$ is nearly uniformly convex.
- (b) $l^{(p_i)}$ is nearly uniformly smooth.
- (c) $l^{(p_i)}$ is nearly uniformly *-smooth.
- (d) $1 < \liminf_{i \to \infty} p_i \leq \limsup_{i \to \infty} p_i < +\infty$.

Proof. If $\Phi_i(u) = |u|^{p_i}$ for all $u \in \mathbb{R}$ and $i \in \mathbb{N}$, then the complementary functions Ψ_i of Φ_i are defined by the formula

$$\Psi_i(u) = c_i |u|^{q_i}$$

where $\frac{1}{p_i} + \frac{1}{q_i} = 1$ and $c_i = (p_i)^{1/p_i} (q_i)^{1/q_i}$ for all $i \in \mathbb{N}$. It is easy to see that $\Phi = (\Phi_i)$ satisfies the δ_2 -condition if and only if $\limsup_{i \to \infty} p_i < +\infty$. Moreover, $\Psi = (\Psi_i)$ satisfies the δ_2 -condition if and only if $\liminf_{i \to \infty} p_i > 1$.

Now, we prove the equivalence of the conditions.

 $(d) \Rightarrow (a)$: Assume first that $l^{(p_i)}$ is equipped with the Amemiya-Orlicz norm. Then, by Theorem 4, l_{Ψ} is nearly uniformly smooth. So $l^{(p_i)}$ is nearly uniformly convex as well. It follows in the same way that condition (d) implies that l_{Ψ} is nearly uniformly convex. Therefore, by the fact that a Banach space X is nearly uniformly convex if and only if X^* is nearly uniformly smooth and that if both Musielak-Orlicz functions Φ and Ψ satisfy the δ_2 -condition, then $(l_{\Phi})^* \cong l_{\Psi}^0$ and $(l_{\Phi}^0)^* \cong l_{\Psi}$ (see [3, 15, 16, 19]), we deduce that (a) and (b) are equivalent for both norms. By Theorem 4, conditions (b), (c) and (d) are pairwise equivalent. The implication (b) \Rightarrow (c) holds in general and, by Theorem 5, (c) \Rightarrow (d) in the case of the Amemiya-Orlicz norm. This completes the proof

References

- Banaś, J.: Compactness conditions in geometric theory of Banach spaces. Nonlin. Anal.: Theory, Methods & Appl. 16 (1993), 669 - 682.
- Banaś, J. and K. Goebel: Measures of Noncompactness in Banach Spaces. New York: Marcel Dekker 1980.
- [3] Chen, S. T.: Geometry of Orlicz Spaces. Diss. Math. 356 (1996), 1 204.
- [4] Chen, S. T., Hudzik, H. and H. Sun: Complemented copies of l¹ in Orlicz spaces. Math. Nachr. 159 (1992), 299 - 309.

- [5] Clarkson, J. A.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 396 -414.
- [6] Denker, M. and H. Hudzik: Uniformly non-l⁽¹⁾_n Musielak-Orlicz sequence spaces. Proc. Indian Acad. Sci. 101.2 (1991), 71 - 86.
- [7] Diestel, J.: Sequences and Series in Banach Spaces (Grad. Texts Math.: Vol. 92). New York et al.: Springer-Verlag 1984.
- [8] Grząślewicz, R. and H. Hudzik: Smooth points in Orlicz spaces equipped with Luxemburg norm. Math. Nachr. 44 (1992), 505 - 515.
- Hudzik, H. and A. Kamińska: Some remarks on convergence in Orlicz spaces. Comment. Math. Prace Mat. 21 (1979), 81 - 88.
- [10] Hudzik, H. and Y. Ye: Support functionals and smoothness in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm. Comment. Math. Univ. Carolinae 31 (1990), 661 - 684.
- [11] Huff, R.: Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 10 (1980), 473 - 749.
- [12] Kamińska, A.: Flat Orlicz-Musielak sequence spaces. Bull. Acad. Polon. Sci. Math. 30 (1992), 347 - 352.
- [13] Kamińska, A.: Uniform rotundity of Musielak-Orlicz sequence spaces. J. Appr. Theory 47 (1986), 302 322.
- [14] Lindenstrauss, J. and L. Tzafriri: Classical Banach Spaces. Vol. I. Berlin et al.: Springer-Verlag 1977.
- [15] Luxemburg, W. A. J.: Banach Function Spaces. Thesis. Delft: Univ. 1955.
- [16] Musielak, J.: Orlicz Spaces and Modular Spaces. Lect. Notes Math. 1034 (1983), 1 222.
- [17] Prus, S.: Nearly uniformly smooth Banach spaces. Boll. Unione Mat. Italiana 7.3-B (1989), 506 - 521.
- [18] Prus, S.: On infinite dimensional uniform smoothness of Banach spaces (to appear).
- [19] Rao, M. M. and Z. D. Ren: Theory of Orlicz Spaces. New York et a.: Marcel Dekker Inc. 1991.
- [20] Sękowski, T. and A. Stachura: Noncompact smoothness and noncompact convexity. Atti. Sem. Mat. Fis. Univ. Modena 36 (1982), 239 - 338.
- [21] Wu, C. X. and H. Y.Sun: Calculation of Orlicz norm and complex convexity in Musielak-Orlicz sequence spaces. Chinese Ann. Math. A 12 (1991), 98 - 102.

Received 11.02.1998; in revised form 24.08.1998