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On Some Uniform Convexities and Smoothness
in Certain Sequence Spaces

Y. Cui, H. Hudzik and R. Pluciennik

Abstract. It is proved that any Banach space X with property A% has property A, and
" that a Banach space X is nearly uniformly smooth if and only if it is nearly uniformly . *
smooth and weakly sequentially complete. It is shown that if X is a Kéthe sequence space
the dual of which contains no isomorphic copy of !} and has property A§, then X has the
uniform Kadec-Klee property. Criteria for nearly uniformly convexity of Musielak-Orlicz spaces
equipped with the Orlicz norm are presented. It is also proved that both properties nearly
uniformly smoothness and nearly uniformly convexity for Musielak-Orlicz spaces equipped
with the Luxemburg norm coincide with reflexivity. Finally, an interpretation of those results
for Nakano spaces I?} (1 < p; < o0) is given.
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1. Introduction

Let (X,| - ||) be a real Banach space and X* be the dual space of X. By B(X) and
S(X) we denote the closed unit ball and the unit sphere of X, respectively. For any
subset A of X by conv(A) we denote the convex hull of A. In the sequel N, R, Ry and
RS stand for the set of natural numbers, the set of reals, the set of non-negative reals
and the interval [0, +00], respectively.

The following notions used in the paper can be found in [14: Chapter 1].

A sequence (zn) in a real Banach space X is called a Schauder basis of X (or basis
for short) if for each z € X there exists a unique sequence (a,) of reals such that

k
z— E ApnZIn
n=1

— 0 as k — oo.
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A sequence (z,) which is a Schauder basis of its closed linear span is called a basic
sequence.

A basis (z,) of X is said to be an unconditional basis if every ‘convergent series
S o, @nTn with a, € R is unconditionally convergent, i.e. for any permutation (n(n))
of N the series Y oo | Qr(n)Tr(n) CONVETZES.

For a basis (z,) of X, its basic constant is defined by K = sup, ||Px||, where
P, : X — X are projections defined by

If (z,) is a basis of X such that the series zn 1GnTn converges whenever (an) is a
sequence of reals such that
n
S e
=1

then (z,) is said to be a boundedly complete basis. It is known that (z,) is a boundedly
complete basis of a Banach space X if and only if (z,) is an unconditional basis and X
is weakly sequentially complete.

sup 00,

Recall that X is said to be weakly sequentially complete if for any sequence (y,) in
X such that lim, z*(y.) exists for every z* € X*, there is y € X such that y, — y
weakly.

Clarkson [5] introduced the concept of uniform convexity. The norm || - || is called
uniformly convez if for each €.> 0 there is § > 0 such that for z,y € S(X) the mequahty
= — yll > € implies [|3(z +y) <1 - 6.

A Banach space X is said to have the Kadec-Klee property if every sequence from
S(X) weakly convergent to an element z € S(X) is convergent to z in norm. Recall
that for a given ¢ > 0 a sequence (z) is said to be ¢-separated if

sep(z,) = inf {||lz, — zm||} > €.
m#n

A Banach space X is said to have the uniform Kadec-Klee property if for every € > 0
there exists § > 0 such that if z is a weak limit of an ¢-separated sequence in S(X),
then ||z]| < 1 - 6.

The notion of nearly uniformly convexity for Banach spaces was introduced in [11].
It is an infinite dimensional counterpart of the classical uniform convexity. A Banach
space is said to be nearly uniformly convez if for every € > 0 there exists § € (0,1) such
that for every sequence (z,) C B(X) with sep(zs) > €, there holds

conv({‘:c,,}) N(1-8)B(X) # ¢.

It is easy to see that every nearly uniformly convex space has the uniform Kadec-Klee
property, and every Banach space with the uniform Kadec-Klee property has the Kadec-
Klee property. Huff {11] proved that X is nearly uniformly convex if and only if X is
reflexive and has the uniform Kadec-Klee property.
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A Banach space X is said to be nearly uniformly smooth if for any € > 0 there exists
8 > 0 such that for each basic sequence (z,) in B(X) there is k > 1 such that

lz1 + tz|| L 1+ te

for each t € [0, §] (see [17, 18]). Originally, this property was defined in [20] in a different
way. Prus {17] showed that a Banach space X is nearly uniformly convex if and only if
X* is nearly uniformly smooth.

For z € S(X) and a positive number §, denote
$*(z,8) = {z* € B(X"):z°(z) > 1 - §}.

Let A be a bounded subset of X . Its Kuratowski measure of non-compactness a(A)
is defined as the infimum of all numbers d > 0 such that A may be covered by finitely
many sets of diameter smaller than d (see (1, 2]).

A Banach space X is said to be nearly uniformly *-smooth provided that for every
€ > 0 there exists § > 0 such that if z € S(X), then

a(S*(z,6)) < e.

A Banach space X is said to have property A; if there exists © € (0,2) such that for
each weakly null sequence (z,) in S(X), there are ny,n2 € N satisfying ||zpn, +z4,| < ©.
It is well known that if X has property Aq, then it has the weak Banach-Saks property
(see [7]). . :

A Banach space X is said to have property Af if for any € > 0 there exists § > 0
such that for each weakly null sequence (z,) in B(X), there is k € N\ {1} satisfying
llz1 + tzi]| < 1 4+ te whenever t € [0,6]. Prus [18] proved that X is nearly uniformly
*-smooth if and only if X has property A and contains no copy of I;. Moreover, he
also showed that if X is nearly uniformly *-smooth, then it has the weak Banach-Saks
property.

The space of all real sequences z = (z(i)) is denoted by I°. A Banach space X is
called a Kothe sequence space if it is a subspace of I° equipped with a norm | - || such
that for every z = ((¢)) € {° and y = (y(i)) € X satisfying |z(¢)| < |y(:)| for all 7 € N,
there hold z € X and ||z|| < ||y|l-

X is said to have the Fatou property, if 0 < z, T z with z, € X, z € 1O,
suppen{l|zall} < o0 imply z € X and limp oo [|Za]| = |||

We say an element z € X is order continvous if for any sequence (z,) in X such
that |zn(2)] — 0 and |z,(¢)| < |z(¢)| (¢ € N) we have lim, .o ||Za|| = 0. It is easy to
see that z is order continuous if and only if limp—oo || Y1, z(¢)ei|| = 0. The space X
is called order continuous if every z € X is order continuous. ‘

A mapping ¢ : R — RS is said to be an Orlicz function if ® is vanishing only at 0,
even, convex and left continuous on the whole R, (see [13, 16, 19]). An Orlicz function
d is said to be an N-function if lim, ¢ ﬁuﬂ = 0 and lim,_. o @ = 00. A sequence
® = (®;) of Orlicz functions is called a Musielak-Orlicz function. By ¥ = (¥;) we
denote the complementary function-of ® in sense of Young; i.e. L

@i(v) = sup {|v|u — ®i(u):u > 0} (z € N).
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For a given Musielak-Orlicz function ®, we define a convex modular
Ia(z) = ) @i(z:)
i=1

for any z € I°. A linear space lg defined by
lo = {z €1°: Is(cz) < oo for some ¢ > 0}

is called the Musielak-Orlicz sequence space generated by . We consider lg equipped
with the Luzemburg norm

iz = inf{s >0: Iq,(i—) < 1}

or with the Amemiya-Orlicz norm
lz|lo = inf{%(l + Ig(kz)): k> 0} .

To simplify notations, we assume lg = (l,]| - ||) and {3 = (lg,|| - ||lo). Both le and I}
are Banach spaces (see (3, 16]).

We say a Musielak-Orlicz function & satisfies the 8;-condition (® € 6, for short) if
there exist constants k > 2 and a > 0 and a sequence (c;) in R4 such that Z:’:] ¢ < 00
and the inequality

®;(2u) < k®i(u) + ¢
holds for every : € N and every u € R satisfying ®;(u) < a.

In the sequel he stands for the space {z € I° : I4(lz) < oo for any | > 0} equipped
with the norm induced from lg. To indicate that it is considered with the Orlicz norm,
we write h3.

Let us recall three results which will be used in the following.

- Lemma 1 (see (9]). If & = (®:) is a Musielak-Orlicz function with all ®; be-
ing finitely valued, ¢ satisfies the é;-condition and (z,) 1s a sequence in le such that
Is(zn) = 0 as n — oo, then ||zn|| = 0 as n — oo.

Lemma 2 (see (6]). If e« Musielak-Orlicz function ¥ = (¥;) satisfies the &;-
condition, then for each A,e € (0,1) there is § € (0,1) and a sequence (h;) in R4
with Z:’:l ®,(hi) < € such that

®;(Au) < A6%;(u)
holds for every i € N and u € R satisfying ®;(h;) < ®;(u) < 1.

Lemma 3 (see [3, 8, 21]). If ® = (®,) is a Musielak-Orlicz function with all ®;
being finitely-valued N-functions, then for each z # 0 in I} there is k > 0 such that

lzlle = £(1 + To(kz)).

For more details on Musielak-Orlicz spaces we refer to [3] or [16].
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2. Results

We start with some general results which improve the result of Prus [18] that nearly
uniformly *-smooth Banach spaces have the weak Banach-Saks property.

Theorem 1. If a Banach space X has property A§, then X has property A,.

Proof. For ¢ = } there is § € (0,1) such that for each weakly null sequence (z,)
in S(X) there is k > 1 such that

t

lles + el < 1+ 3

(t €0,6)]).
Hence
B L - . 5 . 5
[ES + zi]| = ||z +8zx + (1 = 8)zi] < 1+§+(1—5)=2—§ =0<?2

and the statement is proved B
Now we will present the following useful remark.

Remark 1. A Banach space X is reflexive if and only if X contains no isomorphic
copy of [; and X is weakly sequentially complete.

Indeed, since !; is not reflexive, a reflexive Banach space cannot contain an iso-
morphic copy of {;. Moreover, any reflexive Banach space X is weakly sequentially
complete. If X contains no isomorphic copy of /;, by the well known Rosenthal theo-
rem, for every sequence (z,) in B(X) there exists a subsequence (z,) of (z,) whichis a
weakly Cauchy sequence. So, if X is additionally weakly sequentially complete, we get
that (z,) is relatively weakly sequentially compact. Hence X is reflexive i

Corollary 1. A Banach space X is nearly uniformly smooth if and only if X 1s
nearly uniformly *-smooth and weakly sequentially complete.

Proof. It is obvious that X is nearly uniformly *-smooth and weakly sequentially
complete if it is nearly uniformly smooth. Assume now that X is nearly uniformly
*-smooth and weakly sequentially complete. Since nearly uniformly *-smoothness of
X implies that X contains no copy of !, by Remark 1, X is reflexive, whence nearly
uniformly *-smoothness coincides with nearly uniformly smoothness §

So, we can now easily understand why ¢q is not nearly uniformly smooth although
it is nearly uniformly *-smooth.

Theorem 2. Let X be a Kothe sequence space. If X* contains no isomorphic copy
of I' and has property AS, then X has the uniform Kadec-Klee property.

Proof. Since X* contains no isomorphic copy of I, for every sequence (z%) in
B(X*) there is a weak Cauchy subsequence (z},). It is obvious that the sequence
(zy, — z3,) is weakly null. By the assumption that X* has property A§, there are
n > k > 1 such that

te

- t ‘_ - 1
lai +t(ei - a2l < 1+ 3

(t €[0,6))
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(see [18]). Let (z,) be a sequence in S(X) with sep(z,) > € and z, — z € X weakly.
Then sep(zn — z) > €. We need to show that ||z|| < 1 — n(e), where 5(¢) depends
only on e. Put K = %% By the Bessaga-Pelczyriski selection principle, there exists
a subsequence (z,) of {zn — z,z : n € N} with z; = z being a basic sequence with
basic constant less or equal to K. Put Xy, = span{z, : n € N}. Let us consider
the sequence (z;;) of the norm preserving extensions from X; to the whole X of the
coefficient functionals for the basic sequence (z,). Then (2,25} — 0 as n — oo for any

z € Xo. Indeed, z = 372, 27 (2)zi for any z € Xy, whence

lzn(@)znll = |2 (2)zi = 3 2i(2)
i=n i=n+1
<[ z@al|+| Sz
i=n i=n+1

—0 as n — oo.

Since ||zq|| > § for all n, this yields z;(z) — 0 as n — oo.

Let us write (z, 2;) for z;(z) and take n > k > 1 large enough such that |(z,2})| <

33 and [(z,2;)| < 55. Notice that ||z}|| < K and ||z}]| < 2K for k > 1. Hence, taking

into account that ||z + 2¢|| = 1 for k > 1 and applying property A§ for X*, we get

* 6 * * e 66
zl+§(zk—zn) S]\ (1+§)

and consequently

lzll = (=, 27)

w6 § .
= (z 4 z,2;) + §(z+zk,z; —zn) — §(x+zk,z; —z)

) ) .
= (e msi 5= o)) - G+ s - o)

<

de be  be
K oe) _ o o€
< (l + 32) PERIT

- de 36¢
=K1+ —=)-—
(+32) 16
be 3ée
<ll4+—) - —
f(+16> 16
be
i
8

- 6 . . 8 * *
2+ 5z — 20)|| = Sllzll + (2, 20| + ({2, z0)]

which finishes the proof i
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Lemma 4. Let & = ($;) be a finitely-valued Musielak-Orlicz function such that
®* satisfies the §;-condition. Then for everye > 0, A € (0,1) and K > 1 there are
(hi)2, C R4 and 6 € (0,1) such that 3 ;2, ®i(hi) < € and the inequality

®i(yu) < v6%i(u)

holds for all i € N and u > 0 satisfying the inequalities ®;(h;) < ®;(u) < K and all
7 €(0,2].

Proof. It is known from [6] that our lemma is true for K = 1 under the additional
assumption that ®;(1) = 1 for all : € N. Let a; > 0 be such that ®;(a;) = K for
all i € N and define ¢;(u) = ®i(aiu) for all u € R and i € N. Then ¢ = (¢;) is a
Musielak-Orlicz function such that ¢;(1) = 1 for all : € N. Since, denoting by ¢; and
®; the complementary functions of ¢; and ®;, respectively, there holds

1 K
o= por (£4)

for all - € N and u € R, we know that ¢* satisfies the §;-condition. By the above
mentioned result from [6] there are (h})$2, C Ry and 8 € (0,1) such that

€

= and  gi(yw) S v4i(u)

I

$i(h;) <

=1

for all v € (0, )], i € N and u € R satisfying ¢i(h}) < ¢i(u) < 1. Setting h; = a;h! for
each ¢ € N, we easily see that it is just the desired result il

Theorem 3. If & = (®;) is a Musielak-Orlicz function with all ®; being finitely-
valued N-functions, then 1§ is nearly uniformly convez if and only if ® and ¥ satisfy
the 8,-condition.

Proof. We need only to prove the sufficiency. Since I3 is reflexive, it suffices to
prove that {} has the uniform Kadec-Klee property. Let € > 0 be given and take any

sequence {z,} C S(I3) with sep(z,) > 2¢ and z,>z. It is clear that for any m € N
there is n,, € N such that

sep (( Z :z:,,(i)e.') ' ) > 2¢.
i=m+1 n=nm,

This follows by the fact that z,—z implies that z, — z coordinatewise. Hence for any
m € N there is n,, € N such that

oo

Z za(1)e;

t=m+1

>e€ (n2 n‘m). (1)

By Lemma 3 there are k, > 1 and k > 1 such that

Iznllo = 5-(1 + To(knzn) (neN)
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and

lelo = 21 + Lo(k2)).

Then K = sup,, ko < 00. Indeed, since ||zflo > 1—6, thereis iy € N such that zo(t0) # 0.
If K = oo, we can assume without loss of generality that lim, .o kn = co. Hence

1= i(1 + Io(knza))

= lim —Iq,(k Zn)

> liminf k—‘bio(kn-’zn(iO))

— 00

which is a contradiction.

By the éz-condition of ¢ and inequality (1) there is § > 0 such that
o0
Y @z 28 (1> nm). 2)
t=m+1

Put A = K+1 Then, by Lemma 4, there is h = (h;)$2, with Yo, Ri(hi) < & K and a
number 8 € (0,1) such that

Qi(yu) < v(1 - 0)®:(u)

for all v € [0,1] and u € R satisfying ®;(h;) < ®;(u) < K. Take m large enough such’
that

o0

66 '
Z x(i)eg < ’8— (3)
i=m+1 0 ’
and
ad 66
Z hie;|| < ? (4)
i=m+1 0
Since k..l:-k < k_i_ < %57 for any n € N, we have

s, <k’fk e )) T kB (ki)

whenever |:z:,.(i)|‘2 h;. Therefore,

3 e (kl:-ik,, :c,,(i)) < gq’i(hi)

t=m+1

nZn(7)). (5)
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It is obvious that

lza +zllo = D z(@ei + D z(i)ei +2zn

=1 t=m+1

Y
oo

Z :l:(i)e,'
i=m+1
5
8
0

m

Z z(2)ei + Tn

i=1

+ (6)

0

IA

0

m

Z z(i)ei + zn

=1

IN

for m large enough. Moreover, by (3) - (5), we get for n 2 npm

m

z z(1)e; + zn

i=1

0

_k K <l+z¢’ (k +k(ar:(z)+acn(1)))
ii (k +kz"( )>>

. k e )
)+ Py Z ®i(knzn(1))

kl,,+0kkz ( :1:,,(:) Z ¢(h))

i=m+1

(M

% kl - Z‘I’ (kz(3)) + —Z@ (knza(i))
+ 7}- > ®i(kazald)) + Z ®i(hi) - k— Z Pi(knzn())
7 i=m+1 i=m+1 " i=m+1

% (1 + Z(} (kx(i ))) + — (1 + Is(knzn))

t=1

+ Y (k)= D Bilkaza()
i=m+1 T izm41
<2+ % — 66.

Therefore, combining (6) and (7), we obtain

56 8 3 '
e +zlo S2+ 5 —60+ 2 =2-76  (n>nn)
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Hence, by z,—z and the lower semicontinuity of the norm with respect to the weak

topology, we deduce that
1 3 3
2—--0})=1--6.
2 ( ) 8
This contradiction finishes the proof

Theorem 4. For any Musielak-Orlicz function ® = (®,) with all &; being finitely-
valued N-functions the following statements are equivalent:

In+z

lzllo < lm
n—oo

(a) le is nearly uniformly smooth.

(b) lg is nearly uniformly *-smooth.

(c) ® and ¥ satisfy the 6;-condition.

Proof. (¢) = (a): By Theorem 3, {§, is nearly uniformly convex, so its dual lp is
nearly uniformly smooth. Therefore, we need only to prove that (b) = (c). We will
show that (b) implies the 6;-condition for . If & does not satisfy the 8;-condition, we

can construct z € S(lg) such that Is(z) < 1 and Ie((1 + 2)z) = oo for every n € N
(see [12]). Take a sequence (ix) of natural numbers such that tx T and

i ®; ((H %) x(i)) >1  (keN).

1=ip+1

Put
Tk = (o,o,...,o,:,c(i,c +1),2(ik +2),.-.,2(£41),0,0,...) (k€ N).

Then it is obvious that -

;) <lzell £1 (k € N).

Moreover,
zg — 0 weakly. (8)
Indeed, for every y € (ls)* we have y* = y3 + y} uniquely, where Yo is the regular
part of y* and y7 is the singular part of y*, i.e. yf(z) = 0 for any z € he (see (10]).
The functional yg is generated by some yy € ly by the formula

oo

u5(2) = (@w) = Y z(@)w() (¢ €lo).

=1
Let A > 0 be such that -2, ¥,;(Ayo(i)) < 0o. Since zx € he for any k € N, we have

(zx:9") = (25, %5)

= 3 2wl
=t +1
5;( Z ,(z(2)) + Z ‘I’i(/\yo(i))>
=i+1 i=i+1

—0 as k— oo,
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i.e. (8) holds.

Since the space lg is nearly uniformly *-smooth, it has property A§, i.e. for any
€ > 0 there exists § € (0,1) such that for each weakly null sequence (2,) in B(lg) there
is m > 1 such that

lz1 +tzm] <1+ te

whenever ¢ € [0, §] (see [18]). Take ko € N such that 25 < (1 —¢)é if k > ko. We have
for k > ko , 7
k

148 2 llo + 8zl 2 (1 + 8)anl) 2 (1+8)——

1 .
:(1+6)(1—-k+—1)>1+6—

whence % > (1 —¢€)6. This is a contradiction which finishes the proof of the fact that
(b) implies the é;-condition for .

E+1

Next, we will show that (b) implies the §;-condition for ¥. By the above part
of the proof, we can assume that lg is nearly uniformly *-smooth and ® satisfies the
é2-condition. So, lg is order continuous. Moreover, any Musielak-Orlicz space l¢ has
the Fatou property and consequently, it is weakly sequentially complete. So, in view of
Corollary 1, lg is nearly uniformly smooth and consequently reflexive. This yields the
6,-condition for ¥ B

Theorem 5. Let ® = (®;) be a Musielak-Orlicz function with all &; being finitely-
valued N-functions. Then ® and ¥ satisfy the §;-condition whenever l§ is nearly uni-
formly *-smooth. :

Proof. Since l} is nearly uniformly *-smooth, it has property A% ,le. foranye > 0
there exists § € (0,1) such that for each weakly null sequence (z,,) in B(1}) there is
m € N\ {1} such that

lz1 +tzmllo <1+t

for all t € [0,6]. Let 8 € (0,1) be such that 1 + 6 < (1 + 6)8. If ¢ does not satisfy the
§2-condition, then there exists € S(1%) and a sequence {n;} of natural numbers n; |
such that n; =1 and

i‘ z(i)|} =26 (k € N)
(see [4]). Define s
T = Z z(1) (k € N).

Then we can prove in the same way as for the Luxemburg norm (see the proof of
Theorem 4) that (zx) is a weakly null sequence. Therefore, there is kg € N such that
for all k > ko

1+ 6e 2 |z + bzkllo 2 [I(1 + 8)zello 2 (1 + 6)8.

This is a contradiction which shows the necessity of the 6;-condition of & for the nearly
uniformly *-smoothness of I$.
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The necessity of the é;-condition of ¥ can be proved in the same way as for the
Luxemburg norm in Theorem 4, since the Amemiya-Orlicz norm has the Fatou prop-
erty B

Recall that the Nakano space {(P)) is the Musielak-Orlicz space lp with & = (®:),
where

®i(u) = |ul? (1 <pi < 4+00,i€N).

Corollary 2. For both the Luzemburg and the Amemiya-Orlicz norms the following
statements are equivalent:

(a) 1P s nearly uniformly convex.

(b) 1) 4s nearly uniformly smooth.

(c) %) 4s nearly uniformly *-smooth.

(d) 1 < liminfi_.oo pi < limsup;_, ., pi < +o0.

Proof. If ®;(u) = |u|? for all u € R and i € N, then the complementary functions
U, of ®; are defined by the formula

‘I’,‘(u) = c.~|u|","

where 1 2t L =1andc¢; = (pi)"/? ()% for all i € N. It is easy to see that & = (®:)

satisfies the 62 condition if and only if limsup;_ ., pi < +00. Moreover, ¥ = (¥; )
satisfies the §;-condition if and only if liminf; .o p; > 1.

Now, we prove the equivalence of the conditions.

(d) = (a): Assume first that {(P) is equipped with the Amemiya-Orlicz norm. Then,
by Theorem 4, ly is nearly uniformly smooth. So I(??) is nearly uniformly convex as
well. It follows in the same way that condition (d) implies that ly is nearly uniformly
convex. Therefore, by the fact that a Banach space X is nearly uniformly convex if
and only if X* is nearly uniformly smooth and that if both Musielak-Orlicz functions ®
and ¥ satisfy the é;-condition, then (lg)* = 1§, and (I3)* = Iy (see [3, 15, 16, 19]), we
deduce that (a) and (b) are equivalent for both norms. By Theorem 4, condltlons (b),
(c) and (d) are pairwise equivalent. The implication (b) = (c) holds in general and,
by Theorem 5, (¢) = (d) in the case of the Amemiya-Orlicz norm. This completes the
proof
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