Note on the Fourier-Laplace Transform of $\bar{\partial}$ -Cohomology Classes

T. Hatziafratis

Abstract. We construct the inverse of the Fourier-Laplace transform of $\overline{\partial}$ -cohomology classes (of (n, n-1)-forms) in the complement of a convex compact set in \mathbb{C}^n , thus giving an analogue of the Borel transform (and its Polya representation) of entire functions of exponential type in several variables. The construction is based on a formula of Berndtsson.

Keywords: Fourier-Laplace transform, $\overline{\partial}$ -cohomology classes

AMS subject classification: 32 A

1. Introduction

Let us consider a convex compact set $K \subset \mathbb{C}^n$ and the set $Z^{(n,n-1)}(\mathbb{C}^n \setminus K)$ of $\overline{\partial}$ -closed (n, n-1)-forms in $\mathbb{C}^n \setminus K$. Then to each form $\theta \in Z^{(n,n-1)}(\mathbb{C}^n \setminus K)$ we may associate an entire analytic function F_{θ} (its Fourier-Laplace transform) defined by

$$F_{\theta}(\zeta) = \int_{z \in S} e^{\langle z, \zeta \rangle} \theta(z) \qquad (\zeta \in \mathbb{C}^n)$$

where $\langle z, \zeta \rangle = \sum z_j \zeta_j$ and S is a smooth (2n-1)-dimensional closed surface surrounding K. By the Stokes formula, F_{θ} does not depend on the choice of the surface S. This function belongs to the space $\mathbb{A}_K(\mathbb{C}^n)$ of entire analytic functions F for which, for every $\delta > 0$, there is a constant $C_{\delta} > 0$ such that

$$|F(\zeta)| \le C_{\delta} \exp\left(H_K(\zeta) + \delta|\zeta|\right) \qquad (\zeta \in \mathbb{C}^n)$$

where

$$H_K(\zeta) = \sup \Big\{ \operatorname{Re}\langle z, \zeta \rangle : z \in K \Big\}.$$

Notice also that, in the case n = 1, $F_{\theta} \equiv 0$ precisely when $\theta = f(z) dz$ where f extends to an analytic function in \mathbb{C} . In the case $n \geq 2$, $F_{\theta} \equiv 0$ if and only if $\theta \in B^{(n,n-1)}(\mathbb{C}^n \setminus K)$, i.e. when θ is $\overline{\partial}$ -exact in $\mathbb{C}^n \setminus K$ (see Lemma 5). Thus there is defined a one-to-one linear map

$$\mathbb{E}: H^{(n,n-1)}(\mathbb{C}^n \setminus K) \to \mathbb{A}_K(\mathbb{C}^n), \qquad \mathbb{E}([\theta]) = F_{\theta}$$

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

T. Hatziafratis: Dept. Math. Univ., Panepistemiopolis 157 84, Athens, Greece

on the space of $\overline{\partial}$ -cohomology classes, i.e.

$$[\theta] \in H^{(n,n-1)}(\mathbb{C}^n \setminus K) = Z^{(n,n-1)}(\mathbb{C}^n \setminus K) / B^{(n,n-1)}(\mathbb{C}^n \setminus K).$$

In the case n = 1, if we set

$$\mathbb{A}_0(\mathbb{C}\setminus K) = \mathbb{A}(\mathbb{C}\setminus K)/\mathbb{A}(\mathbb{C})$$

(which is essentially the space of holomorphic functions in $(\mathbb{C} \setminus K) \cup \{\infty\}$ which vanish at ∞), then we have a map

$$\mathbb{E}: \mathbb{A}_0(\mathbb{C} \setminus K) \to \mathbb{A}_K(\mathbb{C})$$

which is one-to-one and onto, with a well-known inversion formula due to Polya (see [4: p. 305]).

In this note we will give an analogous formula in the case $n \ge 2$. In fact this formula will follow from a formula of Berndtsson [1], who constructed explicitly measures whose Fourier-Laplace transform is a given function $F \in A_K(\mathbb{C}^n)$. So what we do here is to show that these measures coherently define a $\overline{\partial}$ -cohomology class in $\mathbb{C}^n \setminus K$ whose Fourier-Laplace transform is F.

Let us examine first what Berndtsson's formula gives in the case n = 1. Let us consider the function

$$B_{\rho}(\xi) = \int_{0}^{\infty} e^{-t\xi 2 \frac{\partial \rho}{\partial \xi}} F\left(t 2 \frac{\partial \rho}{\partial \xi}\right) \cdot \frac{\partial \rho}{\partial \xi}(\xi) dt \qquad (\xi \in \mathbb{C} \setminus \{\rho < 1\})$$

where $\{\rho < 1\}$ is a strictly convex neighborhood of K. The function ρ is assumed to be smooth convex and homogeneous which guarantees the absolute convergence of the above integral, in view of the assumption on F, i.e. $F \in A_K(\mathbb{C})$. We claim that B_{ρ} is analytic and independent of ρ , thus defining an analytic function in $\mathbb{C} \setminus K$. To see that B_{ρ} is analytic, notice that, by the Lebesgue dominated convergence theorem, B_{ρ} is of type C^1 and

$$\frac{\partial B_{\rho}}{\partial \overline{\xi}}(\xi) = \int_{0}^{\infty} \frac{\partial}{\partial \overline{\xi}} \left(e^{-t\xi 2 \frac{\partial}{\partial \xi}} F\left(t 2 \frac{\partial \rho}{\partial \xi}\right) \cdot \frac{\partial \rho}{\partial \xi}(\xi) \right) dt.$$
(1)

But as a computation shows,

$$\frac{\partial}{\partial \overline{\xi}} \left(e^{-t\xi_2 \frac{\partial \rho}{\partial \xi}} F\left(t2\frac{\partial \rho}{\partial \xi}\right) \cdot \frac{\partial \rho}{\partial \xi}(\xi) \right) = \frac{\partial}{\partial t} \left(t \cdot e^{-t\xi_2 \frac{\partial \rho}{\partial \xi}} F\left(t2\frac{\partial \rho}{\partial \xi}\right) \right) \cdot \frac{\partial^2 \rho}{\partial \overline{\xi} \partial \xi}(\xi).$$

Substituting this into (1), we easily obtain that $\frac{\partial B_{\rho}}{\partial \xi} = 0$ implies $B_{\rho} \in \mathbf{A}(\mathbb{C} \setminus \{\rho \leq 1\})$. Moreover,

$$\lim_{|\xi|\to\infty} B_{\rho}(\xi) = 0 \quad \text{and} \quad \int_{\gamma} e^{z\xi} B_{\rho}(\xi) \, d\xi = F(z)$$

for every $z \in \mathbb{C}$, where γ is a simple closed curve in $\mathbb{C} \setminus \{\rho \leq 1\}$ arround K, and the claim follows. The proof in the case $n \geq 2$ is similar, only the computations become more technical.

Closing this introduction we mention that this note is related to the subject of analytic functionals where the central theme is the Ehrenpreis-Martineau theorem in its various forms and levels of generality; for more about it we refer to [3, 4] and the references given there. We also refer to [5, 7] for the theory of hyperfunctions which is also related to this subject.

2. Main result

Now we formulate our result.

Theorem 1. Let $K \subset \mathbb{C}^n$ be a convex compact set and S a smooth surface around K. Then the transformation $\mathbb{E} : H^{(n,n-1)}(\mathbb{C}^n \setminus K) \to A_K(\mathbb{C}^n)$ defined by

$$\mathbb{E}([\theta])(\zeta) = F_{\theta}(\zeta) = \int_{z \in S} e^{\langle z, \zeta \rangle} \theta(z) \, dz \qquad (\zeta \in \mathbb{C}^n)$$

for $[\theta] \in H^{(n,n-1)}(\mathbb{C}^n \setminus K)$ is one-to-one and onto and defines an isomorphism

$$H^{(n,n-1)}(\mathbb{C}^n \setminus K) \approx \mathbb{A}_K(\mathbb{C}^n)$$

of linear spaces which is independent of S.

Furthermore, the inverse transformation \mathbb{E}^{-1} : $A_K(\mathbb{C}^n) \to H^{(n,n-1)}(\mathbb{C}^n \setminus K)$ is given by the formula $F \to \mathbb{E}^{-1}(F) = [\theta_F]$, $F \in A_K(\mathbb{C}^n)$, where the class $[\theta_F]$ restricted to $\mathbb{C}^n \setminus \{\rho \leq 1\}$ is equal to $[\theta_F^{\rho}]$ and

$$\theta_F^{\rho}(\xi) = c_n \left(\int_0^{\infty} t^{n-1} e^{-2t \langle \xi, \partial \rho(\xi) \rangle} F\left(t 2 \frac{\partial \rho}{\partial \xi} \right) dt \right) \partial \rho(\xi) \wedge [\partial \overline{\partial} \rho(\xi)]^{n-1},$$

is defined for $\xi \in \mathbb{C}^n \setminus \{\rho \leq 1\}$. (For this formula we assume that $0 \in K$ and that the functions ρ are chosen to be positively homogeneous, i.e. $\rho(\lambda\xi) = \lambda\rho(\xi)$ for $\lambda \geq 0$, and such that $\{\rho < 1\}$ is a strictly convex neighborhood of K. Also, c_n will denote a constant which depends only on n.)

Of course, it is part of the conclusion of the theorem that the classes $[\theta_F^{\rho}]$ agree in their common domain of definition, as the neighborhood $\{\rho < 1\}$ shrinks to K, thus well-defining the limiting class $[\theta_F]$ in $\mathbb{C}^n \setminus K$; this class is an analogue of the Borel transform of F in several variables.

We will split the proof of the theorem in several steps which we present as lemmas. But let us check first that the integral which defines θ_F^{ρ} is absolutely convergent and defines a C^{∞} -form in $\xi \in \mathbb{C}^n \setminus \{\rho \leq 1\}$. To do this we will use some facts about convex functions which we recall from [1]. According to this the map $(0, \infty) \times \partial L \to \mathbb{C}^n \setminus \{0\}$ (we have set $L = \{\rho \leq 1\}$) defined by $(t,\xi) \rightarrow \zeta = t2\partial\rho(\xi)$, is one-to-one and onto with inverse given by $\xi_j = 2\frac{\partial\phi}{\partial\zeta_i}(\zeta)$ and $t = \phi(\zeta)$, where $\phi(\zeta) = H_L(\zeta)$.

Now we show that the integral converges absolutely for $\xi \in \partial L$. Fix such a $\xi \in \partial L$. Then, by the convexity of $\phi(\zeta)$,

$$\left|e^{-2\iota\langle\xi,\partial\rho(\xi)\rangle}\right| = e^{-\operatorname{Re}\langle\xi,2\iota\partial\rho(\xi)\rangle} = e^{-2\operatorname{Re}\langle\partial\phi(\zeta),\zeta\rangle} \le e^{-\phi(\zeta)} \le \exp(-H_K(\zeta) - \varepsilon|\zeta|)$$

where $\varepsilon = \text{dist}(K, \partial L)$. Also, since $F \in \mathbb{A}_K(\mathbb{C}^n)$, we have (with $\delta = \frac{\varepsilon}{2}$)

$$|F(\zeta)| \leq C_{\delta} \exp\left(H_K(\zeta) + \frac{\varepsilon}{2}|\zeta|\right).$$

Therefore

$$\left| e^{-2t\langle \xi, \partial \rho(\xi) \rangle} F\left(t 2 \frac{\partial \rho}{\partial \xi}(\xi) \right) \right| \le C_{\delta} \exp\left(-\frac{\varepsilon}{2} t |\zeta| \right) = C_{\delta} \exp\left(-\varepsilon t \left| \frac{\partial \rho}{\partial \xi} \right| \right)$$

and the absolute convergence of the integral defining θ_F^{ρ} is immediate. Now if $\xi \in \mathbb{C}^n \setminus L$, then we write $\xi = \lambda \xi'$ where $\xi' \in \partial L$ and $\lambda > 1$. Then, by the homogeneity of $\frac{\partial \rho}{\partial \xi_j}$, there follows the quantity

$$\left| e^{-2t\langle \xi, \partial \rho(\xi) \rangle} F\left(t 2 \frac{\partial \rho}{\partial \xi} \right) \right| = \left| e^{-\lambda 2t\langle \xi', \partial \rho(\xi') \rangle} F\left(t 2 \frac{\partial \rho}{\partial \xi}(\xi') \right) \right| \le C_{\delta} \exp\left(-\varepsilon t \left| \frac{\partial \rho}{\partial \xi}(\xi') \right| \right)$$

since $\lambda > 1$ and $2\operatorname{Re}\langle \xi', \partial \rho(\xi') \rangle \ge \rho(\xi') = 1$. It follows that the integral defining θ_F^{ρ} is absolutely convergent for all $\xi \in \mathbb{C}^n \setminus L$ and it remains so if we differentiate the integrand with respect to the real variables corresponding to ξ . (Notice that if $F \in A_K(\mathbb{C}^n)$, then any derivative of F also belongs to $A_K(\mathbb{C}^n)$ which follows from the Cauchy inequalities.) Hence, by the Lebesgue dominated convergence theorem, $\theta_F^{\rho}(\xi)$ is of type C^{∞} in $\xi \in \mathbb{C}^n \setminus \{\rho \leq 1\}$.

3. Preparatory lemmas

We begin by proving that θ_F^{ρ} is $\overline{\partial}$ -closed where it is defined. This is done by computing explicitly a $\frac{d}{dt}$ -primitive.

Lemma 1. We have $\overline{\partial} \theta_F^{\rho}(\xi) = 0$ for $\xi \in \mathbb{C}^n \setminus \{\rho \leq 1\}$.

Proof. By the previous discussion,

$$\overline{\partial}\theta_{F}^{\rho}(\xi) = \int_{0}^{\infty} \overline{\partial}_{\xi} \left[t^{n-1} e^{-2t(\xi,\partial\rho(\xi))} F\left(t 2 \frac{\partial\rho}{\partial\xi}\right) \cdot \partial\rho(\xi) \wedge \left[\partial\overline{\partial}\rho(\xi)\right]^{n-1} \right] dt.$$
(2)

We claim that

$$\overline{\partial}_{\xi} \left[t^{n-1} e^{-2t\langle\xi,\partial\rho(\xi)\rangle} F\left(t2\frac{\partial\rho}{\partial\xi}\right) \cdot \partial\rho(\xi) \wedge \left[\partial\overline{\partial}\rho(\xi)\right]^{n-1} \right]$$

$$= \frac{d}{dt} \left[a_n \left(t^n e^{-2t\langle\xi,\partial\rho(\xi)\rangle} F\left(t2\frac{\partial\rho}{\partial\xi}\right) \right) \overline{\partial}\gamma_1 \wedge \ldots \wedge \overline{\partial}\gamma_n \wedge \omega \right]$$
(3)

where $\gamma_j = \frac{\partial \rho}{\partial \xi_j}$, $\omega = d\xi_1 \wedge \ldots \wedge d\xi_n$ and $a_n = (-1)^{\frac{n(n-1)}{2}} \frac{1}{(n-1)!}$. To prove this notice first that

$$\partial \rho(\xi) \wedge [\partial \overline{\partial} \rho(\xi)]^{n-1} = a_n \sum_{j=1}^n (-1)^{j-1} \gamma_j \overline{\partial} \gamma_1 \wedge \dots (j) \dots \wedge \overline{\partial} \gamma_n \wedge \omega$$

Therefore (3) is equivalent to

$$\overline{\partial}_{\xi} \left[t^{n-1} e^{-2t\langle\xi,\partial\rho(\xi)\rangle} F\left(t2\frac{\partial\rho}{\partial\xi}\right) \cdot \sum_{j=1}^{n} (-1)^{j-1} \gamma_{j} \overline{\partial}\gamma_{1} \wedge \dots (j) \dots \wedge \overline{\partial}\gamma_{n} \wedge \omega \right]$$

$$= \frac{d}{dt} \left[\left(t^{n} e^{-2t\langle\xi,\partial\rho(\xi)\rangle} F\left(t2\frac{\partial\rho}{\partial\xi}\right) \right) \overline{\partial}\gamma_{1} \wedge \dots \wedge \overline{\partial}\gamma_{n} \wedge \omega \right].$$

$$(4)$$

Now (4) follows from the following three observations:

Observation 1:

$$\overline{\partial}_{\xi}\left(\sum (-1)^{j-1}\gamma_{j}\overline{\partial}\gamma_{1}\wedge\ldots(j)\ldots\wedge\overline{\partial}\gamma_{n}\wedge\omega\right)=n\overline{\partial}\gamma_{1}\wedge\ldots\wedge\overline{\partial}\gamma_{n}\wedge\omega$$

and therefore the term which we obtain when $\overline{\partial}_{\xi}$ (in (4)) hits the sum $\sum_{j=1}^{n}$ is equal to the term obtained when $\frac{d}{dt}$ hits the term t^{n} .

Observation 2:

$$\begin{split} \left[\overline{\partial}_{\xi}\left(e^{-2t\langle\xi,\partial\rho(\xi)\rangle}\right)\right] \wedge \left(\sum_{j=1}^{n} (-1)^{j-1} \gamma_{j} \overline{\partial} \gamma_{1} \wedge \dots (j) \dots \wedge \overline{\partial} \gamma_{n} \wedge \omega\right) \\ &= (-2t)\left(e^{-2t\langle\xi,\partial\rho(\xi)\rangle}\right)\left(\sum_{j=1}^{n} \xi_{j} \overline{\partial} \gamma_{j}\right) \wedge \left(\sum_{j=1}^{n} (-1)^{j-1} \gamma_{j} \overline{\partial} \gamma_{1} \wedge \dots (j) \dots \wedge \overline{\partial} \gamma_{n} \wedge \omega\right) \\ &= (-2t)\left(e^{-2t\langle\xi,\partial\rho(\xi)\rangle}\right)\left(\sum_{j=1}^{n} \xi_{j} \gamma_{j}\right)\left(\overline{\partial} \gamma_{1} \wedge \dots \wedge \overline{\partial} \gamma_{n} \wedge \omega\right) \end{split}$$

and therefore the terms obtained when $\overline{\partial}_{\xi}$ and $\frac{d}{dt}$ hit the exponentials are equal.

Observation 3:

$$\begin{bmatrix} \overline{\partial}_{\xi} \left(F\left(t2\frac{\partial\rho}{\partial\xi}\right) \right) \end{bmatrix} \wedge \left(\sum_{j=1}^{n} (-1)^{j-1} \gamma_{j} \overline{\partial} \gamma_{1} \wedge \dots (j) \dots \wedge \overline{\partial} \gamma_{n} \wedge \omega \right)$$
$$= (2t) \left(\sum_{j=1}^{n} \frac{\partial F}{\partial\zeta_{j}} (2t\gamma_{1}, \dots, 2t\gamma_{n}) \overline{\partial} \gamma_{j} \right) \left(\sum_{j=1}^{n} (-1)^{j-1} \gamma_{j} \overline{\partial} \gamma_{1} \wedge \dots (j) \dots \wedge \overline{\partial} \gamma_{n} \wedge \omega \right)$$
$$= (2t) \left(\sum_{j=1}^{n} \gamma_{j} \frac{\partial F}{\partial\zeta_{j}} (2t\gamma_{1}, \dots, 2t\gamma_{n}) \right) (\overline{\partial} \gamma_{1} \wedge \dots \wedge \overline{\partial} \gamma_{n} \wedge \omega)$$

and therefore the terms obtained when $\overline{\partial}_{\xi}$ and $\frac{d}{dt}$ hit the quantity $F(t2\frac{\partial\rho}{\partial\xi})$ are equal.

This proves (4) and, therefore, (3) holds. Now substituting (3) into (2) and integrating from t = 0 to $t = \infty$ we easily obtain the assertion of the lemma

The following two lemmas are quite standard; the proof of the first one may be found in [6: p. 217] while we outline a proof of the second lemma for completeness.

Lemma 2. Let $D \subset \mathbb{C}^n$ be an open set and let there be compact sets K_j $(j \in \mathbb{N})$ with $K_j \subset int(K_{j+1})$ and $D = \bigcup_{j=1}^{\infty} K_j$. Let u be a (0,q)-form in D which is $\overline{\partial}$ -exact in a neighborhood of K_j for all j. Let us also assume the following:

(i) In the case $q \ge 2$, $H^{(0,q-1)}(K_j) = 0$ for all j.

(ii) In the case q = 1, every function in $A(K_j)$ (i.e. analytic in a neighborhood of K_j) can be approximated, uniformly on K_j , by functions in $A(K_{j+1})$.

Then u is $\overline{\partial}$ -exact in all of D.

Lemma 3. Let D_1 and D_2 be two convex open sets in \mathbb{C}^n , $D_2 \subset D_1$, and set $D = D_1 \setminus \overline{D}_2$. Then every analytic function in D can be extended to an analytic function in D_1 $(n \geq 2)$ and approximated, uniformly on compact sets of D, by entire functions. Also, $H^{(0,q)}(D) = 0$ for $1 \leq q \leq n-2$ $(n \geq 3)$.

Proof. We will prove only the last assertion of the lemma. The proof will be based on the Cauchy-Leray formula which we recall first (the first assertion can also be proved using the same formula, but we omit its proof since it is well-known).

Let $\Omega \subset \mathbb{C}^n$ be a bounded open set with smooth boundary and $\gamma : (\partial \Omega) \times \Omega \to \mathbb{C}^n$ a C^2 -map such that

$$\sum_{j=1}^{n} (\zeta_{i} - z_{i}) \gamma_{i}(\zeta, z) \neq 0 \quad \text{for } (\zeta, z) \in (\partial \Omega) \times \Omega.$$

For $u \in C_{(0,q)}(\overline{\Omega})$ $(0 \le q \le n)$ let us set

$$\begin{split} L_q^{\gamma}(u) &= \int_{\partial\Omega} u \wedge \omega_q^1(\gamma) \\ T_{q-1}u &= (-1)^{q-1} \int_{\partial\Omega} u \wedge \omega_{q-1}^2(\gamma,\beta) - \int_{\Omega} u \wedge \omega_{q-1}^1(\beta) \end{split}$$

where $\beta_i = \overline{\zeta}_i - \overline{z}_i$ and

$$\omega_q^1(\gamma) = c_n(-1)^q \binom{n-1}{q} \left(\sum_{i=1}^n \gamma_i(\zeta_i - z_i) \right)^{-n} \det \left[\gamma_i, \overline{\partial_z \gamma_i}, \overline{\partial_\zeta \gamma_i} \right] \wedge d\zeta_1 \wedge \ldots \wedge d\zeta_n.$$

The formula for $\omega_{q-1}^2(\gamma,\beta)$ is similar (see, for example, [2: p. 85] where the notation is similar), but we will not write it down since its explicit form will not be important here. In this setting every $u \in C_{(0,q)}^1(\overline{\Omega})$ can be decomposed (in $C_{(0,q)}(\Omega)$) as

$$u = \overline{\partial}_{z}(T_{q-1}u) + T_{q}(\overline{\partial}u) + L_{q}^{\gamma}(u).$$

Now D can be exhausted with compact sets of the form $K_j = \{\lambda \leq 0\} \setminus \{\rho < 0\}$ where the sets $\{\lambda < 0\}$ and $\{\rho < 0\}$ are convex with smooth boundary. Appling the Cauchy-Leray formula in sets of the form $\Omega = \{\lambda < 0\} \setminus \{\rho \leq 0\}$ with

$$\gamma_i(\zeta, z) = \begin{cases} \frac{\partial \lambda}{\partial \zeta_i}(\zeta) & \text{if } \zeta \in \{\lambda = 0\} \\ \frac{\partial \rho}{\partial \zeta_i}(z) & \text{if } \zeta \in \{\rho = 0\} \ (z \in \Omega) \end{cases}$$

we obtain $H^{(0,q)}(K_j) = 0$ $(1 \le q \le n-2)$. The point here is that with this choice of $\gamma, \omega_q^1(\gamma) = 0$ when $\zeta \in \partial\Omega$. Now $H^{(0,q)}(D) = 0$ follows from Lemma 2

The following lemma can be proved exactly as Lemma 2. It suffices to consider some compact sets K_i between the D_i 's.

Lemma 4. Let $D_1 \subset D_2 \subset \dots D_j \subset D_{j+1} \subset \dots$ be a sequence of open subsets of \mathbb{C}^n and $q \geq 1$, and let us assume the following:

(i) If $q \ge 2$, then $H^{(0,q-1)}(D_j) = 0$ for all j.

(ii) If q = 1, then $A(D_{j+1})$ should be dense in $A(D_j)$.

Under these assumptions if θ is a (0,q)-form in D which is $\overline{\partial}$ -exact in every D_j , then θ is $\overline{\partial}$ -exact in the whole D, i.e. inv $\lim B^{(0,q)}(D_j) = B^{(0,q)}(D)$. In particular, if moreover $H^{0,q-1}(D_j) = 0$ for all j, then $H^{(0,q)}(D) = 0$.

Lemma 5. The transformation \mathbb{E} is one-to-one, i.e. if

$$\int_{z\in S} e^{\langle z,\zeta\rangle} \theta(z) = 0 \quad \text{for every } \zeta \in \mathbb{C}^n, \tag{5}$$

then θ is $\overline{\partial}$ -exact in $\mathbb{C}^n \setminus K$.

Proof. Since the linear combinations of the functions $e^{\langle x,\zeta\rangle}$ $(\zeta \in \mathbb{C}^n)$ is dense in $A(\mathbb{C}^n)$, it follows from (5) that

$$\int_{z \in S} \phi(z)\theta(z) = 0 \quad \text{for every } \phi \in \mathbf{A}(\mathbb{C}^n).$$
(6)

Let us exhaust now the set $\mathbb{C}^n \setminus K$ by compact sets of the form $K_j = \{\lambda \leq 0\} \setminus \{\rho < 0\}$ (as in Lemma 3). By the Cauchy-Leray formula in $\Omega = \{\lambda < 0\} \setminus \{\rho \leq 0\}$ we have

$$\theta = \overline{\partial}_{z}(T_{n-2}\theta) + T_{n-1}(\overline{\partial}\theta) + L_{n-1}^{\gamma}(\theta)$$
(7)

where γ is as in Lemma 3 and where we identify (n, n-1)-forms with (0, n-1)-forms in the obvious way. By the definition of the kernels,

$$L_{n-1}^{\gamma}(\theta) = c_n \int_{\zeta \in \{\rho=0\}} \left(\sum_{i=1}^n \frac{\partial \rho}{\partial \zeta_i}(z)(\zeta_i - z_i) \right)^{-n} \theta(\zeta) \wedge \det \left| \frac{\partial \rho}{\partial z_i}, \overline{\partial}_z \left[\frac{\partial \rho}{\partial z_i} \right] \right|$$

since the integral over $\{\lambda = 0\}$ vanishes. But for each fixed $z \in \Omega$ the function $[\sum \frac{\partial \rho}{\partial z_i}(\zeta_i - z_i)]^{-n}$, as a function of ζ , is analytic in $\{\rho < \rho(z)\}$, and therefore it can be approximated by entire functions. It follows from (6) that $L_{n-1}^{\gamma}(\theta) = 0$, and since $\overline{\partial}\theta = 0$, (7) becomes $\theta = \overline{\partial}_z(T_{n-2}\theta)$, i.e. θ is $\overline{\partial}$ -exact in Ω . Finally, since $\mathbb{C}^n \setminus K$ can be exhausted by sets like Ω , it follows from Lemma 4 that θ is $\overline{\partial}$ -exact in $\mathbb{C}^n \setminus K \blacksquare$

The next lemma is quite elementary and we state it in \mathbb{R}^n for C^{∞} -functions (and we will use it in \mathbb{C}^n for differential forms).

Lemma 6. Let $D_1 \subset \subset D_2 \subset \ldots D_j \subset \subset D_{j+1} \subset \ldots$ be a sequence of open subsets of \mathbb{R}^n and $f_j \in C^{\infty}(D_j)$. Then there exist functions $g_j \in C^{\infty}(D_j)$ such that $g_j - g_{j+1} = f_j$ in D_j for every j.

Proof. Let us choose functions $\chi_j \in C_0^{\infty}(\mathbb{R}^n)$ so that $\operatorname{supp}(\chi_j) \subset D_{j+1}$ and $\chi_j \equiv 1$ in a neighborhood of \overline{D}_j , and let us define $h_j = -\chi_j f_{j+1}$ for all j. Then every h_j has a C^{∞} extension in \mathbb{R}^n (by setting it equal to 0 in $\mathbb{R}^n \setminus D_{j+1}$) which we denote also by h_j . Then the functions $g_1 = f_1, g_2 = f_2 + h_1, g_3 = f_3 + h_1 + h_2, \ldots$ satisfy the required relations \blacksquare

Lemma 7. Let D_j (and q) be as in Lemma 4. Then inv $\lim H^{(0,q)}(D_j) \approx H^{(0,q)}(D)$. Indeed, the map

 $\sigma: H^{(0,q)}(D) \to \operatorname{inv} \lim H^{(0,q)}(D_j)$

defined by the restriction of cohomology classes, i.e.

$$\pi([\theta]) = ([\theta|_{D_1}], [\theta|_{D_2}], [\theta|_{D_3}], \ldots) \qquad ([\theta] \in H^{(0,q)}(D))$$

is an isomorphism.

Proof. Let us consider the map

$$\sigma': \operatorname{inv} \lim Z^{(0,q)}(D_j) = Z^{(0,q)}(D) \to \operatorname{inv} \lim H^{(0,q)}(D_j)$$

with

 $\sigma'(\eta_1, \eta_2, \eta_3, \ldots) = ([\eta_1], [\eta_2], [\eta_3], \ldots), \qquad (\eta_1, \eta_2, \eta_3, \ldots) \in \operatorname{inv} \lim Z^{(0,q)}(D_j).$

Then

$$\operatorname{xer} \sigma' = \operatorname{inv} \lim B^{(0,q)}(D_j) = B^{(0,q)}(D),$$

by Lemma 4. Also, σ' is onto. Indeed, let

$$([\theta_1], [\theta_2], [\theta_3], \ldots) \in \operatorname{inv} \lim H^{(0,q)}(D_j).$$

Then there exist (0, q-1)-forms u_j in D_j such that

$$\theta_2 = \theta_1 + \overline{\partial} u_1 \quad \text{in } D_1$$

$$\theta_3 = \theta_2 + \overline{\partial} u_2 \quad \text{in } D_2$$

By Lemma 6, there exist (0, q-1)-forms v_j in D_j such that $v_j - v_{j+1} = u_j$ in D_j for every j. Then $\overline{\partial}v_j - \overline{\partial}v_{j+1} = \overline{\partial}u_j$ in D_j and therefore

$$\theta_{j+1} = \theta_j + \overline{\partial} u_j = \theta_j + [\overline{\partial} v_j - \overline{\partial} v_{j+1}]$$

hence

$$\theta_j + \overline{\partial} v_j = \theta_{j+1} + \overline{\partial} v_{j+1}$$
 in D_j .

Thus

$$(\theta_1 + \overline{\partial}v_1, \theta_2 + \overline{\partial}v_2, \ldots) \in \operatorname{inv} \lim Z^{(0,q)}(D_j)$$

and

$$\sigma'(\theta_1 + \overline{\partial}v_1, \theta_2 + \overline{\partial}v_2, \ldots) = ([\theta_1], [\theta_2], \ldots)$$

which shows that σ' is onto. It follows now that σ is an isomorphism

4. Proof of Theorem 1

In view of the previous lemmas what remains to show is that the transform \mathbb{E} is onto. We may also describe, somehow more precisely now, the inverse of the transform \mathbb{E} .

Proof of Theorem 1. Let us exhaust the set $\mathbb{C}^n \setminus K$ with open sets of the form

$$\{\lambda_1 < 1\} \setminus \{\rho_1 \le 1\} \subset \{\lambda_2 < 1\} \setminus \{\rho_2 \le 1\} \subset \ldots \subset \mathbb{C}^n \setminus K$$

with the sets $\{\lambda_j < 1\}$ and $\{\rho < 1\}$ being strictly convex. Then, using the functions ρ_j , we define the differential forms $\theta_F^j(\xi)$ for ξ in the set $D_j = \{\lambda_j < 1\} \setminus \{\rho_j \le 1\}$. By Lemma 1, these forms define classes $[\theta_F^j] \in H^{(n,n-1)}(D_j)$. Since, by the formula of the theorem,

$$\int_{z \in S} e^{\langle z, \zeta \rangle} (\theta_F^{j+1}(z) - \theta_F^j(z)) = 0 \qquad (\zeta \in \mathbb{C}^n)$$

(S is a closed surface in D_j), it follows from the proof of Lemma 5 that the restriction of the class $[\theta_F^{j+1}]$ to D_j is equal to $[\theta_F^j]$. Therefore there is defined an element

 $([\theta_F^1], [\theta_F^2], [\theta_F^3], \ldots) \in \operatorname{inv} \lim H^{(n,n-1)}(D_j).$

Thus the inverse transformation is defined by the formula

$$\mathbb{E}^{-1}(F) = \sigma^{-1}([\theta_F^1], [\theta_F^2], [\theta_F^3], \ldots)$$

where σ is the isomorphism $H^{(n,n-1)}(D) \xrightarrow{\sigma} \operatorname{inv} \lim H^{(n,n-1)}(D_j)$ of Lemma 7

References

- Berndtsson, B.: Weighted Integral Formulas. In: Several Complex Variables. Proc. Mittag-Leffler Inst., Stockholm/Swed. 1987-88 (ed.: J. E. Fornaess). Princeton: Univ. Press 1993, pp. 160 - 187.
- [2] Hatziafratis, T.: Integral formulas for the $\overline{\partial}$ -equation on complex projective algebraic manifolds. Annali Scuola Norm. Super. Pisa 17 (1990), 79 - 110.
- [3] Henkin, G. M.: Modern Methods in Complex Analysis. Princeton: Univ. Press 1995.
- [4] Hörmander, L.: Notions of Convexity. Boston: Birkhäuser 1994.
- [5] Martineau, A: Sur les fonctionnelles analytiques et la transformation de Fourier-Borel. J. d'Anal. Math. 9 (1963), 1 - 164.
- [6] Range, R. M.: Holomorphic Functions and Integral Representations in Several Complex Variables. New York: Springer-Verlag 1986.
- [7] Sato, M., Kawai, T. and M. Kashiwara: Microfunctions and Pseudo-differential Equations. Lect. Notes Math. 287 (1973), 265 - 529.

Received 16.02.1998; in revised form 13.07.1998