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Fourier Multipliers for Besicovitch Spaces

R. Grande

Abstract. In this paper a generalization of some results from Fourier analysis on periodic
function spaces to the almost periodic case is given. We consider almost periodic distribu-
tions which constitute a subclass of tempered distributions. Under suitable conditions on
the spectrum A C R®, a distribution T € S’(R*) is almost periodic if it can be represented
as Z.\eA axe'*®, where the sequence (ax)rea is tempered. The main result states that any
Fourier multipliers for LY(R*) of the Michlin-Hérmander type is also a Fourier multiplier for
the Besicovich spaces BJ,(R*,A), if it is restricted to the spectrum A. Finally, we prove that

the Sobolev-Besicovich spaces HIy¢(R*,A) and W[ ?(R*, A) coincide if N € N.
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0. Introduction

In recent years some spaces of generalized almost periodic functions attracted much
interest. A reason for this is that the study of partial differential equations with al-
most periodic coefficients has been considerably developed, and almost periodic function
spaces of Sobolev type are useful tools (see, for example, (3, 7, 15] and the references
therein).

Unfortunately, the problem of regularity is delicate because of the lack of an ap-
propriate version of the Sobolev embedding theorem in the whole space [2: Esempio 1].
However, in subspaces cut out by suitable spectral restrictions a similar result can be
obtained (see [13]). The purpose of this paper is to apply some results from Fourier
Analysis on periodic function spaces to the almost periodic case.

Our work is based essentially on the paper (2] and on the book [16]. Although
the methods of Fourier Analysis are largely used in the theory of function spaces, it
seems that this point of view is unusual in the context of almost periodic functions.
Our principal goal is to handle almost periodic functions, also defined in the sense of
Besicovitch, as elements of S'(R?), the space of tempered distributions on R*. To obtain
this, we require a structural condition on the spectrum. This hypothesis leads us to a
definition of Sobolev-Besicovitch spaces analogous to that of periodic Sobolev spaces [16,
19]. Moreover, Fourier multipliers for subspaces with given spectrum can be considered.
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Now, we sketch briefly the contents of the paper. In Section 1 we start with general
definitions and notations. In particular, we define the spaces Bi,(R*) of Besicovitch
almost periodic functions. Section 2 is devoted to the relations between almost periodic
distributions and tempered distributions. As we have mentioned before, the structure
of the spectrum plays a crucial role in our proofs. These results may be considered as an
analogue to the standard theory of distributions on the torus and periodic distributions
(see, e.g., [11, 16]). In Section 3 we consider Fourier multipliers for trigonometric
polynomials and derive a classical inequality. Our main result is stated and proved
in Section 4. It states that every Fourier multiplier of Michlin-Hérmander type for
L9(R?) is also a Fourier multiplier for. B,(R*,A) if it is restricted to the spectrum A.
Finally, in Section 5 we conclude with a possible definition of Sobolev-Besicovitch spaces
HZ9(R*,A) and W 9(R*, A) and prove that HY9(R?, A) = WIA(R,A)if N € N.

1. Preliminaries

We refer the reader to the monographs [1, 7, 8, 10, 14] for the classical theory of
uniformly almost periodic functions. A detailed account about the main properties of
B], spaces may be found in the papers (2, 5, 9] and in the monograph (7] (where also
other spaces of generalized almost periodic functions are considered). For a different
_point of view, see the papers [12, 17] and the monograph [15].

We recall that, for any s € N, P(R*) denotes the complex vector space of all
(gencralized) trigonometric polynomials of s variables, that is P € P(R*) if and only if
there exist ¢;,c2,...,c € Cand A, A%,..., A* € R? such that

P(z) = chei'\j‘z (z eR%) (1.1)

=1
where dot - stands for the usual inner product in R?, the AL A2 AY are distinct
and w is finite. If every ¢; (j = 1,2,...,w) is different from zero, the set o(P) =

{A1, A2, A%} C R? is called spectrum of P and the map

c; if A=\ €o(P)

A — a(A;P) = lim .
0 if A ¢ o(P),

1 .
—_— P(z)e ™ idr = {
T—oo |QT] Jor (@) ’

(1.2)

where Qr = (=T, T]* and [Q7| = (2T)°, is called the Bohr transform of P. .

A complex-valued function f, defined on R?, is called uniformly almost periodic in
the sense of Bohr if for any € > 0 there exists a trigonometric polynomial P, such that

f(e)=Pz) <e  (z R

Thus the space Cg,(R?) of all uniformly almost periodic functions is the completion of
P(R*) with respect to the norm

1Pllc = sup |[P(z)] (P& P(R*)).
z€R*
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The spaces C1(R®) (m € N) and Cg5(R*) are defined in an obvious way.
If f € CJ,(R?), it is well-known that the mean value

1
M(f) = lim —/ z)dz
(= Jim o [ 1)
of F exists. Moreover, the limit

M(f) = f(z)dz - (13)

im —
T—o0 IQT| Qr+y

exists uniformly with respect to y € R°.

For any fixed g € [1,00) we shall denote by B{,(R*) the completion of P(R?) with
respect to the norm defined by

1
IP2 = lim ——/ |P(2)%dz (P € P(R?)). (14)
T—oo |Q1| Jor
The space BJ p(R’) is called Besicoviich space of almost periodic functions. An element
f € BZ,(R*) is defined by a sequence of trigonometric polynomials (Pn)nen such that
f= lim P,
n-—oo

in the sense of B ,(R*) and

1 1/q
= lim (——/ f(= "d:z:) = lim || Pallq-
151 = Jim (g [ 152 Jim [Pl
By the Holder inequality it follows that
Coo(R*) — BIL(R*) — BE(R*) — By, (R*)
with 1 < ¢; < an < 00.

For any f € BJ,(R®) we call the map

A—a() )= 11m 07

(where the sequence of trigonometric polynomials (P, )nen converges to f in Bi (R?))
the Bohr transform of f.

We will call spectrum of an element f € B ,(R?) the subset of R* defined by

/ f(z) e **dz = lim a(); P,)
Qr

o(f) = {x e R*: a(X; f) # 0.
Hence, in particular, when f is the polynomial P gi;len by (1.1), we have

o(P) = (A, X%,..., A"},



920 R. Grande

For any f € B{,(R*) one has:

(i) limx~oo a(; f) = 0.
(ii) o(f) is at most a countable set.
(i) o(f) =0 < a(X\f)=0 <= f=0¢ B;,(R?).

We call the elements of o(f) Fourier ezponents of f. Hence with each element f €
Bi,(R*) we associate formally the Bohr- Fourier series

Feo Y a(xfee,
A€a(f)

By virtue of (iii), each element in B{,(R*) can be identified with its Bohr-Fourier series.

Remark 1.1. If ¢ € (0,1), (1.4) is a quasi-norm on the spaces P(R®). However, it
defines a metric dy; on P(R®) by .

o ;
W(P.Q) = Jim o [ IP() - QGa)ldz = (1P - Q)

We denote also by BY,(R*) (¢ € (0,1)) the corhpletion of the metric space (P(R?),d,).

2. Almost periodic distributions and tempered distributions

Let A be a non-empf.y‘subset of R°. According to [2], we say that A satisfies the
(a)-condition if the following holds: :

(a) A is a countable semigroup in R*(+) with a finite number of generators, which is
contained in a convex cone in R*(+), that is

A={mAf+. 4 nady: (m1,-.,na) € NE\ {0}

with the hypotheses
(1) Af,-.., A} are Z-linearly independent
(i) @av{)},..., A5} N {0} = 0.

Moreover, we say that A satisfies the (3)-condition if there exists a positive number B8
such that

E lTll; < 400, for all v > B. (2.1)
XeA

There exists a remarkable connection between the (a)- and (8)-conditions which is
illustrated by the following result. For a proof see [13: Lemma 6.1). ‘
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Theorem 2.1. If A satisfies the (a)-condition, then

s PT U=+ ify<d,

that 13, A satisfies the (§)-condition and the number B equals d.

Remark 2.2. In [13] some continuous embedding results in certain spaces of al-
most periodic functions with fixed spectrum A, quite similar to the classical Sobolev
embedding theorem, are obtained. Here, the (8)-condition, that is the summability
property of the spectrum, plays a crucial role (see, e.g., [13: Theorem 5.1}). These
classes of almost periodic functions include the periodic functions and some classes of
quasi periodic functions. Observe that in the periodic case we have § = s, since the
series (2.1) has the same behaviour as the series

ez |k|7
where Z] = Z* \ {0}.

On the other hand, the (3)-condition is not really useful to approach problems in
Nonlinear Analysis. For example, if f,g € Bi,(R®) with o(f),0(g) C A, it is not true

in general that o(fg) C A, without further assumptions on A. For this reason, it seems
natural to consider at least a semigroup structure for A.

In this section, we shall consider almost periodic functions such that o(f) C A with
A satisfying the (a)-condition. Therefore, we set

CO,(R*,A) = {f € C3,(R?) : o(f) C A)

and, analogously, P(R*,A), CJ3(R*, A), Coo(R?, A) and B ,(R*,A). Observe that these

spaces are separable.

In [2] the space Sqp(A) of almost periodic test functions and the space S;,(A) of
almost periodic distributions are defined and some of their properties are presented.
Here, we will recall only basic facts. Since it is without meaning to consider almost
periodic functions with compact support or rapidly decreasing, we consider almost peri-
odic functions which possess uniformly convergent Bohr-Fourier series with all the series
obtained from them by differentiation.

Remark 2.3. Let us consider ¢ € CJ5(R*). For every multi-index a € N° we have

D%~ Y a(Ap)(A)e?”

A€o(y)

and, by the Parseval equality,

ID%li3 = Y la(A@)P (A

A€a(y)
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A consequence is that the spectrum o(y) must be unbounded, to guarantee (by the
techniques used in [13]) that D®yp may be represented in C2,(R*) by an uniformly
convergent Bohr-Fourier series. :

The set -
Sap(A) = [) CI(R*,A)
m=]

equipped with its natural topology

cpnﬁmp < D%, =5 D% forall aeN;

is the space of almost periodic test functions. The embedding Sap(A) C Cop(R%,A) is
continuous with respect to the natural topology for any m € N. ‘

About the representation of almost periodic test functions, the following proposition
holds (for a proof see [2: Teorema 4.1)).

Proposition 2.4. Every almost periodic test function ¢ € Sap(A) can be repre-

sented as ‘
e(z) =Y are, (2.2)
AEA

where the series converges in Sqp(A) and (ax)ren i @ sequence of complez numbers
such that :

laal S M1+ D)™™ (AeAn), (2.3)
for allm € NU {0}. Here M = M(m) is an appropriate positive constant. It holds

ax=a(he)  (A€A).

Conversely, if (@x)xen 13 a sequence of complez numbers which satisfies (2.3), then the
series 3y ca axe'** converges in Sap(A). If @ is its sum, it holds a(); p) = ax (A eA).

Let S;,(A) denote the topological dual space of Szp(A). The elements in this space
are the continuous and sesquilinear functionals on S,p(A). We call T € Sap(A) an almost
periodic distribution. For every T €-S4p(A) and ¢ € S;p(A) we set

T(p) =(T|ep).

The Bohr transform of the distribution T and its Bohr-Fourier series are defined in the
following way:
. Az :
a(/\,T)={<T|e ) Tf/\-EA
0 f AeR*\A

and ‘
T~ a(XT)e=.
A€A .
Detailed information about the space S;p(A) and its natural topology may be found in

(2, 3). However, we point out that the next result holds (for a proof, see [2: Teorema
4.5]).
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Proposition 2.5. Every almost periodic distribution T € Sap(A) can be represented

T =Y ares, (2.4)

A€A

as

where the series converges in Sap(A) and the sequence of complez numbers (ax)rea is
tempered, that is

there ezist M,m > 0 such that laxl S M1+ |AD™ (A€ A). (2.5)

It holds
ay =a(\T) (A €A).

Conversely, if (ax)rea 13 -¢ tempered sequence of complex numbers, then Yoaeh ay er®
converges in S; (A). If T is its sum, it holds a(\;T) = ax (A € A).

Let D(R*) denote the space of test functions and let D'(R?) be the space of distri-
butions. By S(R®) we denote the Schwartz space of rapidly decreasing and infinitely
differentiable functions on R* and by S'(R®) its topological dual, the space of tempered
distributions. Then the Fourier transform F is given by

(1) = @0~ [ f)eay (26)

on S(R®) and the inverse Fourier transform F~! f of f is given by (2.6) where one must
replace —i by i. One extends F and F~! from S(R®) to S'(R*) in the usual way.

Let 65 € S’(R) be the Dirac distribution with respect to A € A, that is
(0r]w) = () for all ¢ € S(R*), A€ A

and let e'** € S'(R*) be defined by
(e p) =/ e *p(z)dz  forall p € S(R®), A€ A.
Rl

Then the equality F~'6y = (27)~*/2¢'** (A € A) holds.
It may happen that a sequence of tempered distributions converges to a tempered

distribution in the sense of D'(R?), but this fact does not generally imply the convergence
in the sense of S'(R*). However, the following result is true.

Proposition 2.6. Let (ay)ren be e sequence of complex numbers. Then the sum
T of the serses

Z axda (2.7

AEA

belongs to S'(R°) if and only if (ax)aea 33 a tempered sequence, that is (2.5) holds.
Moreover, tf (ax)aea 18 a tempered sequence, the series (2.7) converges in the sense of

S'(R?).
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Proof. Assume that (ax)aea is a tempered sequence, i.e. (2.5) holds. If p € S(R®),
we get
laxe(A) < M1+ |A)™ (M)l

M
= S D)
M o m
SOF > sup lz°1(L + |z)™ (=)l (A € A).
lal=~*

Now, it follows easily that the series 3, ., axp()) converges, provided vy € Nand v > .
Therefore, the series (2.7) converges in the sense of S'(R*) and its sum T is a tempered
distribution.

Conversely, assume that the sum T of the series (2.7) belongs to S'(R*) and by way
of contradiction that (ax)aea is not a tempered sequence. Then, also the statement

laal < ML+ AD™ i Al >p

for some M, m,p > 0, which is equivalent to (2.5), is false. Therefore, for any M, m,p >
0 there exists A € A such that

(M >p and lax] > M(1 + |A])™.
Choose M = 1,m =1 and p = 1. Then there exists A; € A such that

A1 >1 and lax, | > M(1 + [A1]).
Now, choose M = 1,m =2 and p = | ;| + 1. We find A2 € A such that

[Az} > |1, [Az — M| > 1, lax,| > M(1 + [Az])2.
Continuing in this way, we obtain a sequenc.e (/\k)k.eN CA éuch that, for all &,
[Ak1] > |Akl, Mex1 = Al > 1, lax | > M(1+ A~

Let ¢ € S(R®) such that supp( C B(0,3) = {z € R*: |z| < 3} and €(0) = 1. Set

k oo

vi(z) =Z%C(x—)\j) and v(x):Z%((z—/\j),
j=1"" _ j=1 " ' ‘
with
supp {(z — Aj) Nsupp{(z - An) =0 - (28)

if j # h, by virtue of what has been said about the function {. In particular, vy € D(R?®)
and the series Z;‘;l ﬁ ¢(z — ;) converges. Moreover, v € C*°(R*) and we shall prove
that v € S(R*). To this end, if a,8 € N} are arbitrarily fixed, we must verify that
z°DPy(z) is bounded. By virtue of (2.8) we get

za
sup |z®DPv(z)| =sup sup —DP¢(z - )j)
z€R 321 z€B(3,,1) 1 2%
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and consequently, we need to prove that there exists a constant C > 0, independent
from z and j, such that

‘I—Dﬂ((z -3 <c
ay;

if z and j satisfy z € B(A;,1). Since v € C®(R®), then it is bounded over any
compactum, so that we can consider only ; > m = |a|. Now, if z € B(}\;,3) and
j > m, we obtain

“ G+INHm (L+AD™
DF _ <2 “ IV pB Al a5 1 VN D? -
a’\i C(I = laxil ” C”OO —_ (l + IA |)J ” (”
Therefore, we find that
z« _ o
2 DPG(a = 3)| £ 1D Gl + V" (29)
j

if z € B(\j,1) and j > m. From the fact that (1 4 |A;|)™~7 < 1if j > m the required
boundedness is proved, and since a, 8 are arbitrary we deduce that v € S(R?).

Now we show that vy — v in the sense of S(R*). Continuing as above with the
same notations, we must prove that the quantity

sup [2°DPv(z) — 22 DPui(z)| =sup sup
z€R i>k ZEB(A 1)

A5)

converges to zero. But if we suppose k > m = |a|, from (2.5) it follows that

2% pAe(z -

i

< NIDClloo(1 + 12,)™ 77 < (14 14D I D¢l oo

provided z € B(}j, 3) and j > k. Since (14 |A;])™~% = 0if k — oo, we get the desired
convergence. Finally, we verify that (T |vi) — 0o as k — co. Indeed,

’ k k

. - N 1 _

(Tloe) =" arve()) = Za;l.vk(,\,) = Za,\j Pl k
AEA 1=1 1=1 ]

and the proposition is proved il

We note that a trigonometric polynomial P € P(R*, A) (which is an almost periodic
function in the sense of Bohr) with spectrum ¢(P) C A, that is

P(z) = Z crer®

A€a(P)

defines an element P € S'(R?) if we set

(Ple)= [ Pe@ds  (oeS®Y))
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and, moreover, supp F'P = ¢(P) C A. More generally, we observe that, by virtue of
Proposition 2.6, if the series ) |, , axéa converges in S’(R’) then the sequence (ax)aea
is tempered. Smce

F! ( Z a,\6)\) = z axF716y = (2n)%/? Z axe™E,

AEA A€EA AEA

the series 3,4 axe'*'* also converges in §'(R*). On the other hand, let us consider
T € §'(R*®) such that
T = Z a ei)\ z
A€EA

where the series converges in S'(R*®) and the sequence of complex numbers (ay)aea is
a priori arbitrary. Since

FT = F( > a,\ei’\"> = Z arFe™® = (21)°/2 3" ay 6y,

A€A A€EA AEA

by Proposition 2.6 we obtain that the sequence (ay)aea is tempered, and suppFT C A.
The above argument gives us

Corollary 2.7. Let (ax)aea be a sequence of complez numbers. Then the series

Z ax ei;\q:

A€A

converges in the sense of S'(Rj) if and only if (ax)aea 15 a tempered sequence, that is
(2.4) holds.

Hence, the following definition seems to be natural.

Definition 2.8. Anelement T € §'(R”) is said to be an almost periodic distribution
on R® with spectrum o(T') C A if there exists a tempered sequence of complex numbers
(ax)aea such that

T = Z ax eiA~z
A€A

where the series converges in S'(R*). The collectlon of all these tempered distributions
is denoted by S} (R*).

Remark 2.9. Observe that S} (R®) is non-empty. Moreover, there exists a cor-
respondence between S;,(A) and S} (R*) which is one-to-one. This allows to identify
T € S;,(A), with T € Sy (R?), via (2.4).
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3. Fourier multipliers for trigonometric polynomials

Let A C R’ be a finite subset and let (M) )xea be a set of complex numbers.

Definition 3.1. Let 0 < ¢ < co. Then (My)aea is a Fourier multiplier for P(R*,A)
if there exists a positive constant ¢ such that

Z Mya(A; P) et
AEA

< cllPll (3.1)
q

for any trigonometric polynomial P € P(R*, A).

If M € S'(R®) with F~'M € L'(R?®), then, by properties of the Fourier transform,
M = M(z) is a continuous function on R*. Therefore My = M(A) (A € A) makes
sense. We have

Z Mya(); P)e'*®
A€A

S [F(F'M))(A)a(); P) e =
AE€EA

5 (@n-r [ anw e dy o pes (32)

A€EA

=en [ e T e Py ) ay

A€A

=0 [ (FMw)PG - ) dy

Let m > 0. We recall that H™?(IR*) are the usual Bessel potential spaces. These spaces
can be defined via

H™*(R) = {f € S'(R*): fllma = (1 +|2")™/2F fl|12 < oo}
Theorem 3.2. Let A C R?® be a finite subset such that
da =I§‘aé)5\|A—y|>0.
Let 0 < g <00 and 0 < x < oo with
1 1
. =s{l ———=-—-21]. 3.3
> o0 =5( iy~ 3) 43
Then there ezists a positive constant ¢ depending on q and s such that

< cl[M(da)lxalPllg (3.4)
9

> Mya(A; P)e*=
A€EA
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for all M € HX*(R) and all P € P(R*,A).

Proof. We follow [16: Theorem 3.3.4]. Without loss of generality we may assume
0 € A (otherwise consider e~***'*P(z)). If 0 < g < oo, then in any case x > 5. Then,
by [16: Proposition 1.7.5], F~'M € L'(R®). Then properties of the Fourier transform
yield that M must be a continuous function on R®. Thus, the left-hand side of (3.2)
makes sense. Choose a function 3 € S(R*) with suppy C {z: |z| < 2} and ¢(z) = 1 if
|z] < 1. Then y M € HX?(R?) and

¥ Mllx.2 < cyllM|lx2- (3.5)
Furthermore, [16: Proposition 1.7.5] yields

F~l(y(dy')M) € L'(R).
Therefore, formula (3.2) can be applied and we get

> M(Ma(); P) e+

A€EA

<e [ PO MNP -l d. (36)
Let § = min(l,q). For fixed z € R* we have by the Nikolskij inequality for entire
analytic functions [9: Section 1.3.2/Remark 1]
1771 (e )MYIP(E = y)l v < IPeol|F 7 ((dR )M 7 < oo.
Furthermore,
supp F[F~'(¢(dy " )M)P(z - )] C {y: |yl < 3da}.

Consequently, the right-hand side of (3.6) can be estimated again with the help of the
Nikolskij inequality [19: Section 1.3.2/Remark 1]. We get

Y M(Ma(); P)e**

A€A

<@ ([ Py P - fa)
R?
Taking the quasi-norms in B{,(R®) (0 < g < o0) on both sides we obtain
1 Z el 1/q
limn (—— M(Na(A; P)e*t= dz)
\ T—oo |QT| QT )\EA .
< /T pt -1 ; 1 P(z)9d 1/7
< ddy 1£7 (e M)l 5 fim (75 o |P(z)|? dz
T (3.8)

1 ' 1/g
= P 0 M)l e fm, 1z [, 1Peeee)

. 1 . 1/q
<l fim (g [ 1Peras)

In the last estimate we used.[16: Proposition 1.7.5], (1.3) and (3.5). Thus the theorem
1s proved B
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As a application of (3.4) we can deduce an inequality of Bernstein type for trigono-
metric polynomials.

Corollary 3.3. Let 0 < ¢ < 00 and let A C R? be a finite subset with
AcC {z€R’: |z|] < N}
where N i3 a given natural number. Then there ezists a constant ¢ > 0 such that
ID*Pllg < cN®|| Pl (3.9)
for all P € P(R®, A) and all multi-indices « € N§.

Proof. We choose a function ¥ € S(R*) with compact support and 3(z) = 1 if
|z] € 1. Then (2.4) yields

> 1/;(%) A%a(); P)e'*®

AEA

IDPllg =

< eN%z%Pllx 2l Pllg © (3:10)

q
where
o 1 1\
X=09g=9 min(l,q) 2/’
This proves (3.9) 11

Remark 3.4. The use of the Nikolskij inequality for entire analytic functions in
the proof of Proposition 3.2 allows us to consider 0 < ¢ < 00.

4. Fourier multipliers for Besicovitch spaces

First of all, we recall the definition of Fourier multipliers for LY(R*) (see [16: p. 155]).
Definition 4.1. Let 1 < ¢ < co and M € L*°(R?®). Then M is a Fourier multiplier
for LI(R?) if there exists a positive constant cp such that
IF~'MFflize < cpmllflle (4.1)
for any f € S(R?). .

Our aim is to extend the above definition to Besicovitch spaces with fixed spectrum
A satisfying the (a)-condition. Therefore, it seems to be natural to give the following
definition (see [16: p. 155/Definition 3.4.2.1 and Remark 3.4.2.2]).

Definition 4.2. Let 1 < ¢ < coand M = (M>)xea € £°(A). Then M is a Fourier

maultiplier for BJ,(R*, A) if there exists a positive constant c5; such that

S Maa(h; f) e

AEA

< cgllfllg (42)
q

for any f € Bi, (R’ A).

The following is the main result of this section.
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Theorem 4.3. Let 1 < ¢ < o and let M € L®(R®) be a Fourier multiplier
for L(R?®). Suppose additionally that M is continuous at all points A € A. Then

= (M(A))aea is a Fourier multiplier for BI,(R*,A) with ¢z, < cum for the constants
from (4.1) and (4.2).

Here, we assume that cps and cj; are the minimal constants in the corresponding
inequalities.

We begin the proof by considering some lemmas.

Lemma 4.4. Let f € CJ,(R®). Then

11m 53/2/ f(z)e ™l gy = llm f(z)dz. (4.3)

|QT| Qr

Proof. Equality (4. 3) is true if f(z) = e'*'* (A € R*) because, by virtue of Lemma
4.6, we have

53/2/ (_zx'z\<:,'e—7re|z:|2 dr = e-—|/\|2/4.1rz
if € > 0. On the other hand,

lim ——

. 1 if A=
ele dz = { 1 0
T—o0 |QT| Qr

0 ifA#0.

Therefore, (4.3) is true for any trigonometric polynomial. The claim now follows by
approximating an arbitrary f € Cgp(IR’) uniformly on R*® by using such polynomials B

We recall the following lemma (see {18: Theorem 1.13]).
Lemma 4.5. The Fourier transform of f(z) = e-el=l® (a >0,z € R*) is

(FAQ) = (2m) 02 /rR ‘ R e ) (4.4)
Then, the following result also holds.

Lemma 4.6. For any a > b,
/ el gmity gy  oms/2 o=l /amar (4.5)

Proof. The claim follows easily from (4.4) with a = 7a i

Lemma 4.7. Let P,Q € P(R’,A) be trigonometric polynomials, let M € L°(R?)
be continuous at every point A € A and set

ws(z) = e~ ™= (6> 0,z € R?).

Then

lim
T—oo |Q7| Jor

(Z M(X)a(A; P) e"“)Wz)dI
AEA (46)
= lime*/? ml‘[F“lMF(Pwm)](szx)wcg(z)da:

£—0
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whenever a, >0 and o+ f = 1.

Proof. The expressions in (4.6) are linear in P and @, therefore, it suffices to prove
(4.6) when P(z) = e'** and Q(z) = e'#'* for A\,u € A. By the Plancherel theorem we
have

55/2 R* [F_IMF(Pwea)](x)mw':ﬂ(z)dx
= [ MEIF(Poca)l(2) F(Qucp)(e) do
Rl

Since

|2 |2

(cha)(l') = ci,\~ze—nea|z and (Qweﬂ)(z) — eiwze—ﬂemz ,

by virtue of Lemma 4.5 we obtain

[F(Puca)l(z) = ™= /470 (2mae) /2
[F(Qweﬂ)](z) = e—(lz—u|?/41rﬂz)(27rﬁ€)_,/2'

Now we assume that A # u, and consequently |A — u| > I > 0. Since |[M(z)| < A for a
suitable constant A, we obtain

01 [ ME@F(Poca)l()F(Ques)(x) do
Rl

- 65/2 M(I)e—(]z—A|2/41rac)(2”06)—3/26—0:—yl’/4nﬂe)(27rﬂ6j—s/2 dz
Rl

gAe’“/ e~ (Iz=AP/amac) (9,00 0\~ 212 =2 =l" /4780 (2.8 ) =512

)
lz=Alzt/2 Jiz-ul2t/2

In the integral extended over {z € R*: |z — A| > 1} the factor

E.1/26—(|2:—z\|’/41m:z)(2,"_(15)—3/2

tends uniformly to 0 as ¢ — 0, while the factor e~(lz=nl*/amBe) (27 Be)=*/2 has total
integral (27)°/2 when extended over R*. It follows that */? flz—a\l>l/2 —0ase -0

The same argument, with the roles of A and g interchanged, shows that £*/2 flz—p|>l/2 —
0 as € — 0. Since, for A # pu, -

lim —1-
T—oo |QT|

equality (4.6) is established. If A = 4, the right-hand side of (4.6) equals

/\ [M(\)et* e = dz = 0,
Qr

lim (47r2mﬂ)"/’/ M(z)e~ Iz =1 /ame)1/a+1/B) gy
e&— Re
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Since % + % = ;—ﬂ, the limit above is the limit, as ¢ — 0, of the Gauss-Weierstrass

integral of M. It is well known (see [18]) that this limit is M()) provided A belongs to
the Lebesgue set of M. But this is the case since M is assumed to be continuous at .
This proves equality (4.6) when P(z) = ¢'** = Q(z), since

T—oo

1 . _
lim ——/ M(MN)e*Ze N 4z = M(\).
|QT| or ( ) ( )

Thus the statement is proved il

Proof of Theorem 4.3. Assume that 1 < ¢ < co. Let ¢' be the conjugate

exponent to g. Then : + L =1 and 1 < q < 0o. We first prove that there exists

v < cp such that v
1 " q 1/q
lim | — M(MNa(A; P)e!*| dz
T—oo (lQTl Qr Z (Ma(: P) )

A€A (4.7)

1 1/q
<cg lim (-—/ P(z "dz)
#7219l Jo, |P(z)|
for all trigonometric polynomials P € P(R*,A). If Q € P(R?, A), then

/R (FT MF(Poeo)(@)Q(@)we(z) dz

where ws, for § > 0, is the function introduced in Lemma 3.7. Set o = % and § = ;—,,
multiply both sides by £*/2 and let € — 0. By Lemma 4.7, the left-hand side converges
to

< eml|PweallLellQuesllpe,  (4.8)

: 1 A [P X 2 vy
Tlgnmm . (%M(A)a(,\;P?e'\ )Q(I)dm.

By Lemma 4.4,

lim /2| Pueal| o [|Quesl Lo

. 1/q , 2 1/¢'
= tim (e [ P@peet ) (= [ 1@ e dz)
&= R* Re

1 1/q 1 , 1/¢'
= lim (— P(z)|? d:z:) (—— " Q)¢ da:) .
T—oo\ |Q7] QTI (=) Q| QTI (=)
Together with (4.8) this implies that

( > M(N)a(x; P) e‘*'*)mdz

AEA

< emlIPllglIQllg-

lim ——
T—oo |Q7| Jo,
Finally, taking the supremum over all polynomials Q satisfying [|Q|ly < 1, we obtain

(4.7) (see, for example, [4]). Hence, the linear operator Ty defined on the class of
trigonometric polynomials P(R?, A) by
Tu(P) =) M(\)a(); P)e'*
A€A

is bounded, with bound not exceeding cp. Then it has a unique bounded extension to
the whole B{,(R* A) and it is this extension that satisfies the required assertion il



Fourier Multipliers for Besicovitch Spaces 933

Remark 4.8. Similar results are well known in the periodic case (see, e.g., [18]).

Theorem 4.9. Let 1 < ¢ < co. Let 3p € S(R*) with
0<¥(z) <1, suppp C{y: ;<lyl<4}, ¢@)=1f3<|z|<2

If x > 3, then there ezists a positive constant ¢ such that

> M(Na(); e

A€A

< csup (M2 )llx.2ll flq (4.9)
q JEZ

for all M € HX?(R*) and for all f € Bi (R A).
Proof. We recall a version of the Fourier multiplier theorem of Michlin-Hérmander
type for LI(R?) as it is stated in [19] (for a detailed proof see [20]):
IF~*MFf||Le < csgg (M2 ix2 N flls
i

s

if x > 3 and 1 < ¢ < co. Then M satisfies the assumptions of the theorem. As an
immediate consequence we obtain (4.9) il

Remark 4.10. Theorem 4.9 says that every Fourier multiplier of Michlin-Hérman-
der type for L(R?) is also a Fourier multiplier for B (R*, A) if it is restricted to A.

5. Sobolev-Besicovitch spaces
In this section we consider a set A C R* satisfying the (a)-condition, and some classes
of almost periodic distributions.

Definition 5.1. Let 1 < ¢ < oo and m € R. We set

3+ AP a(x; f) et

H:;"q(R”A) = {f € SA(R*) : [[fll(m).q =
AEA

< oo}.
q

These spaces are called Sobolev-Besicovitch spaces of order m and type H.

Deflnition 5.2. Let 1 < g < oo and m € N. We set

Wi (R%A) = {f € BI(R*,A): |fllm,g =

S 107/, < oo}

laj<m

where the derivatives are intended in the distributional sense. These spaces are called
Sobolev- Besicovitch spaces of order m and type W.

Theorem 5.3. Let 1 < g < oo and let N > 1 be an integer. Then

HMY(R®,A) = WI(R%,A).
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Proof. It is quite similar to that used in [6: p. 142) in the case of ordinary Sobolev
spaces. Here we give only the principal steps for reader’s convenience.

We invoke the Michlin-Hérmander multiplier theorem to obtain that the function
2N (1 + |z[?)=N/? is a Fourier multiplier for L(R*) (1 < ¢ < o). Therefore, it is also
a Fourier multiplier for B (R*, A) if it is restricted to A. We get

S =] e pens
9z | = AR
J q A€EA q
=1 DA+ MBI+ APV 2a(); f) e
A€A ‘ q
e Do+ AN 2a(A; f) e
AEA q

=c|fliinvy,e (1<j<s).

Using the Michlin-Hérmander multiplier theorem once more and a suitable function X
on R, we obtain that the functions

(1+Ir|2)N/2(l+Zx(Ij)IIjIN> and  x(z)lz;| Ve
i=1

are Fourier multipliers for L9(R*) (1 < ¢ < 00). Then they are also Fourier multipliers
for B{,(R®, A) if they are restricted to A. Thus

”f”(N),q = Z(l + |,\|2)1\'/2a(,\;f)ei,\.z
A€A . .
< el Y1+ Y xONINIMa(r; £ e
AEA j=1 g
< C( Za(/\;f)ei*\~: + ZZX(/\J)I’\)lN’\J—N’\;\,a(’\y,{) eiz\~z )
A€A 7 xen o .
<

C(Ilfllq +3
=1

s
'6:1:;\'

)
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The proof is now complete il
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