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Fourier Multipliers for Besicovitch Spaces 

R. Grande 

Abstract. In this paper a generalization of some results from Fourier analysis on periodic 
function spaces to the almost periodic case is given. We consider almost periodic distribu-
tions which constitute a subclass of tempered distributions. Under suitable conditions on 
the spectrum A C R, a distribution T E S'(lR) is almost periodic if it can be represented 
as E A E A 

where the sequence (aA)EA is tempered. The main result states that any 
Fourier multipliers for V(R 8 ) of the Michlin-Hörmander type is also a Fourier multiplier for 
the Besicovich spaces B 9 (lR',A), if it is restricted to the spectrum A. Finally, we prove that 
the Sobolev-Besicovich spaces H(R3,A) and W,(R,A) coincide if N E N. 

Keywords: Almost periodic functions, distributions, multipliers 

AMS subject classification: 42 A 75, 42 B 15 

0. Introduction 

In recent years some spaces of generalized almost periodic functions attracted much 
interest. A reason for this is that the study of partial differential equations with al-
most periodic coefficients has been considerably developed, and almost periodic function 
spaces of Sobolev type are useful tools (see, for example, [3, 7, 151 and the references 
therein). 

Unfortunately, the problem of regularity is delicate because of the lack of an ap-
propriate version of the Sobolev embedding theorem in the whole space [2: Esempio 11. 
However, in subspaces cut out by suitable spectral restrictions a similar result can be 
obtained (see [131). The purpose of this paper is to apply some results from Fourier 
Analysis on periodic function spaces to the almost periodic case. 

Our work is based essentially on the paper [2] and on the book [16]. Although 
the methods of Fourier Analysis are largely used in the theory of function spaces, it 
seems that this point of view is unusual in the context of almost periodic functions. 
Our principal goal is to handle almost periodic functions, also defined in the sense of 
Besicovitch, as elements of S'(R 3 ), the space of tempered distributions on Rs. To obtain 
this, we require a structural condition on the spectrum. This hypothesis leads us to a 
definition of Sobolev-Besicovitch spaces analogous to that of periodic Sobolev spaces [16, 
19]. Moreover, Fourier multipliers for subspaces with given spectrum can be considered. 
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Now, we sketch briefly the contents of the paper. In Section 1 we start with general 
definitions and notations. In particular, we define the spaces B(R3 ) of Besicovitch 
almost periodic functions. Section 2 is devoted to the relations between almost periodic 
distributions and tempered distributions. As we have mentioned before, the structure 
of the spectrum plays a crucial role in our proofs. These results may be considered as an 
analogue to the standard theory of distributions on the torus and periodic distributions 
(see, e.g., [11, 161). In Section 3 we consider Fourier multipliers for trigonometric 
polynomials and derive a classical inequality. Our main result is stated and proved 
in Section 4. It states that every Fourier multiplier of Michlin-Hörmander type for 
L(Rs) is also a Fourier multiplier for. B(R', A) if it is restricted to the spectrum A. 
Finally, in Section 5 we conclude with a possible definition of Sobolev-Besicovitch spaces 

A) and W(R$, A) and prove that H(R8, A) = W' Q (R, A) if N E N.ap ap'

1. Preliminaries 

We refer the reader to the monographs [1, 7, 8, 10, 14] for the classical theory of 
uniformly almost periodic functions. A detailed account about the main properties of 

ap spaces may be found in the papers [2, 5, 9] and in the monograph [7] (where also 
other spaces of generalized almost periodic functions are considered). For a different 
point of view, see the papers [12, 171 and the monograph [15]. 

We recall that, for any .s E N, P(R S) denotes the complex vector space of all 
(generalized) trigonometric polynomials of s variables, that is P E P(R 3 ) if and only if 
there exist c 1 ,c2 ,... ,c,,, E C and A 1 ,A 2 ,.. . ,A' ER3 such that 

P(x)	 e'Aj 	(x E R 3 )	 (1.1) 

where dot . stands for the usual inner product in R 8 , the A',A2 ,... , A w are distinct 
and w is finite. If every c3 (j = 1,2,... , w) is different from zero, the set a(P) = 
{ A', A 2 ,. . . , AL } C R3 is called spectrum of P and the map 

A -+ a(A; F) = lim 'dx = I c3 if A = A E o(P) 
T— IQTI 

'Qr P(x)e	
if A a(P),	

(1.2) 

where QT = [—T, T] 3 and IQTI = (2T) 3 , is called the Bohr transform of P., 
A complex-valued function 1, defined on R', is called uniformly,, almost periodic in 

the sense of Bohr if for any e > 0 there exists a trigonometric polynomial Fe such that 

Ax ) —P(x)I <e	(xERS) 

Thus the space C(R) of all uniformly almost periodic functions is the completion of 
P(R 3 ) with respect to the norm 

	

II P I j °° = sup P(x)I	(P E P(R3)). 
zEll
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The spaces C(R) (m E N) and C(R) are defined in an obvious way.ap

 If I € C°(iR), it is well-known that the mean value 

M(f)= urn	f(x)dx 
T—.00 IQTI 4, 

of F exists. Moreover, the limit 

M (f) = urn
1	

(x)dx	 (1.3) 
T— IQTI JQr+y 

exists uniformly with respect to y € 1R3. 

For any fixed q E [1, oo) we shall denote by B(Rs ) the completion of P(R 3 ) with 
respect to the norm defined by 

jjpjjq if = u 
TT-- IQTI Q- 

rn	 dx	(P € P(R3 )).	 (1.4) P(x)  

The space B(R3 ) is called Bes,covitch space of almost periodic functions. An element
I € B(R3 ) is defined by a sequence of trigonometric polynomials ( PTI ) n EN such that

f = in P 

in the sense of B(R3 ) and 

IfIl = lim (-____
1/g 

'Qr lf(
x ) I 9dx)	= urn IPnIq 

T-ooIQTI  n -•00 

By the Holder inequality it follows that 

C O	 qP,	q, 
ap(R") '- B(R) '- B,(R) '-* B(Rs) 

with 1 <q2 qi <oo. 
For any f E B(R) we call the map 

A -+ a(,\;
1

 ; f) = lim	1(x) e z dx = lim a(,\; P) 
T— IQTI

 I
Qr 

(where the sequence of trigonometric polynomials (Pn) TIE N converges to I in B(lR3)) 
the Bohr transform of f. 

We will call spectrum of an element f € B(R3 ) the subset of 1R 3 defined by 

cr(f)={A€R: a(A;f)O}. 

Hence, in particular, when f is the polynomial P given by (1.1), we have 

a(P) = {A', A2'...' A"'
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For any f E B(R3 ) one has: 

(i) l i m IAl... a(A; f) = 0. 
(ii) o(f) is at most a countable set. 

(iii) c(f) = 0	a(A;f)= 0	1=0 € B(R). 

We call the elements of a(f) Fourier exponents of f . Hence with each element f € B(R') we associate formally the Bohr-Fourier series 

I '-.' >	a(A; f) eXZ 

.\Ea(f) 

By virtue of (iii), each element in B(R3 ) can be identified with its Bohr-Fourier series. 

Remark 1.1. If q € (0, 1), (1.4) is a quasi-norm on the spaces 2(R'). However, it 
defines a metric d on P(1R 3 ) by

I
dq (P,Q) = lim 

IQ 
1 

T QT 
IP(x) - Q(x)d, = ( lIP - T-- 

We denote also by B(1R3 ) (q € (0, 1)) the completion of the metric space (2(R 3 ), dq). 

2. Almost periodic distributions and tempered distributions 

Let A be a non-empty subset of R 5. According to [2], we say that A satisfies the 
(a)-condition if the following holds: 

(a) A is a countable semigroup in R3 (+) with a finite number of generators, which is 
contained in a convex cone in R 3 (+), that is 

with the hypotheses 
(i) A,... , .X are Z-linearly independent 

(ii) ,.\} fl {0} = 0. 

Moreover, we say that A satisfies the ( 13)- condition if there exists a positive number /3 
such that

E __: <+,	for all 7 > 3.	 (2.1) 
AEA 

There exists a remarkable connection between the (a)- and (/3)-conditions which is 
illustrated by the following result. For a proof see [13: Lemma 6.1].
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Theorem 2.1. If A satisfies the (a)-condition, then 

1 J<+co if -y>d 
J A I" l=+oo ifyd, 

AEA 

that is, A satisfies the (fl)-condition and the number /9 equals d. 

Remark 2.2. In [13] some continuous embedding results in certain spaces of al-
most periodic functions with fixed spectrum A, quite similar to the classical Sobolev 
embedding theorem, are obtained. Here, the (/9)-condition, that is the summability 
property of the spectrum, plays a crucial role (see, e.g., [13: Theorem 5.1]). These 
classes of almost periodic functions include the periodic functions and some classes of 
quasi periodic functions. Observe that in the periodic case we have /3 = s, since the 
series (2.1) has the same behaviour as the series 

i: fA[ < 
k EZ 

where Z ,.' = Z- \  {O}. 
On the other hand, the (/9)-condition is not really useful to approach problems in 

Nonlinear Analysis. For example, if f,g E B(R-) with a(f),o(g) C A, it is not true 
in general that o(fg) C A, without further assumptions on A. For this reason, it seems 
natural to consider at least a semigroup structure for A. 

In this section, we shall consider almost periodic functions such that a(f) C A with 
A satisfying the (a)-condition. Therefore, we set 

C(R,A) = If E C(R): a(f) c A} 

and, analogously, 2(R8,A), Cm (R',A), C(l 3 ,A) and B(R3 ,A). Observe that theseap
 spaces are separable. 

In [2] the space S0 (A) of almost periodic test functions and the space S(A) of 
almost periodic distributions are defined and some of their properties are presented. 
Here, we will recall only basic facts. Since it is without meaning to consider almost 
periodic functions with compact support or rapidly decreasing, we consider almost peri-
odic functions which possess uniformly convergent Bohr-Fourier series with all the series 
obtained from them by differentiation. 

Remark 2.3. Let us consider E C(R 8 ). For every multi-index c E N° we have ap 

Dp - E a(.;)())0etAz 

and, by the Parseval equality,

= 	a(A; 2)I2I(A)°I2. 
AE a 0P)
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A consequence is that the spectrum a(p) must be unbounded, to guarantee (by the 
techniques used in [131) that Dtp may be represented in C°(R) by an uniformly 
convergent Bohr-Fourier series. 

The set
00 

C' (A\	 m(fl,3 
Sap( A)=	 api. 

M=1 

equipped with its natural topology 

ço,,	p <=. D0ça . Dp for all a E N 

is the space of almost periodic test functions. The embedding S(A) C Cm (R 3 , A) is 
continuous with respect to the natural topology for any m E N. 

About the representation of almost periodic test functions, the following proposition 
holds (for a proof see [2: Teorema 4.1]). 

Proposition 2.4. Every almost periodic test function W E Sap(A) can be repre-
sented as

(x) =

	

	aAex,	 (2.2) 
AEA 

where the series converges in Sap(A) and (aA).\EA is a sequence of complex numbers 
such that

IaAI 5 M(1 + I A I) m	(A e A),	 (2.3) 
for all m E N U {O}. Here M = M(m) is an appropriate positive constant. It holds 

a = a(A;ç)	(A E A). 

Conversely, if (aA)EA is a sequence of complex numbers which satisfies (2.3), then the 
series >AEA a,\ e"\x converges in Sap(A). If is its sum, it holds a(A; ) = aj (A E A). 

Let S(A) denote the topological dual space of Sap(A). The elements in this space 
are the continuous and sesquilinear functionals on S 0 (A). We call T € S(A) an almost 
periodic distribution. For every T ES Z (A) and E Sap(A) we set 

T() = (T]). 

The Bohr transform of the distribution T and its Bohr-Fourier series are defined in the 
following way:

a(A T)= ( ( TIe') ifAA 
ifAER3\A 

and
T	a(A; T) e' 

AEA 
Detailed information about the space S(A) and its natural topology may be found in 
[2, 3). However, we point out that the next result holds (for a proof, see [2: Teorema 
4.5)).
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Proposition 2.5. Every almost periodic distribution T E S(A) can be represented 
as	

T =	a	 (2.4) 
AEA 

where the series converges in S(A) and the sequence of complex numbers (aA)AEA is 
tempered, that is 

there exist M,m > 0 such that	au < M(1 + A l) tm (A e A).	(2.5) 

It holds

	

au=a(AIT)	(A€A). 

Conversely, if (aA)AEA is a tempered sequence of complex numbers, then EAEA aAez 
converges in S(A). If T is its sum, it holds a(A; T) = aA (A E A). 

Let D(Rs ) denote the space of test functions and let V'(R 3 ) be the space of distri-
butions. By S(R 3 ) we denote the Schwartz space of rapidly decreasing and infinitely 
differentiable functions on 1R 3 and by S'(R3 ) its topological dual, the space of tempered 
distributions. Then the Fourier transform F is given by 

(Ff)(x) = (2)_2 [ f(y)c"dy	 (2.6) 
JR 

on S(R3 ) and the inverse Fourier transform Ff off is given by (2.6) where one must 
replace —i by i. One extends F and F' from S(R3 ) to S'(R3 ) in the usual way. 

Let Su E S'(R) be the Dirac distribution with respect to A E A, that is 

= W (A)	for all W E S(R-), A E A 

and let	E S'(R 3 ) be defined by 

(e'x	) = JR. e'(x)dx	for all	E S( 3 ), A E A. 

Then the equality F'8 = ( 2 7r)_ 3 /2 eiz (A E A) holds. 
It may happen that a sequence of tempered distributions converges to a tempered 

distribution in the sense of V'(1R 9 ), but this fact does not generally imply the convergence 
in the sense of S'(R 3 ). However, the following result is true. 

Proposition 2.6. Let (aA)A EA be a sequence of complex numbers. Then the sum 
T of the series

>a,\ 6x	 (2.7) 
AEA 

belongs to S'(R') if and only if (aA)A E A is a tempered sequence, that is (2.5) holds. 
Moreover, if (aA)A EA is a tempered sequence, the series (2.7) converges in the sense of 
S'(R3).
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Proof. Assume that (aA)AEA is a tempered sequence, i.e. (2.5) holds. If p E S(R3), 
we get

acp(A) <M(1 + lAl)tmI(A)I 

IAl(1 + Al)tml(A)l 

<- -	sup x° (1+ lxl) m l(x)I	(A E A). 
IAl I	xERoI=y 

Now, it follows easily that the series E X EA a(A) converges, provided -y E N and -y > 
Therefore, the series (2.7) converges in the sense of S'(R 3 ) and its sum T is a tempered 
distribution. 

Conversely, assume that the sum T of the series (2.7) belongs to S'(R 3 ) and by way 
of contradiction that (aA)A E A is not a tempered sequence. Then, also the statement 

	

laAI <M(1 + A l) tm	if IAI > p 

for some M,m,p 2 0, which is equivalent to (2.5), is false. Therefore, for any M,m,p 2 
0 there exists A E A such that 

A l> p	and	laAl>M(1+lAl). 

Choose M = 1,m = 1 and p = 1. Then there exists A 1 E A such that 

IA 1 I > 1	and	lGA i I > M(1 + IA 1 I). 

Now, choose M = 1,m = 2 and p = Au I + 1. We find A 2 E A such that 

IA 2 I > IA 1 I,	IA2 — Ail > 1, IaA 2 I > M(1 + IA2I)2. 

Continuing in this way, we obtain a sequence ( A k )kEN C A such that, for all k, 

l A k+1I> IA k I,	IAk+1 - A kI> 1,	IaA k I > M(1 + IAkI)k. 

Let ( E S(R 3 ) such that supp( C B(0, ) = {x E IR' : I xl < } and ((0) = 1. Set 

k 

vk(x) =---((x—A) and 

, 
aA, 

,=1 

with
supp((x - A,)flsupp((x - A,,) = 0	 1(2.8) 

if j 0 h, by virtue of what has been said about the function C. In particular, vk E V(R') 
and the series >j' - ((x - A,) converges. Moreover, v E C°°(R3 ) and we shall prove 
that v € S(R'). To this end, if a, 0 e N are arbitrarily fixed, we must verify that 
x o D$v(x) is bounded. By virtue of (2.8) we get 

sup Ix'Dv(x)l = sup sup	._-D((x - A) 
zE j^!1 zE(A1,)
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and consequently, we need to prove that there exists a constant C > 0, independent 
from x and j, such that

<C 

if x and j satisfy x e	). Since v E C°°(R 3 ), then it is bounded over any 
compactum, so that we can consider only j	m = jal. Now, if x E	) and
j > m, we obtain 

XCI	

-	
<	+ I)I) IID(II	

(1+ Au)tm 
II D (II . < a,\, I	- (1 + IAuI)i 

Therefore, we find that

	

- A)	II D (II( l + I jI)	 (2.9)a.\ 

if x E (A2, ) and j	m. From the fact that (1 + IA .,I)'	1 if j m the required
boundedness is proved, and since c,/3 are arbitrary we deduce that v E S(R'). 

Now we show that vk - v in the sense of S(R-). Continuing as above with the 
same notations, we must prove that the quantity 

sup xDv(x) - x''D'v k(x) = sup sup - A) I  zEIR	 a. 

converges to zero. But if we suppose k > m = Icel, from (2.5) it follows that 
XM	

- A)	II D (II( 1 + AuI) m	(1+ AImIIDII 
a),' 

provided x E (A,, 12 ) and j ^! k. Since (1 + IAj 1)m_I - 0 if k -	, we get the desired
convergence. Finally, we verify that (T I vk) - oo as k -- co. Indeed, 

k	 k 1 (TIvk )=	aAvk(A)	aA,vk(A) =	a),.— = k 
AEA	 j=1	 ' 

and the proposition is proved I 

We note that a trigonometric polynomial P E 1(R-, A) (which is an almost periodic 
function in the sense of Bohr) with spectrum a(P) c A, that is 

	

P(x) -	 iA'x 

	

-	 C),C!

AEo(P) 

defines an element P E S 1 (Rs ) if we set 

(P I ) = j P(x)o(x) dx	( E 8(R'))
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and, moreover, suppFP = o(P) C A. More generally, we observe that, by virtue of 
Proposition 2.6, if the series >AEA aA 5A converges in S'(R 3 ), then the sequence (aA)AEA 
is tempered. Since 

F' (
	

a,\6A) =	aAF 1 6 = (27r)'2 E a 
AEA	 AEA	 AEA 

the series EAEA a, e I > z also converges in S'(R). On the other hand, let us consider 
T E S(R s ) such that

	

T =	a),€

AEA 

where the series converges in S'(R5 ) and the sequence of complex numbers (a),), E A is 
a priori arbitrary. Since 

FT = F(	a ez)	a),Fe' = ( 27r)3/2	8),, 
AEA	 AEA	 AEA 

by Proposition 2.6 we obtain that the sequence (aA)A E A is tempered, and suppFT C A. 
The above argument gives us 

Corollary 2.7. Let (a),)),EA be a sequence of complex numbers. Then the series 

a), e' 

AEA 

converges in the sense of S'(R 3 ) if and only if (aA)),EA is a tempered sequence, that is 
(2.4) holds. 

Hence, the following definition seems to be natural. - 

Definition 2.8. An element T E S 1 (R 3 ) is said to be an almost periodic distribution 
on RS with spectrum o(T) C A if there exists a tempered sequence of complex numbers 
(a),)A EA such that

	

T =	a), e"' 
AEA 

where the series converges in S'(R3 ). The collection of all these tempered distributions 
is denoted by S(R 3 ).	 . 

Remark 2.9. Observe that S(R3 ) is non-empty. Moreover, there exists a cor-
respondence between S, 9 (A) and S (R') which is one-to-one. This allows to identify 
T E S' P (A), with T E SA' (R"), via (2.4).
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3. Fourier multipliers for trigonometric polynomials 

Let A C R3 be a finite subset and let (MA)A EA be a set of complex numbers. 
Definition 3.1. Let 0 <q < 00. Then (MA)A E A is a Fourier multiplier for P(Rs,A) 

if there exists a positive constant c such that 

	

Ma(A; P) eA	c II P II	 (3.1) 
AEA 

for any trigonometric polynomial P E P(R 3 , A). 
If M E S'(lR) with F'M E L'(R), then, by properties of the Fourier transform, 

M =M(x) is a continuous function on JR 3 . Therefore MA = M(A) (A E A) makes 
sense. We have 

> MA a( A ; P) 
AEA

= >IF(F_IM)](A)a(A;P)e1z 
AEA 

=	(/2 JR. (F'M)(y) c Y d) a(A; P) etA1	(3.2) 
AEA 

	

= (2)_2 JR(F-'M)(y) 
	

a(A; F) e(1)dy 
 AEA 

= (2)_3/2 
JR .

(F'M)(y)P(x - y)dy. 

Let in 0. We recall that H' , ' (R-) are the usual Bessel potential spaces. These spaces 
can be defined via 

Hm2(R3) = { i E S'(R 5 ): IIfIIm2 = 11(1 + 1x1 2 ) m/2 FJII L2 <00}. 

Theorem 3.2. Let A C IR' be a finite subset such that 

dA = max IA - ILl > 0. 
A,pEA 

LetO<q<ooand0<<oowith

/ 
X>0qSt	

1	1 
- \min(1,q)	

"	
(3.3) 

Then there exists a positive constant c depending on q and s such that 

> Ma(A; F) CIA1	c llM(dA )ll x,2 11P11 q	 (3.4) 
AEA	 q
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for all M E JJX2(R) and all P E P(R3,A). 

Proof. We follow [16: Theorem 3.3.4]. Without loss of generality we may assume 
0 e A (otherwise consider e_0zP(x)). If 0 < q oo, then in any case x > f . Then, 
by [16: Proposition 1.7.5], F'M € L'(lR). Then properties of the Fourier transform 
yield that M must be a continuous function on R 3 . Thus, the left-hand side of (3.2) 
makes sense. Choose a function 0 E S(R 3 ) with suppo C {x : lxi 5 21 and (x) = 1 if 
lxi < 1. Then t,bM € Hx 2 (R 3 ) and 

	

Il'M ii,2	c ,p lI M ll,2 .	 ( 3.5) 
Furthermore, [16: Proposition 1.7.5] yields 

F'(i4'(d'.)M) € L'(R) 

Therefore, formula (3.2) can be applied and we get 

E M(A)a(A;P)e 'A*' <cf IF'(b(d'.)M)(y)P(x —y)dy.	(3.6)€
AEA 

Let	min(1,q). For fixed x € R3 we have by the Nikolskij inequality for entire 
analytic functions [9: Section 1.3.2/Remark 1] 

	

- !J )JIL	ll P lliiF '((d ')M ilLi <	. 
Furthermore,

suppF[F'(t,b(d'.)M)P(x - .)] C{y: jyj :5 3dA}. 

Consequently, the right-hand side of (3.6) can be estimated again with the help of the 
Nikolskij inequality [19: Section 1.3.2/Remark 1]. We get 

M(.X)a(.X; P) e'' 
AEA	

'	
(37) 

<c'd 1 ' ( 1 F'((d .)M)(y)P(x - y)Idy) . 
\. J. 

Taking the quasi-norms in B(Rs) (0 <q oo) on both sides we obtain 

(lim	I 	
A.X dx) 

I/q 

'

11q 

<c'd'Fb(d.)M) - urn 
(FQITIJQT 

lP(x)idx)	
(3.8) 

L T—.00

I /q 

= c"F(&(d.)M)ML- urn ( - J 
iP(x)ldx) 

	

T—.	 QT 

<cif 
MM(dA.)II lim '_ J IP(x)	

I/q 

Q, dx) 
x2T_. 't 

-

JQTI Q 
In the last estimate we used[16: Proposition 1.7.51, (1.3) and (3.5). Thus the theorem 
is proved I
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As a application of (3.4) we can deduce an inequality of Bernstein type for trigono-
metric polynomials. 

Corollary 3.3. Let 0 < q	and let A C R' be a finite subset with 

A C {x € 1R 3 : I xI <N} 

where N is a given natural number. Then there exists a constant c> 0 such that 

	

ID'PIIq cNQPq	 (3.9) 

for all P e P(R3 ,A) and all multi-indices a E N. 

Proof. We choose a function tb E S(R3 ) with compact support and (x) = 1 if 
xl	1. Then (2.4) yields 

II D° P 119 =	 (3.10) 
AEA	 q 

where

/	1 1)
X> Uq = Smin(1,q) - 

This proves (3.9)1 
Remark 3.4. The use of the Nikolskij inequality for entire analytic functions in 

the proof of Proposition 3.2 allows us to consider 0 < q < oo. 

4. Fourier multipliers for Besicovitch spaces 
First of all, we recall the definition of Fourier multipliers for L(Rs) (see [16: p. 155]). 

Definition 4.1. Let 1 <q < oo and M E L°°(R 8 ). Then M is a Fourier multiplier 
for L(Rs) if there exists a positive constant CM such that 

F'MFfILq <CMIIIIIL q	 (4.1) 

for any I € S(R-). 
Our aim is to extend the above definition to Besicovitch spaces with fixed spectrum 

A satisfying the (c)-condition. Therefore, it seems to be natural to give the following 
definition (see [16: p. 155/Definition 3.4.2.1 and Remark 3.4.2.2]). 

Definition 4.2. Let 1 <q < :: and M = (MA)AEA E £°°(A). Then M is a Fourier 
multiplier for	A) if there exists a positive constant c such that 

Ma(A; f) e'	CIlfllq	 (4.2) 
AEA	 q 

for any! € B(R3,A). 

The following is the main result of this section.
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Theorem 4.3. Let 1 < q < oo and let M E L°°(1R 3 ) be a Fourier multiplier 
for L(Rs). Suppose additionally that M is continuous at all points A € A. Then 

	

M (M(A)) AE ,, is a Fourier multiplier for B(R 3 ,A) with Cj	CM for the constants 
from (4.1) and (4.2). 

Here, we assume that cm and c j, are the minimal constants in the corresponding 
inequalities. 

We begin the proof by considering some lemmas. 
Lemma 4.4. Let f € C(R'). Then 

lim e2 I.R. 1(x) e' 2 dx = 
lim ---- f 1(x) dx.	 (4.3)€T-- IQTI QT 

Proof. Equality (4.3) is true if f(x) = e) z (A € R S ) because, by virtue of Lemma 
4.6, we have

63/2 JR. e r e_ E t z 1 2 dx = 

if e > 0. On the other hand,

(1 if A=O lim	I edx 
= ifA0. T-- IQTI Qr 

Therefore, (4.3) is true for any trigonometric polynomial. The claim now follows by 
approximating an arbitrary f € C o (R') uniformly on R' by using such polynomials I 

We recall the following lemma (see 118: Theorem 1.13J). 

Lemma 4.5. The Fourier transform of 1(x) = e_ 1 1 z I 2 (a> 0,x E R is 

(Ff)(() = (2)_3/2 I e_a2e_1 dx = (2a)_3/2e_K12/4a.	(44) 
. 

Then, the following result also holds. 

Lemma 4.6. For any c > 0, 

JR e° 2 e	dy = _3/2e_ItI2/47ra.	 (4.5)€

Proof. The claim follows easily from (4.4) with a = 7roI 
Lemma 4.7. Let P, Q € P(R',A) be trigonometric polynomials, let M E L°°(R3) 

be continuous at every point A € A and set 

w(x) = e61XI'	(5 > 0,x € R3) 

Then

lirn -.--[ (>M(A)a(A;P)ez)(dx 
1Q71 JQr ACA	 (4.6) 

= lim'2 I [FMF(Pw)](xw(x)dx (0
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whenever a, /3 > 0 and a + 0 = 1. 

Proof. The expressions in (4.6) are linear in P and Q, therefore, it suffices to prove 
(4.6) when P(x) = e'' and Q(x) = e' for A, It E A. By the Plancherel theorem we 
have

j[F'MF(PweQ)](x)Q(x)w(x)dx 

= E'2 
IR. 

M(x)[F(Pca)](x)F(Qwc fl )(x) dx. 

Since

	

(P,.)(x) = e Z e_ 2	and	(Qwe)(x) = e''eN2, 

by virtue of Lemma 4.5 we obtain 

[F(PL,)](x) = e_12/47(27rae)3/2 

[F(Qp)1(x) = e__?/47(2?fie)_3/2 

Now we assume that A 0 /1, and consequently IA - id ^! 1 > 0. Since M(x)l A for a 
suitable constant A, we obtain 

65/2 
JR. 

M(x)[F(Pwa)](X)F(Qw)(x)dx 

e2 f M(x)e__2/4(27rae)_3/2e__2/47(27r/3E)_2 dx 

<Ae2 I e_1_2/4)(2ae)_2e__2/4(2fiE)_u/2 dx 
JD 

<A63/2[j	 + I 
1/2   

In the integral extended over {x E RS lx - Al ^:} the factor 

	

6: 3 /2	Iz -AI2/4iFc) (27rae)"2 

tends uniformly to 0 as e - 0, while the factor e_(Iz_ P1 2 /47	(27rfle)' 2 has total 
integral (27r ) , /2 when extended over 1R 3 . It follows that '2 f..AI>1/2 - 0 as e - 0. 
The same argument, with the roles of A and z interchanged, shows that e"2 f1	>, 
0ase - 0. Since, for A54ti,	 - 

	

lim 1	[ EM(A)e %z ]e_ x dx = 0, — 
T—.00 IQTI JQr 

equality (4.6) is established. If A = j.z, the right -hand side of (4.6) equals 

JR.
lim (4ir 2 ca/3)

—a/2 
	M(x)e '" dx. 

e—O
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Since + = , the limit above is the limit, as - 0, of the Gauss-Weierstrass 
integral of M. It is well known (see [18]) that this limit is M(A) provided A belongs to 
the Lebesgue set of M. But this is the case since M is assumed to be continuous at A. 
This proves equality (4.6) when P(x) =	= Q(x), since 

	

lim ---I M(A)ee	dx = M(A). T—.c IQrI JQr 
Thus the statement is proved I 

Proof of Theorem 4.3. Assume that 1 < q < cc. Let q' be the conjugate 
exponent to q. Then 1 + = 1 and 1 < q < cc. We first prove that there exists 
c11 :^ cm such that

( IQ,TJ 4'.

	

q \1/9
lim 	 M(A)a(A; P) e1Xdx 

T—. 

	

AEA	
(4.7) 

	

(/

	

fQT 
lim - 	

P(x)Idx)€
TT-- IQ

1
TI 

for all trigonometric polynomials P E P(R 3 , A). If Q E P(R', A), then 

j[F- ' MF(P a )](x) x)w(x) dx < CM IPweJLq IIQ.sIILq',	(4.8)

where w6 , for 8 > 0, is the function introduced in Lemma 3.7. Set o = and 0 = 

multiply both sides by es!2 and let e - 0. By Lemma 4.7, the left-hand side converges 
to	

(M(A)a(A;P)e')dx. 

	

lim	

AEA 

By Lemma 4.4, 
lim c" 2 II Pwe II II Qwfl IILq' 

=
(9/2

 fR P(x)ehI2 dx) 'h (ca / 2
 fR Q( x )1' eI2 dx) 

/ 

1 fQT	

/qW

lTi 

'
= lim 	P(x)]dx) 	/ Q(x) dx 

T-.00 \(- 
IQTI 	/ 	JQT 

Together with (4.8) this implies that 

irn 1th 'QT (	
M(A)a(A; P) e1A'I)Q(x) dx	CMIIPIIqIIQ]Iq. 

Finally, taking the supremum over all polynomials Q satisfying IIQII' 1, we obtain 
(4.7) (see, for example, [4]). Hence, the linear operator TM defined on the class of 
trigonometric polynomials P(R 3 , A) by 

TM (P) = >M(A)a(A;P)e' 
AEA 

is bounded, with bound not exceeding CM . Then it has a unique bounded extension to 
the whole B(R3 , A) and it is this extension that satisfies the required assertion I
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Remark 4.8. Similar results are well known in the periodic case (see, e.g., [18]). 

Theorem 4.9. Let 1 <q < cc. Let t' E 8(R3 ) with 

0(z)<1,	suppC{y:	I y I 4 },	tli(x) z 1 if[x[2. 

If x > 1 , then there exists a positive constant c such that 

E M(A)a(; 1)	csup	 (4.9) 
AEA	 liq	.EZ 

for all M E Hx 2 (R3 ) and for all f E B(R', A). 

Proof. We recall a version of the Fourier multiplier theorem of Michlin-Hörrnander 
type for L(R3) as it is stated in [19] (for a detailed proof see [201): 

F' MFJII L q	csup II()M(2' ) IIx,2 Ill lLq 
jEZ 

if x > f and 1 < q < cc. Then M satisfies the assumptions of the theorem. As an 
immediate consequence we obtain (4.9)1 

Remark 4.10. Theorem 4.9 says that every Fourier multiplier of Michlin-Hörman-
der type for LQ (R') is also a Fourier multiplier for B(R3 , A) if it is restricted to A. 

5. Sobolev-Besicovitch spaces 

In this section we consider a set A C R 3 satisfying the (c)-condition, and some classes 
of almost periodic distributions. 

Definition 5.1. Let 1 <q <cc and m E R. We set 

H(R3 ,A) = t i E S(R'): If II(m),q =	( 1 + 1,\12)-/2 a(,\; 	<oo}. 

These spaces are called Sobolev-Besicovitch spaces of order m and type H. 

Definition 5.2. Let 1 < q <cc and m E N. We set 

W(R3 ,A) = { f E B(R',A): IIfIIm,q =	I1fIIq 

where the derivatives are intended in the distributional sense. These spaces are called 
Sobolev-Besicovitch spaces of order m and type W. 

Theorem 5.3. Let 1 <q < cc and let N > 1 be an integer. Then 

= W(R,A).
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Proof. It is quite similar to that used in [6: P. 1421 in the case of ordinary Sobolev 
spaces. Here we give only the principal steps for reader's convenience. 

We invoke the Michlin-Hörmander multiplier theorem to obtain that the function 
x(1 + xI 2 )_ 1/2 is a Fourier multiplier for L(R-) (1 < q < ). Therefore, it is also 
a Fourier multiplier for B(R 3 , A) if it is restricted to A. We get 

II 

	

ôx	
= ii >i A7a(;f)e' 
'AEA  

=	7(1 + 1Al2)_N/2(l + JA 12)N/2( f) 
AEA	 liq 

c	2(1 + IAIZ)N'2a; f) &AX 
AEA	 liq 

= C II! II(N),g	(1	j	s). 

Using the Michlin-Hörmander multiplier theorem once more and a suitable function x 
on l, we obtain that the functions 

(1 + IxI 2 ) 2 (1 +	X(X )I X l N)	and	x(xj)lxjlNx;N 
j=1 

are Fourier multipliers for L(Rs) (1 < q < oo). Then they are also Fourier multipliers 
for B(lR 3 , A) if they are restricted to A. Thus 

If II(N),q =	(1 + I2)N/2( f) 
AEA	 liq 

S 

<c	(1 +	x(Aj)IAjIN)a(A;f)e 
AEA	j=I	 liq 

I a;	+	I E x(Aj )IAj I N A	a(; 1) eX 
L) ACA	 q	AEA j=1 

3N 
<c (IIIIIq +	

fl1

ax N 

The proof is now complete U 
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