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Free Boundary Value Problem
for the Axisymmetric Fluid's Flow

with Surface Tension and Wedging Forces 
E. Chthterbakov 

Abstract. A free boundary value problem with surface tension and wedging forces is consid-
ered. From the mathematical point of view it leads to a boundary value problem in which 
the mean and Gauss curvatures appear in the boundary condition on the unknown surface. 
The variational problem is formulated and it is proved that its solution is the solution of the 
free boundary value problem. Infinite smoothness of the free surface is proved and it is also 
proved that the curve generating the free surface is analytic for some values of the problem 
parameters. 
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1. The boundary value problem 
Let B0 be the body obtained by rotation of a closed domain B from the upper half 
plane E = {(x, y) E R2 1 y > O}. We will suppose that the boundary c9B of the domain 
B consists of the segment C1 = { l x i ko, y = h}, of the monotone arcs 5+ and S, 
which are the graphs of the monotone functions 

[ k0 , 11 - R,	y(ko) = h and y(1) = 0 
[-1,—ko] -* R,	y(x) = y(x) 

respectively, and of the segment C2 = {(x,y) E R2 1 lxi :5 1 and y = 01. 
We will suppose that the flow in question consists of the following three phases: 
The phase of evaporized fluid, constituting the cavity Wo. 
The mixed phase, determined by the mixture of the vapour and of the fluid filling 

in the set W. 
The phase of fluid past the "body" Bc, U WO U Wc,' = B'. 

As usual we denote by A the closure of the set A. We will study now the case of a 
flow for which the complement Bl* to the set B' is an axisymmetrical domain. Let us 
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denote by D that part of the meridional sections of the set B' which is situated in the 
half plane E+ . We will consider a domain D such that ÔD consists of the part of the 
axis {y = 01 which is complementar to the segment C = {i x l < 1}, of the monotone 
arcs S and S, of the "free" arc E with the endpoints (—k, h) and (k, h) lying in the 
strip 5(k0 ) = {(x,y) E E : Ix  < ko and y ^! h}, and of the two horizontal segments 
{—k0 <x < —k,y = h} and {k < x < ko,y = h}. 

In our study we are looking for a constant k k0 , a continuous curve E: [—k, k] 
S(k0 ), twice differentiable over (—k, k), and for a function 'I' in a domain D of type as 
just finished to be described, satisfying the conditions 

[1 v(	y2 2dxdy 

JJD'	
' 

((W	+(i) V )(x,y)=0 
11 

'I'(x,y) = 0 
I(x,y)I2 

+ KH(x,y) + K(x,y) = A

2

(1.1) 

for (x,y)ED	(1.2) 

for (x,y)eôD	 (1.3) 

for (x,y)E,y>h	(1.4) 

for (x,y)—oo.	(1.5) 

Here K,O and A are real, non-negative numbers, H(x,y) and K(x,y) are the mean and 
Gaussian curvature of the surface S obtained by rotation of the free boundary curve 

at the point (x, y) of its meridional section. We calculate principal curvatures in 
accordance with Frenet formulas for left handed orientation of coordinate system [ 5: p. 
21].

The conditions (1.1) - (1.3) and (1.5) are well-known. The condition (1.4) is also 
famous when 0 = 0, it seems that Zhukovski was the first who studied it in the plain 
case (see [25: p. 489], but also [1, 20]). The term K in the present form of this condition 
is introduced to take into account the intermediate phase W. It is supposed that the 
free curve is determined besides the usual forces also by the wedging force which is 
responsible for the appearence of this term in the boundary condition. We have borried 
the term "wedging force" from the work [16: p. 311 where the static condition 

,cH + OK = A 

was introduced for the first time in the attempt to take into account the intermediate 
layers in the multiphased systems. 

The whole Free boundary value problem (1.1) - (1.5) in the case of ic = 9 = 0 
was studied in the well-known work [10]. The fast development of the theory of the 
Variational inequalities have overshadowed in some sense the importance of this work 
(see [14, 18]). Yet it seems to us that problem (1.1) - (1.5) never was studied even in the 
case of ,c 54 0 and 0 = 0. It was solved for the last case in the works [2 - 4]. The plane 
case for sufficiently large class of the boundaries was studied in the works of Kazhihov 
(see [13] and [19: pp. 184 - 189]).
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2. Variational problem 

In this section we will introduce the functional, whose minimum as it will be shown 
later is achieved over the solution of the free boundary value problem. From the works 
[7, 10] it is clear that this functional must be of the form 

M+(1 —2)V+sS+2&F 

where M is the virtual mass of the perturbed flow past the body, V is its volume, S 
is the area of the free surface and F is the functional, responsible for the appearence 
of the Gauss curvature on the free streamline. We now deduce the general form of this 
functional in some specific case and then we will formulate the variational problem. 
Later considerations will justify our approach. 

Let A, be the set of rectifiable Jordan curves connecting the points P(—k, h) and 
P(k, h) for some k with 0 < k < k 0 , whose bodies lie in the strip S(k0 ). For each 
E E AE we will construct a domain D of the boundary described in Section 1, that is 
consisting of the same part of the axis {y = 01, of the monotone arcs S+ and S, of 
the free arc E, connecting the points P1 (—k, h) and P2 (k, h) and of the two horizontal 
segments or = { — ko <x < —k,y = h} and U2 = { k < x < ko,y = h}. 

Let B' = E+\D and S be the surface obtained by rotation of t around the x-axis. 
When needed we will write S = S(E), D = D(E) and B' = B'() to underline the 
dependence of 5, D and B' on E. Let Ap be the set of the functions 'I' : D -+ R, D = 
D(), which satisfies conditions (1.3) and (1.5) and which has generalized derivatives 
'Pand 'I' s, in D satisfying (1.1). We will denote by DL the set {('', E)JE € AE and 'I' e 
A }. 

Let now
x=x(s)1 

-	 (s e [0, El)) y=y(s)j 

be the natural parametrization of the curve E € AE, E 1 = E fl {x	01 and E 2 = 
+ fl {x > 01 where	is the parametrized curve defined as 

x=x(IEI—t)1
(t € [0, IEID. 

= ( I E l - t) 

We will consider the functional L defined by 

L(P, E) M(W, E) + (1 - 2.\)V(E) + K l S I( E ) + 29F(E)	(2.1)€

over the set DL. Here ,c, 0 and A are the real non-negative numbers from Section 1 and 

M=M('P,E)= If lv(_2 2dxdy 
JJD'

(2.2) 

V = V(E) = 7r JIB' ydxdy	 (2.3)
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SI = ISI(E) = fads	 (2.4) 

.F( E ) = 
fE I UE2 

f(y)ds	 (2.5) 

II 

f() =	_ IxIJ(arcsina+ov"i 
_2 - ) 

, 2 

2
	EoIthI 

where 1±1 = ,rl _-0 and E0 > 0 is an arbitrary number. It is easy to verify that f() 
is well defined even for i = 1. To understand better the nature of the functional just 
introduced we will consider now a twice differentiable curve r with natural parametriza-
tion

x=x(s))
'	(s E [O,IrI]) 

and suppose that there exists a point z0 E r such that 

Q(so(za)) 54 0,	l(SO(zO)) > 0,	±(SO(zO))	0. 

Let us consider the functional 

K(F) 
= j f() ds	for I E C2 ([0, 1]).	 (2.5)' 

In the variational approach to free boundary value problems the method of interior 
variations and its generalizations proved to be useful. In our consideration we also 
resort to this method. We consider local topological transformations of the complex 
plane C of the form 

	

z = z ± eF(z,fl	where z = x + iy, i = x - iy,F E C(B(zo,r)).	(2.6) 

It is easy to see that to obtain the Gauss curvature in the boundary condition on 
the streamline the first variation of the functional we consider under the variations 
introduced should be of the form 

6 K() = - f Re (iefF(s)) ds.	 (2.7) 

The following lemma gives us the class of functions which satisfy this condition. 
Lemma 2.1. Let K be a functional of the form (2.5)' whose variation under the 

transformation (2.6) in the neighbourhood of the point z0 we have already described is 
of the form (2.7). Then we have 

f  
=	

- (sgn±)/1 -

_____	(2.8) 
x	(arcsina +	- 2 + E)(1 - 2 ) 312 d + E01 - 2 sn 
/}
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where E and E0 are arbitrary constant,!. 

Proof. Let r be the variation of the curve 1' under the transformation (2.6). Then 
we easily get

Ir • 
f()ds— 

Ir  

	

Ir [	"	dF	 dl 1	 (2.9) 
=	-	)thReiez - +f(?)Reez—l!ds+o(e) I	dsJ I	dsJj 

as C - 0. Using lengthy but simple calculations we obtain from (2.7) and (2.9) that the 
function f = 1(t) satisfies over [0, 1) the ordinary differential equation of second order 

L '1_t2_	
/1_t2	

=R:l.	 (2.10) 

	

dt2	 di  

The sign of the right part depends on the sign of the function i, we have minus if 1 > 0 
and plus if th <0. Integrating (2.10) we get (2.8)1 

The lemma we have proved justifies in some sense our selection of the functionals 
.F and L. Now we can formulate the variational problem: 

We are looking for a point ('I') E DL such that 

	

= inf {L(i,) : ('I',) E DL) .	 (2.11) 

3. Minimal sequences of the variational problem 
It is easy to prove that

	

= inf {L(P,E) : ( %P, E) E DL) > -00	(3.1) 

(see, for example, [10: §5)). Let {M,, 1, m = ('I',,, ) E DL, be a minimizing sequence. 
We wish to prove that the functions 'F, and the curves E. can be symmetrized in some 
sense giving us some new minimizing sequence. To this end we prove now some auxiliary 
results. 

Lemma 3.1. Let E AE and x = x(s), y = y(s) its natural parametrization. Then 
there exists a sequence {7} of analytical Jordan curves with parametrization x = 
Y	yn(s) (s E [0, y ' j , 'y' being the length of the curve -y) such that 

a) y,(0) = y(0) = h,y(71) = y(y') = h and yn (s) -̂- h for .s E [0,7']. 
b) x = x and	y = y in the sense of convergence in the space 

W11([0,7']) n C([0,711). 
Proof. We can add to the curve some other curve 7o in such away that 70 U7 will 

constitute a rectifiable Jordan curve limiting some domain D0 . Mapping the unit disk 
{I z I <, 11 over Do by the conformal mapping '1' and taking into account that '' belongs 
to the space H' (see [15: Chapter II, D]), we can construct the necessary approximation 
of -yl
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Lemma 3.2. Let L be the functional from (2.1) and +L the number from (3.1). 
Then there exists a sequence {mn}, with M n E DL and m = ('Pn,En), such that 

= 1L 

and En is an analytical curve and +Ti ,, is the streamline function of the domain D,, 
D,,(E,,). 

Proof. Let {('I',, E,,)} be some minimizing sequence for problem (2.11). We will 
consider, omitting the index n, an arbitrary curve E of this sequence. We can assume 
that the endpoints of E are located inside of C1 . From Lemma 3.1 it follows immediately 
that there exists a sequence { yn} of analytical curves from AE converging to E. It is 
sufficient to prove now that

liM F(-y,,) = .F(E). 

From Lemma 3.1 it follows that the sequence of lengths I7n1 of	converges to the
length of E, that is limn_.,,, lial = J EJ. Let 

X = u,,(o)) 
y=v,,(o) J	

(aE [°,Ivl]) 

be the natural parametrization of the curve Ifn and On : [0, J E11 —+ [0, -y,,]] a mono-
tone mapping such that x,, = u,, o On and y, = v,, o 0n, where x x,,(s),y = 
yn(s) (s E [0, E l]) is the parametrization of the curve 7,, from Lemma 3.1, converging 
in W'([O,lEl]) fl C([0, ]E]) to the natural parametrization x = x(s),y = y(s) of the 
curve E. It is clear that 9 =	-, 1 a.e. on [0, IEI] and 

h.I	 El 

/ f(iin )da = 
I f(

^n (On_-)-)On-ds (3.2) 

Now applying to these integrals the reasoning of the Lebesgue theorem [6: §2.4] on the 
convergence of integrals, we get the necessary result I 

As it was done in [9: p. 377] we can now introduce the symmetrizations of the 
functions 'Ti,, (and consequently the corresponding symmetrizations of the domains 
Dn = D,,('I',,)) of the extremal sequence {m,,} to the x-axis and to the (y,9)-plane 
(in cylindrical coordinate system (y, 0, x)) to prove that the curves E,, can be consid-
ered as monotone ones in each quadrant. The monotone behaviour of the functionals 
M, V and IS] under symmetrization in question is well-known (see [9, 10, 22]). Now we 
will study the behaviour of the functional F under these symmetrizations. 

Let us consider for the first the symmetrization of the function 'F : D - IR in 
the (y,0)-plane. Under this symmetrization we substitute each s-section B by the 
circle in the (y, 0)-plane of the same area. This symmetrization evidently leads to the 
symmetrization of the domain E+\D to the x-axis. Hence, to study the behaviour of the 
functional L under this symmetrization we are to study the behaviour of the functional 
F under the symmetrization of the domain B F B' U B", where B' = E+\D and B" is 
its reflection in the x-axis.



A Free Boundary Value Problem	943 

Lemma 3.3. Let E be an analytical curve from A 1 , B' = B'('Ji), 

Bl*= U C 0 with C1;0={(x,y) ER' :x=xo andO<y<mesB0} 
xoEpr. B' 

and
B'10 = B' fl {(z,y) E R 2 x = x0} 

the upper half of the body B. representing the .symmetrization of B to the x-axis. Let 
E=aB\aB. Then

1(E).	 (3.3) 

Proof. Let 

A(t) 
= - I (arcsina +	- a2 - U(i a2 ) 3I2 da	(t E [0,1]). 

Then
A'(t) > 0

for all te(O 1). 
A"(t) <0 J 

We will denote by 2m(x) + 1 the cardinal ' number of B'2 fl 3B'. This number is finite 
because of the analyticity of the curve E. The function m = m(x) is the step function, 
whose domain Dm( 1;) is the reunion of the segments D,, i.e. Dm(x) = U 1 D 1 . We have 

k0 2m(r)+1 
1(E) 

=/	
(Ai(ly,(x)I) + Eo)dx 

where y,, = y0.(x) represents the connected part of E over Di and 

A 1 (t) = A(1 1 (t))	with 1 (t) = 
____ 

and y,(x)	We get now due to (3.4) 

A1(t)>0
for all t > 0.	 (3.4) 

A 11 (t) < 0 ^ 
This means that

k0	2m(z)+I 
1(E)? j [A, (
	

(x)) + Eo] dx 
- ko 

k0	I 2m(z)+1 

j [1( •	 ( )v+' (X)) +Eo]dx 
- k0 

=1(E). 

Thus the lemma is proved U
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Lemma 3.3 means that we can consider curves E. E Aa as analytical ones paramet-
rized in the form

x=x 

yn(x)	
(x E [-k,k],n E N). 

=  

Without loss of generality we can assume that 

Y.( —X) = yn(X)	(x E [—k,O1).	 (3.5)

Lemma 3.4. Let -y be any analytical curve from A, parametrized in the form 
(3.5), its reflection in the x-axis, parametrized in the form 

=x 

Y 9(-T), (x) = y(—x) }	
(x E 

and
= y V 9 = 01(x ) = max{y(x),(x)} 

U2 = y A y = U2 (X) = min{y(x), j(x)}. 
Let D 1 = D i (-y),D 2 = D2 (') and 'P 1 ,'I' 2 the corresponding stream functions which we 
consider extended by zero to the domains E+ \ D 1 and E+ \ D2 , respectively. Then for 
v i = 'P 1 A 'I' 2 and v2 = T 1 V 'P 2 we get 

L('Pi,y)+L('I'2,) = L(vi,aI)+ L(v2,U2), 

that is

	

L(vi,ai)	L('F 1 ,r 1 )	or	L(v2,0`2)	L('P2,r2). 

Proof. It does not differ very much from that of [8] and it is not necessary to bring 
details I 

Lemma 3.5. Let E' be an analytical curve whoAe parametrization x = x,y = 
Y(x) (x e [—k, k]) satisfies the condition y(x) = y(—x) (x E [0, k]) and B' = B'(). 
Let B"=B' 1{x>0} and

B" = U	c,0 
Yo Epr, B" 

with
CYO {(x,y)ER2o<x<mesBandBrBhmn{yzyo}}.

YO 
Let BI* be the Domain B' completed by its reflection in the y-axis and	the part of€
its boundary different from S, S and C2 . Then 

F(E) 

Proof. Let 2m() + 1 be the cardinal number of the set B11 fl 3B", 9 E prB" and 
B = mesprB". Then rn =m() is a step function and Dm() = U iL. Now 

2m()+1 
F(s) rr J	M(Ix)1)d	 (3.6)
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where x, = x() represents the connected part of E over 

M	M(t) = t A (z(i)) + E0 i,	(t) = (1 + t2)1/2,	x, , = dxi,€
d 

Using simple calculations it is easy to prove that 

M'(t) > 0	for all E0 > 0 and I > 0	 (3.7) 
M"(t) <0	for all E0 E R and I > 0.	 (3.8) 

From (3.6) - (3.8) we now have 

B	/2m(y)+1 B	/ 2m()+1 
F(E) 2 JM	Ix)I) dy 2 JM	 (_1)-+1x) d = 

Thus the lemma is proved U 

Theorem 3.1. Let 'L be the number from (3.1). Then there exists a minimal 
sequence {m}, Mn€ Dn and Mn=	such that 

IL = limL(rn) 

and En are the graphs of monotone functions in each quadrant and	are the stream 
functions of the domains D = D(E). 

Proof. From Lemmas 3.2 - 3.5 and from known results on the behaviour of M, V 
and 1 5 1 under symmetrization to the x-axis and to the (y,9)-plane we get that we can 
consider the curves En as graphs of functions monotone in each quadrant. From the 
Dirichlet principle, valid for equation (1.2), it follows that we can consider T n as stream 
functions of the domains D, D = D(E). Thus the theorem is proved I 

4. Existence of the solution of the variational problem 
The considerations of the previous part permit us to prove the following theorem. 

Theorem 4.1. Let 1L be the number from (3.1). Then there exists a constant 
co > 0 such that for all numbers r, and 0 satisfying the condition

(4.1) 

there exists an element m 0 E DL such that 

L(mo) = ' L .	 ( 4.2) 

Proof. The semicontinuity of M is well known (see [10: §4] and [22: A.51). Thus 
it remains to prove that tI S j + 9 is also "semicontinuous". It is easy to see that in
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the coordinate system (a, r) rotated through -45° to the (x, y)-system we will have the 
parametric representations 

X = x(a) = ----(a + h(a))
(a E )	 (4.3) 

y = yn(a) = --(a-h(a)) 

for the curves E, where A is some segment over the a-axis. We can assume that this 
segment is the same for all curves > and also for the limit (if needed we can extend 
the domains of the functions from (4.3)). Using the parametric representations for the 
curves E and an analogous one for the curve E we will now have 

(I _h,)/Vi = f	(h(a) +1) da	 fo(u) du + E0 J(h + i)ç 
/	

da 

fo(u) = _(arcsina + a/1 - 0, 2 - )(i - a2)_3/2	(u E (0,1)) 

with an analogous expression for the curve E. Let us consider the difference 

= ISI() + 20.T(E) - (I S I() + 20.T()) 

which can be written in the form 

= f (A3 (h) - A 3 (h')) da + E0 9ç J(h' - h') du	(4.4) 

where

N(i) 

A3()=,c/1+t2+ ç&(l+t) / fo(u)du with N(t)= 

It is clear that

N(t) 

+ i2 
49 J fo(u)du + 4 

	

+	 0(11+ i)f0(N(t))N'(t) 
0 

1 A(t) =	 + v9fo(N(t))(N(i))' + 9(Nl(i))2f(N(i))4 

	

(1 + i2)3!2	
(l +t)

(4.5) 
+ 4ofoN(i(,t2)h'$l + I) 

1	

+o

{3(1-t 2 )	 ______ 

	

(1 + t 2 ) 3 /2	2(1 +t2)s/2 fo	(t)) +	(1 + 12)3 fo	(t))}
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where
4(1+i2)3v" 1—i f(N(t))	- (1+ t) 2	2	'i + t2	 (4.6) 
arcsinN(i) + N(i)Vl -- N2 - f 1 + i2 

(1 - N2 (t))3 /2	(1 + t)2 

It is easy to verify that the function h = h(a) satisfies the Lipschitz condition 

Ih(o i )—h(o 2 )I	o—aiI. 

Hence h(o)I 1 a.e. on z, which signifies that the domain of the function f'(N(t)) 
is the segment [-1, 1. We see from (4.6) that the function f'(N(t)) has a pole of 
second order at t = —1. The representation for A thus shows that this function can be 
considered as a continuous one over [-1, 1] for any fixed numbers c and 0, and it can 
be represented as

A(t) = sA 3 (t) - 0A4(t) 

where A 3 and A4,

1 
A 3 (t) =

(1 + t2)3/2 

A 4 (t) = 3(1 - 
t2) fo(N(t)) - /(1 + t)3 f(N(t)) 

	

2(1+t 2 )5/2	 4(1+t2)3 

are functions positive and continuous over [-1,11. Let co = sup{A 4 (t) : t E [-1, 1]} and 
let ic and 0 such that ,c - 2c0 0 > 0. Then 

A(t) 	- 0c0 =	- 2c0 8) > 0.	 (4.7) 

Returning now to the study of the difference 6, we can now write 

= 
IA(h')(h - h') d, 

A
(4.8) 

+ J 
A'(9h') (h',, - h')2	E00J 

f (h' - h')da 
2 A
	 d, + 2	A 

for —1 < 0 < 1. The functions h are uniformly limited in the space W(A). We can 
select a sequence {h} uniformly converging over A. Then using the Banach-Alaoglu 
theorem [12: § 3 1 we can assume that the sequence {h} converges weakly to the function 
h'. Now taking into account (4.7) we get from (4.8) that lim_ 5,. > 0, that is 

r. ISI(E) + 20.77(>) :5lim ( k I S I() + 20.T()). 

Combining this with the above mentioned semicontinuity of M we get (4.2). Thus the 
theorem is proved I
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5. A necessary condition for existence of a solution 
of the variational problem 

Here we will consider a necessary condition for the solution of the problem from Section 
2. Let z0 E E \ {P1 , P2 } and K = B(zo,r) where r > 0 is such that there exists no 
intersection of B(zo,r) with ÔS(ko). For any function F = F(z,i) : C - C of class 
C°"(K) with support in K we consider the variation z*(z , i) of the curve E in the form 

z*=z+eF(z,i)	(e>0,z=x+iy).	 (5.1) 

It is clear that for e > 0 sufficiently small the transformation (5.1) is a topological one. 
It can be easily shown that for the transformed curve E we have 

ISI(E*) - SI() 

=j yds —[ yds 
nK	JEnK	 (5.2)€

Ree	"OF dz OF d\ 

+If	dsl + o(c) 

	

K i	J 

as e - 0 (see [3: p. 110]). 

Lemma 5.1. Let rn = ('.1', ) be any solution of the variational problem from Sec-
tion 2. Then 

*)F() JE*nK
	-JE 

f()ds 
nK 

JEIK 
J —fi.i Re / dF \	 fdF \ }ds+o()(5.3) = 	( iz—e ) + f(?) Re I z—e ) 

\ dsj	 \dsJ 

as c - 0, where 2f()(s) is the function defined a.e. by 

2f(	= J (arcsincr + a/1 -	- )(i - 0, 2) - 312 do, 
0
____	 7r\	 (5.4) I___ 

-	- 2rcs + /i - -	- E 

(th0 (!1)) 

and
2f(i)th = lim 2ft (t)/1 - 

= 	
arcsin c  +	- - )(i - 23/2 da - E0 

for ti(s) = 1.
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Proof. It is clear that at points with i(s) 54 1 (1(s) 54 0) the function f((s)) is 
well defined, so that at such points we have 

fdF \	 (-.dF\
fds-f()ds=-f(')±Re iiz—e +f()Re z—clds+o(e)	(5.5) 

ds) ds) 

as e -, 0, the principal part of (5.5) being the integrand from (5.3). The second part of 
this integrand is the same even at points where b(s) = 1. The first part of it corresponds 
to the difference A f, and at points with (s) = 1 we have 

2(f(,*)_f(,) 

= ± f (arcsina + a1 - a 2 - )(i - 2) -3/2 do, + E0± 

i+o(e) 
{	/ -dF\ 

+0( } f (arcsina +o, 	- a 2 - )(i - a 2 ) 3/2 da = - ' Re I ii—	E) \ ds)
0 

IdF \ 
+EoRe Iiz—d +o(E) 

\ ds J 

= -Re (i:))(arcsina+aV'1 -a2 -a2)3/2da 

dF 
+E0 Re (zz ._ e) +o(e) 

=	 iZ- — E +o(e) 
t_1	 ( ds ) 

as e - 0 whence (5.4) follows and the lemma is proved I 
Using the calculations made we arrive at the following result. 

Theorem 5.1. Let ('I', E) be any solution of the variational problem from Section 
2 and F the function from (5.1). Then 

4
JJDnK
	

Y	
z+8 ff

DflK Z	 ÔZ	y 

	

IF	IF \ 
+2A	( — + 2y— I dxdy 

	

JJDIK\Z	c9zj 

JDnK 

ÔF. 5F
	

JF 
K 	y(—z+--rzjd-i 	--ds 

 \OZ	or i	 DnK Z 

_29f	 fv(t)±Re (ie) + f()Re (E) } ds 0 

where W = B'\ B. 

Proof. It follows from Lemma 5.1, representation (5.2) and from known results on 
the variation of virtual mass under the transformation (5.1) (see [3: p. 110])I
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6. Conformal mappings, boundary estimates for IVWI 
Using in (5.6) the Privalov theorem for integrals of Cauchy type we get that for any 
interior arc ' of E there exists a function 2 and a succession {l} of arcs in D tending 
to ' such that

iimj IV'I'I2ds = fI 2ds. 

To prove this we also need the inversion of the Federer's theorem (see [6: Theorem 
3.2.6]) on the substitution of the variables under the Lebesgue's integral, which can 
be proved in our case using the known Lewy's arguments on the convergence of the 
integrals. This result and also condition (5.6) give us the generalized boundary value 
condition on the arcs of the free boundary (see [2]). But we will proceed here in other 
direction. We will get now a stronger result on the boundary behaviour of 1V4'1. This 
result was suggested to us by P. I. Plotnikov (see [3: pp. 136 - 141]). 

We start now with the study of the conformal mappings of the domains we have in 
the variational study. 

Lemma 6.1 (see [3: p. 136]). Let D C E+ be an infinite domain whose boundary 
consists of an arc a symmetrical to the y-axis and of two semi-infinite segments of 
the real axis constituting the complement to the projection of a on {y = O}. Let w 
D - E be a conformal mapping with w(oo) = _ and Rew(iy) = 0, and let z = 
z(w) be its inverse. Then for a, sufficiently small, and any q e (0, 2) there exists a 
number c 1 (a, q, v') depending only on a, q and v' > 0 sufficiently small such that for the 
derivative z(w) of z(w) we get 

fIz(u + iv)Idu < c i (a,q,v')	 (6.1) 

for all v E [0,v']. 

Proof. As a is a rectifiable Jordan curve, it is easy to see that the function In 
has angular boundary values a.e. on {u = 0), defined by some function Oo and 

iln- -590 dw 

where S is the integral operator defined by 

Sf	 du. 

Let i = ij(u) be an infinite differentiable function, with values in [0, 1], equal one in some 
neighbourhood of [u 0 - 2a, uo + 2a] and equal zero in the exterior of (uo - 3a, u 0 + 3a) 
for some uo > 0, a > 0 fixed. Then 

ilnz= (Do _ 1 +c'2	 (6.2)
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where

dz = in - - s(90 ),	= s(),	= s((e0 + dw 

As the arc a is monotone in each quadrant, then for a > 0 sufficiently small we get 

100 	a.e.on {u=0}
	

(6.3) 

and 92 = I1(94 + ) I < E there. The function <1 0 has imaginary part equal to zero on 
{u = 01 and is infinitely differentiable, hence 

exp(±ij(w))I	c	(j = 0,1; w  Q2o =(u 0 —2a,uo +2a) x (0,a)).	(6.4) 

Now let us consider 2 (w) = 02 (w) + i'11 2 (w). It is clear that 42(00) = 0. Let us define 
F2 (w) = exp(±qi 2 (w)) (0 q < 2). For any w0 E E, wo = uo + ivo, there exists 
some constant co such that for any h E (0, Iwo I) we have 

1 f voF2(u+ih) du + 
Ch	(Ch F2 (wo + ih) = ir J (uo - u) 2 + V2 CO)	(6.5) 

- 

(see, for example, [15: Chapter VI, D]). Now using the Zygmund idea on studying 
singular integrals [19: p. 71], we get from (6.3) and (6.5) that, for any v' > 0 sufficiently 
small,

+3a 

	

Jexp (± qW2(u + ih))du c"(a,q,v')	(h <v').	 (6.6) 

Combining (6.2), (6.4) and (6.6) we get (6.1). Thus the lemma is proved I 

Lemma 6.2. Let D be the domain from Lemma 6.1, '11 = '11 (z) its stream function, 
z : E+ - D the conformal mapping from Lemma 6.1 and 11(w) = 'P(z(w)). Then for 
a > 0 sufficiently small and any r > 1 there exists a constant c = c(r,a) such that 

+ iv) T du < c. 

Proof. Let w = 'Pm . Then 

4 A	and	A=Al+A2W_	 (6.7) 
t3z	 w 

where A,A 1 ,A2 € L2,10(E ) . Let T1 f be the Vekua operator (see [3: p. 139] and 119: 
p. 210]) defined on finite in E functions, summable with degree p> 1 and ( = (w) 
an infinitely differentiable function equal to 1 in some neighbourhood of Q20 and with 
compact support in Q3a. Then 

TI (CA) E W(Q3 a)	and	ImTi((A)(w) = 0 when 1mw = 0.
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Using the Pohozhaev theorem on Orlich and Sobolev spaces (see [17: p. 290] and [23: 
p. 193 in the Russ. transi.]) we have 

expjTi((A)I 11 Lr(Q3.) <c(r,a)	 (6.8) 

for all r > 1. Let us set
41 (w) = wexp(—Ti((A))(w). 

It is easy to prove that is an analytical in Q3a function whose imaginary part is zero 
on {u = 01, which means in accordance with (6.8) that 

II W IIL,.(Q3.)	c'(r, a)	 (6.9) 

for all r > 1. Returning to the function 'P we see that it satisfies the Poisson equation 

where
II4''II L,(Q 2 ,)	c(a) A II L 2 ( Q2 ) II w II L ,L. (Q2) 

for any q E (0,2) and for some constant c(a) depending on a only [3: p. 140). This 
means due to the Calderon- Zygmundinequality [19: p. 198] that 'I' E W(Q20 ). Using 
now imbedding theorems for Sobolev spaces we get the result we need I 

Lemma 6.3. Let D be the domain from Lemma 6.1, z = z(w) the conformal map- 
ping defined there, l,, the image of the segments,, = {(u,v) : Iu—uol <a and 1,, = z(s,,)} 
and 'P the streamline function of the domain D. Then for any v' > 0 sufficiently small 
there exist numbers c> 0 and p> 1 such that 

fJVjp j 2Pds <c	(v < 

where c = c(p,v') 

Proof. It follows immediately from Lemmas 6.1 and 6.2 I 

7. Generalized boundary conditions 

The estimates we have made in the previous section permit us to study boundary 
conditions on a free boundary. 

Lemma 7.1. Let rn = ('I', ) be the solution of the variational problem from Section 
2 and let x = x(s),y = y(s) be the natural parametrization of the curve E. Then the 
function

icy - 2iOf + 20f  

has a generalized derivative over [0, E l] satisfying the condition 

-219fi + 29f) = —2i \y - 4j	+	 (7.1)
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Proof. Let z0 be any point of E \ {P1 , P2 }, De C D the domain whose boundary 
consists of the arc 7, = r, nDj with re = {l z — zol = e} and E = En {lz —zol <e}. We 
transform the double integrals in (5.6) into integrals over lines using the Green formula 
over the domain D. Then passing to the limit and using the results of Section 6 we 
easily get from (5.6) for any function F E C'°([O, J E,l) the condition 

/ 
(21 AyZ*+ 4i--.ê -

	
F -
	

- 2i9f.i + 29f)	) Is = 0.	(7.2) 

It is worthwhile to note here that it is the Björke theorem which permits us to extend 
functions of this type, defined over monotone arcs, to functions from C°"(K) (see [17: 
p. 48]). Condition (7.2), evidently, implies the existence of the generalized derivative 
for the function

Kyz - 20fi + 29f i E L2 ([0, i rle l]) 
which leads to condition (7.1). Thus the lemma is proved U 

We still cannot differentiate inside of the brackets in the left side of (7.1). The 
following lemma permits us to do it sometimes. 

Lemma 7.2. Let us suppose that the numbers ic and 9 satisfy the condition 

,ch - 29 > 0.	 (7.3) 

Then for the extremal element m = ('F, E) the functions i = ±(s) and i = i(s) are 
differentiable a.e. over (0, El). 

Proof. From Lemma 7.1 we have that the functions 

= ?y± - 20f±l + 281 d	 (7.4) 

= —iyy - 29f2 - 29fü	 (7.5) 

are absolutely continuous over (0, E l) (the functions i and 1D2 are defined over the 
whole interval (0, E l), yet the functions ± and are defined a.e. there). Let us consider 
an arbitrary point z0 = z(SO) E E 1 \ {(0,y(0))} such that (so) and 1 2 (so) exist. Then 
we can rewrite (7.5) in some neighbourhood of z0 in the form 

= 0	 (7.5)' 

for a.a. points of some neighbourhood of So. Here the function 4D is defined as 

(s, t) = — ICyOt - icy(so)t(s —So) + 8(arcsint + t'/iTTt2-
	

- 43(S) 

where

3 (s) = 2 (s) +0(s - so) and 0(s - so) = y(s) - (y(so) + (so)(S - so)).
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Let us consider now the equation

t'(s, I) = 0.	 (7.5)"

As inequality (7.3) holds, we have 

--(so, to) = —tcy0 + 28J1 - to54 0 

for all to e [0, 1] (if necessary we extend the function arcsin I + t . /l -- t2 - f by zero 
outside of the interval [0,1]). This means that in some neighbourhood of(so,(so)) the 
set of solutions of equation (7.5)" can be considered as the graph of a unique (continuous) 
function I = i(s). Let 

G 3 = g,(i) 

- f —KlJot - Ky(so)t(s - so)	 for I > 0 
- j —Kyoi - (so)t(s - so) + 9(arcsini + iVi - - ) for 0 <t < 1. 

Then from (7.5)' and (7.5)" we have G 3 ((s)) = G,(t(s)) a.e. in some neighbourhood 
U1 of 5. As

dt
ic(so)(s - So) + 20v'1 i 2 [(1 - 

then there exists a neighbourhood U2 of s0 , U2 C 02 C U1 , such that 4L (s) 54 0 for dt 
all s E U2 and all I E [0, +oo). This means that i can be extended continuously on U2. 
As the function y y(s) is absolutely continuous on [0, II] we get in correspondence 
with the Newton-Leibnitz formula for functions of such type that the function b(s) is 
defined over U and is continuous here. This means that the function 

4 4 (S) = 1I3(S) + KÜ( So)(s )( S - so) 

is differentiable in the point s 0 E U2 . Now we evidently have that 

= 4(S)	(s e U2 )	 (7.6)€

where the function

(i) = — KYoi + O[(arcsint + i/ii - 

is monotone on [0, +). From (7.6) we have that the function a(s) = is 
differentiable in the point s 0 . In the same way we can prove that the function i(s) is 
differentiable a.e. in E. Thus the lemma is proved I 

Now we can prove the theorem on the existence of a generalized solution for problem 
(1.1) - (1.5).
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Theorem 7.1. There exists a number co > 0 such that for all ic and 9 satisfying 
the condition

- coO> U 

there exists an element m = ('I', E) E DL giving a solution of the variational problem of 
Section 2. The function y = y(x) (x E [—k, +k)) representing the curve E is monotone 
in each quadrant of E+ and the functions x = x(s) and y = y(s) from the natural 
parametrization of E have derivatives 1 = d(s) and , = b(s) absolutely continous on 
(0, E l) . The function 'P = %P(z) is the streamline function satisfying the boundary 
condition (1.5) and its gradient V'P has angular values a.e. on (0, E l) which satisfy 
there the boundary condition (1.4). 

Proof. It is clear that there exist numbers Ic, 9, co which satisfy each of the condi-
tions (4.1) and (7.3). From Theorem 4.1 it follows that an extremal element in = ('I', E) 
exists. It is easy to prove that the function 'P satisfies conditions (1.1) - ( 1.3) and (1.5) 
(see [10: §5]). From Theorem 3.1 we have now that E is a curve monotone in each 
quadrant. It remains to prove that boundary condition (1.4) holds. Lemmas 7.1 and 
7.2 show that the function T. satisfies a.e. on the curve E the condition 

IcyZ + ?c - 27*9f,(y)± - 2iOfy - 210fi + 2iOf i + 2iOfu(')j 
-	'F2	ic	 (77) 

= —2i.\y - 4iLi + 
y	z 

At points s E (OjEl) such that á(s) 54 0, and b(s) 0 0 the right-hand side Z of (7.7) 
can be represented in the form 

Z = --(4 ' + ic12) 
ds	

1	(7.8) 
= —iicyk(z) + ic - 2i9 [fyy()th - f() + f()] 

where k = k(z) is the curvature of the plane curve E. The function jr = f(t) satisfies 
the equation

	

__	1 =_ dt2	 dt /1 - t 2	y'l - 

This permits us to receive from (7.8)

'P2	,c —iiczyk(z) + cz + 20Q. = —2iAy -	+ -.	 (7.9) 

Now it is well known that the mean and the Gaussian curvatures can be represented as 

1 
2H(z) = k(z) +____ = k(z)+ 

y'/1+y12 

and
K(z(s)) =
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(see, for example, [5: p. 162] and [21: 7.4]). Substituting these expressions into (7.9) 
we get

lvPl2 + KH +9K =\ 

for a.a. points of E in consideration. Now let us consider those points for which 
z = z(s) E E \ {(O,y(0))} and such that i = k(s) = 0 and i(s) exists. It is clear 
that as the function y attains its maximum value at such points, then we will have 
U(s) = i(s) = 0. It is easy to see that a.e. on (0, E l) independently on the values i(s) 
assumed we will have 

—f(s))th2 +f(U)U = (arcsinU(s) +Uv'l -U2 - ).	(7.10) 

Besides
V 

cYX - of (arcsina + afi - a2 - 	a2)312da	
(7.11) 

0

—9U(s)h(U) - E0 9 = It(s) 
where

h(t) = { 
—(arcsint + t1 - t2 (1 - t2)1/2 - ) fort = [0,1) 

is a function differentiable over [0, 1]. Now we see that from (7.10) and (7.11) it follows 

+ 2 2 (s) - icyz) 

=	I_o f (arcsina + a1 - a 2 - U(i - a2 ) 312 da - OU h (U) + E0' 
L	0	 i 

+ 9(arcsinU+U/i_U2 - 

= °L {(arcsinU+U_U2 - )(1_U2)-3/2}Vs) 

- OU h(U) - 9U h'(U)U( s ) + i91 -- V(s)U(s) 

=0 

= 2iOy 

whence it follows that

Z = 2i9 + -(iicyi) = 2iOyK + 2iicHy.	 (7.12) 

As before we have from (7.12) that condition (1.4) is also satisfied at points .s where 
= 0 and i(s) exists. This and the preceeding result mean that condition (1.4) is 

satisfied a.e. over E. Thus the theorem is proved I
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8. Analyticity of the free boundary 

Here we will prove the following result. 
Theorem 8.1. Let co, ,c,9 and m = ('F,) be as in Theorem 7.1. Then any open 

arc ' C E is an analytical curve and the function 'F is the classical solution of problem 
(1.1) - (1.5). 

Proof. To start with we prove the infinitely differentiability of the curve E'. From 
Lemma 6.4 it follows that !' is a curve of Liapunov type, i.e. it belongs to some 
class C (0 < a < 1). Really, from (7.7) and (7.10) we get for arbitrary points 
S 1, S2 E (0, II) that 

ky (si) - 261 I(si) -
-I- 

V 'P2:5 Iy(s i ) —y ( s2)I +	 _2iA_4i+	()d] Ii —S2I	
(8.1) 

y 

where += 1. Now applying the Shauder estimates (see [3: p. 142] and [19: p. 
198]) we get the infinitely differentiability of the curve 

Next, following Garabedian's idea we will consider the function 'I' from (1.2) as 
solution of a hyperbolic equation in two independent complex variables and (1.2) - (1.4) 
as problem with initial datas. This point of view proved to be usefull in many cases 
(see, for example, [3: p. 143] and [10: §8]). Let now S(z,2;(,() be the fundamental 
solution of equation (1.2): 

S(z,E;(,) = A(z,E;(,t)log(z	- ) + B(z,E;(,ç) 

where A(z, ; (,) is the Riemann function of the same equation written formally as a 
hyperbolic one in two complex variables z and E. Let zo E E be an arbitrary point 
and 00 an arc containing this point, whose size will be discussed later. In usual way we 
introduce the function 

F(() = 10 S(z,(; E,)( - 2cH - 29K + 2)'12dz. 

(see [3: p. 1431 and [10: §8]). The functions F and F have boundary values F and 
(F')+ over ao and

	

dt = (F') + (t). .	.	
S	 (8.2) 

Using condition (8.2) we obtain an integral equation over ao for which is the unique 
solution. We "extend" this equation as system of nonlinear integral equations to some 
neighbourhood B'(zo,e) = B(zo,e) fl D of the point z0 to get 

2iV=z_zo_fU2(t)dt
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where

U = P_1{JW2U(i)dt + 29 1 
U4V2(t)dt 

+	f U 2 V 2 (t)dt + if U 2 v'(t)dt + if U4V_4i)di} 
1k j 

	

:0	 :0	 zo 

	

Z0	 :0 

z	 z

(8.3) 

and
(F )'  A(i,t - 2zV,z,o)

W(i)di. 2iri W=	(A(z,z-2iV,z,o))' f(A(z,z-2iV,z,o) 
:0 

Here
29	-	28 

P = P(() = 	) +	- z ) 
+ (( - 2)	((E C) 

ZKYO 32k y0  

is an analytical function and P' is its inverse whose existence is guaranted in the case 
of ich - 29> 0. Using slightly modified Picard method we prove the existence of a fixed 
point for the operator defined by (8.3) in the space of analytical functions considered in 
B'(zo,e), for a0 sufficiently small (i.e. for e > 0 sufficiently small). The iterations we 
need can be defined as follows:

z 
20	 20	

IW,Udt 3	fl	 iic 
z0 

z	 z	 Z 
29!	29! 

+-j uv,2di+ 2k — / J n	dt+ilU. ,dt+z 
I n

V,, dt + ZO 

Z0	 Z0 ZO Z0 
z

	

 
W+1(z) - (Ft)' (A(z,z - 2iV,z,Eo))	A (t,t - 2iVn,z,Eo )w dj 

2iri ' - f A(z,z - 2iV,z, 0 ) - 
:0 

22*V 1 =z — io _fU(t)dt 
ZO 

where 1/o(z) = yo (z E ao) and W0 is the solution of the integral equation 

(A(z 
)'	 —1	fA(i,i—yo,z,0) 

Wo = (
F+

, z - yo, z,Eo)) - 27rz	 A(z,z -
Z0 

The "trace" of system (8.3) is the integral equation (8.2) on a 0 which we extended to 
the neighbourhood of z0 to get (8.3). This means that the function i is the trace of an 
analytical function defined in B'(zo, e).. In this usual way we now receive the analyticity 
of E (see [3: p. 143] and [10: §8]). Thus the theorem is proved I
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9. Appendix 

Here we will give, following the reasoning of V. P. Korovkin, G. V. Secrieru and F. M. 
Sazhin [161 a justification to condition (1.4) 

Let us consider an isolated system consisting of two sybsystems in two different 
coexistent faces L and V, separated by a surface layer M. Let us denote by PL and PV 
the pressures inside of the L-face and V-face and by a the coefficient of surface tension 
characterizing the surface forces acting in the layer M. We will consider the process 
of face transition which takes place along the surface layer which can be characterized 
approximately by a surface S, given by the function , = f(u, v). This process is 
characterized by absorbtion velocities 0 1 and CO2, which can be considered as dislocations 
of the L- and V-boundaries, respectively. The process leads to a distortion of the layer 
which can be described by a function F = rlu,v), 

rlu , v ) = !(UV)+JIaldt. 

Here ii is the unit normal vector to the surface 5, cr,, = ' i + Or and we suppose that 
i and Or are oriented along the normals to S. Let us denote by dA 1 the area of a 

surface element of S and by dA2 its distortion during the absorbtion process and by 
dVVL the variation of one of the faces. Then from the second law of thermodynamics 
we can easily get the equilibrium condition

d(A2 - A1) 
PL — PV=±cT

	

	 .	 (Al)
 dVv, L 

Now
dA2 = IFu x F,, Idudv 

and using the Olinde-Rodrigues theorem we obtain 

d (JaI dt) =ffd(Jki a Idt) —k (JIaI dt) d, 

where k is the principal curvature of the surface in the principal d-direction (see [5: p. 
1451 and [21: §7.3]). This gives us for the variation d(A 1 - A2 ) the expression 

d(A i - A2 ) = dA2 (2H + K  1 a 1 dt) (I kaI dt)	(A.2) 

where H is the mean curvarure and K the Gaussian curvature of the surface: Now the 
variation of the face volume dVVL can be written in the form 

dVVL = dA2 JIaI dt.	 (A.3)
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Substituting (A.2) and (A.3) into (A.1) we will have 

PL - = 2aH + laK	 (A.4) 

where

'p = r 001 

is the equilibrium width of the surface layer. When l, can be neglected, we get the clas-
sical equilibrium condition of Laplace. In the general case this term can not be dropped, 
for example, when l, is comparable with one of the radii of the surface curvature. The 
term laK can be considered as an attempt to take into account wedging forces which 
arise due to non-homogeneous distributions of surface forces across the surface layer. 
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