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Abstract. In his classical by now investigation of the numerical condition of methods for 
computing orthogonal polynomials from modified moments, Gautschi introduced some poly-
nomials defined by the nodes and weights of a Gaussian quadrature formula for the measure 
of orthogonality. We show that these polynomials can be calculated explicitly for Chebyshev 
weights of first, second and third kinds. 
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1. Introduction 

The polynomials in question were introduced by Gautschi when he analyzed the numer-
ical condition of the method of modified moments: Let a be a given positive measure 
with infinite support 5(a). Then there uniquely exists a family of monic polynomials 

with

I7r 1 (x) 7ri (x) da(x) 0 (1 <j)	and	
I 

7r^ (x)dor (x) >0 (j >0). 

They satisfy a three-term recurrence relation 

= (x - s)ir(x) - f3ir2_i(x)	(j ^! 0), 

if we set ir (x) 0. It is well known that the generation of the orthogonal polynomials 
(or, equivalently, of the coefficients a j and 9,) from ordinary moments 

Yk 
= J X  da(x) 

is severely ill-conditioned (see the classical paper of Gautschi [4]). More promising are 
modified moments

Mk = fqk (x)da(x),	 (1) 
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with some properly chosen set of polynomials qk (e.g., Chebyshev polynomials or other 
polynomials orthogonal with respect to some measure s). It would be desirable to 
calculate or estimate the condition of the map K,, from m = [rn0 ,... , n2n _ i ] T to 
p = (ao,... ,	j3,.. . ,	]''. In the papers [5, 6] Gautschi introduced the vector 

of weights and nodes of the Gauss- Christoffel quadrature rule 

fq(x) do, ( x) = > akq(rk) 
k=1 

for any polynomial q of degree less or equal 2n - 1. He denoted by G,, the map 
M -, 

and by H,, the (well-conditioned) map 
Hn:R2h1*R2Th,	7-4p. 

Then one has the decomposition

K,1 = H,, o G,,, 

and this equation reduces our task to the investigation of the map G,,. More precisely, 
Gautschi considered the map defined by

rn-47 

where
lTik=dk2rflk	with dk=Jq(x)ds(x). 

The map G,, differs from G,, only by a trivial diagonal map, and the sensitivity of the 
nonlinear map a,, can be measured by the norm of the Fréchet derivative G,, which 
is a linear map (the Jacobian of G,,) from R 2n into R2 . We consider here only the 
Frobenius norm

f2n-1	\ 
Il A li p = (TrATA) = (	a 

\j,k=O 

In the paper (2], Gautschi proved the equation 

= {Jn(x)ds(x)} 

with some polynomial g, of degree 4ri —2 determined by 7, which will be defined in the 
following section (this is essentially equation (3.2) of [6], though the result is implicitly 
contained already in the proof of Theorem 3.1 of the article [5]). 

• The present paper is devoted to the explicit calculation of the polynomials g,, in 
some special cases. For a direct approach to the investigation of the map K,,, see 
the article [2] of the author. The map H,, is investigated in the subsequent papers of 
Gautschi [5 - 8] and in the article [3] of the author.
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2. Polynomial interpolation 
The polynomials g are defined as follows: 

=h(x) +	i 2 k,(x),	 (2) 

where aj are the weights of the Gauss- Christoffel quadrature rule, and h, and k, are 
the fundamental polynomials of Hermite interpolation in the nodes of the quadrature 
rule. We define them after recalling the Lagrange interpolation. Let {r} 1 = ..... . be a 
set of distinct numbers, and define 

- w(x)
(i = 1,... ,n),	 (3)


l(x) - c4(r)(x - r) 

where w(x) = (x - r1 ) . . . (x - rn ). The Lagrange interpolation formula 

q(x) = >q(r)1(x)	(q E P_ 1 )	 ( 4) 

is well known. The following result is well known, too. 

Lemma 1. Let 

h(x) = [i - w'(Ti)( - Ti )] l,(x)	and	k(x) = (x - T) 1? (x).	(5)

4(T) 

Then we have the equation 

q(x) = >q(Ti)hi(x) +	q'(-)k(x)	(q E P2_I) .	( 6) 

In our case, the nodes ri are the zeros of some orthogonal polynomial Pn We remark 
here that in equations (3) and (5) we can use the (generally not monic) polynomial p, 
instead of Wn, since the leading coefficient will simply cancel out. 

In the following, we will need an elementary interpolation identity of higher order. 

Lemma 2. Let {rR}I......be any set of distinct nodes, and let b i E P4	be 
polynomials with the property 

b(T) = 6ji	and	b(r) = b','(-j) = b',"(r) = 0	(i,j = 1,...,n). 

Then the identity En 1 b(x)	1 is satisfied. 

Proof. Under our assumptions the polynomial r E P4n-1, 

r(x) =	b(x) —1, 

vanishes at all nodes Ti together with all derivatives up to the third, and thus it is 
divisible by the polynomial (x - TI) 4 . . . (x - T. )4 having degree 4n. Consequently, the 
polynomial r must be identically zero I
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In fact, the polynomials b, are well defined by the above properties and can be 
written down explicitly in terms of the polynomials I. 

Lemma 3. Let 1, be the fundamental polynomials of Lagrange interpolation for the 
nodes {r1 } =1 ,,,, and let the first few coefficients of the Taylor expansion of l i around 
Ti be

	

l(x) = 1 + c 1 (Ti) (x - Ti) + c2(r) (x -	+ c3(r) (x - Ti) ' + 

Then we have 

b(x) = [i + d, (7-j) (x - r) + d2 (7-i) (x - 7- ) 2 + d3 (T) (x - 7- ) 3 ] l(x), 

where the coefficients d 1 , d2 , d3 can be obtained from 

d1 = —4c1 

d2 = 1Oc - 4c2 

d3 = —20c + 20c 1 c2 - 4c3. 

Proof. If

1+dI(Tj)(x—r)+d2(TI)(x—rj)2+d3(r)(x-_T)3 

coincides with the first few terms of the Taylor series of 1(x) 4 , then b1 as defined in 
Lemma 3 satisfies b(x) = 1 + O((x - r)4 ). Since bi clearly has degree less or equal 
4n - 1 and vanishes at each T 54 r, it follows that it is identical with b, defined in 
Lemma 2. The Taylor series can be obtained easily: From 

00

('O

	 \-4!
d,(x-.-i-1)' = >

ci(x_TIY) 
j0	 j=O 

by differentiating and multiplying by >IJ c,(x -	we have the equation 

00	 cc	 Co	 00 

jdj(x—rI)'c(x—T1) 

A comparison of the coefficients gives the linear system 

d 1 = — 4c1 
c 1 d 1 + 2d2 = —4(c 1 d i + 2c2) 

c2 d 1 + 2c 1 d2 + 3d3 = —4(c i d2 + 2c2 d1 + 3c3), 

and solving for dj we arrive at our proposition I
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3. Explicit calculation of	020 (x) for Jacobi 
polynomials 

Of course, we will be able to compute explicit formulas only in some special cases. The 
Jacobi polynomials p,°' are orthogonal with respect to the measure defined by 

do(x) = (1 - x)°(1 + z)dx, 

their leading coefficient (in their traditional standardization as in [1: Formula 22.2.11 is 

K,, = I(2n+a+13)€

	

2n	n 

and the constant in their orthogonality relation is 

H -
	 r(n+a+1)r(n+/3+1 

	

Th 2n+a+fl+1	n!r(n+a+/3+1) 

We will write simply p, instead of	The three-term recurrence for p, has the 
explicit form 

2n(n + a +,3)(2n + a +,3 - 2)p(x) 

= [(2n+a+0_ 1)(a2 _/32)
(7) 

+(2n + a +,0 - 2)(2n + a +,3 - 1)(2n + a +f3)x]p_1(x) 

- 2(n + a - 1)(n +,3 - 1)(2n + a + /3)p_2(x). 

For these special polynomials we have some more useful relations. Especially, they 
satisfy the differential equation 

(1—x2)p(x)+[0—a—(a+0+2)x]p(x)+n(n+a+0+1)pn(x)=0, (8) 

and their derivatives can be expressed as 

(2n + a + i3)(1 - x2)p,(x) 
= n[a -,6-  (2n + a +,8 ) X] pn(x) + 2(n + a)(n + /9)pn_i(X). 

Now we can prove the following 

Theorem 1. Let ri be the zeros of the Jacobi polynomial p,,. Then the polynomials 
k i defined in equations (5) satisfy the identity 

a72 0(x) = Cp(x) [p 1 (x) _Bpn2(x)pn(x)]
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with the constants 

Cn - K
1 _	and	B	(2n+a+13)(n+a-1)(n+fl_1) 

-	 (2n+a+fl-1)(n+c)(n+13) 
Proof. For any set of orthogonal polynomials the weights of Gauss-Christoffel 

quadrature formulas can be written as 

= Cp(r1)p_1(r). 

From the definition (5) of the polynomials ki and 1(x)	 we obtain easily 

0,72 	= Cp(x)	p(Tj) 1 2 (X). 

The sum on the right-hand side can be evaluated from the interpolation identity (6). 
First we observe that from the differential equation the explicit formula 

(a+fl+2)r+a—fl	2 

	

h i (x) = 1 -
	

(x - r) 11(x) 

can be derived. Thus equation (6) can be written as 

	

q) 1(x) = q(x) - > [q'	
- (a + 13 + 2)	a -

 q(Ti) (x - r) 1(x) (10) 

for any polynomial q E 22n-1• Now we set q =p_1. Since we have 

(x - -Ti ) 1 1 (x) =	
1

pn(X) 
p (re) 

and from equation (6)
p,(rj) - 2(n + a)(n + 13) 

- (2n + a + fl)(1 - r?) pn_i(T), 
we obtain 

[ q'(r1) (a+.8+2)r.+a—i3  
1—	 ]	

1 
-	 q(r1) 

r	 p 
2n+a+8	2 

= (n+a)(n+fl) t(l —r)p1 (TO _ 

If we express (1 - T?)p_i(ri) using (9) and eliminate the terms 7_tpn_1(7_j) using (7), 
after an easy (but tedious) calculation we arrive at

= (n+a — 1 )(n +fl — 1)p2(T.) 
2n + a +8— 1 

This implies 

> [	
(a + 13 + 2) r + a -,3 q(r

i )] (x - Ti) l(x) Bp(x)	pn-2(Ti) 
1=1	 1—r? 

and the sum on the right clearly is equal to pn_2(X) due to the Lagrange interpolation 
formula (4)1
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Since we are able to obtain further results in the special case of Chebyshev polyno-
mials, where a,# ± , and the traditional standardization of Chebyshev polynomials 
is different from that of Jacobi polynomials, we reformulate our result in this case. While 
Chebyshev polynomials of first and second kinds are well known, the nomenclature for 
the mixed cases ( = -/3) was introduced by Gautschi (e.g., in [9)) and adopted by 
other authors (in the papers [10, 11] of Mason and Elliott we can find some properties 
of Chebyshev polynomials of third and fourth kinds). 

First we recall the connection between these special Jacobi polynomials and Cheby-
shev polynomials (see equations 22.5.30 - 22.5.32 in [1]): 

-	
(x)	 (11) 

(n+1)!/ p ( 4 ( )	
( 12) 

) 
U(x)= 2r(n+) 

n!-../	P() (2X2 U2fl	 - 1). =(I) 

We will rewrite the last equation in a more convenient way. The trigonometric repre-
sentation of Chebyshev polynomials implies 

U2 (x) = U(2x 2 - 1) + U_ 1 (2x 2 - 1), 

and this equation gives immediately

1	1' 
U(x)+U(x)= nI . v,	P''(x). 

r(n+) 

Since we have
P,'4 (x) = 

we obtain easily the equation

- n!€_1(x)	
)
P'(x).	 (13) U(x) - U

r(n+ 

That is why we can call the polynomials V - U,_ 1 Chebyshev polynomials of 
third kind and the polynomials W, = U, + U,_ 1 Chebyshev polynomials of fourth kind. 
Their trigonometric representation is 

cos (n + 1) 0	 sin (n + I) 9 Vn (COS 9) =	2	and	W(cos9) =	2	(14) 
COS 1 0	 sin .10 

(see equations (1.3) and (1.4) in the paper [101). In view of the obvious property 
W(x) = (-1)' V(—x), there will be no need to consider the polynomials of fourth 
kind in the following. 

Our Theorem 1 can be specialized for Chebyshev polynomials.
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Corollary 1. For Chebyshev polynomials of first, second and third kinds we have 

= _ [i - x 2 + 
2n T

n _ 2 (x)Tn (x)J T(x) 
i=1

= [1+ 2(n+ 1) Un2 (x)Un (x)] U(x) 
i= I 

T1	 11	 3 
=	2(1 - x) +	Vn_z(x)Vn(x)] V(x), a1	

2n±1 
2k(x)	

[  i= I 

respectively. 

Proof. By simple substitution for the left-hand sum we have 

— n i [Tn _^ ( X )
2

	-	 Tn2(x)Tn(x)] T(x) 
it.2  

- [U2i(x) -
	

un2(x)Un(x)] U(x) 

j T12 [v:_icX -
	

Vn_2(x)Vn(x)] V,(x) 

in the first, second and third cases, respectively. Now our proposition follows at once 
from the elementary identities 

T,_ 1 (x) - T_ 2 (x)T(x) = 1 - 
— Un _ 2 (x)U(x) = 1 
- V_ 2 (x)V(x) = 2(1 - x). 

The corollary is proved U 

4. An estimate of >	h (x) for a, /3 E (-1, 01 

Interestingly, the sum >	h(x) in this case is uniformly bounded. 

Theorem 2. Let ri be the zeros of P,,	and a,fl E (-1,0]. Then the polynomials 
h i defined in (5) satisfy the inequality 

h? (x) <1	(x E[—i,1]). 

Proof. All we have to prove is the non-negativity of h i in [-1, 1 1 : From (6) with 
q 1 we obtain	h(x) 1, consequently 0 h(x) 1 and



Explicit Calculation of Some Polynomials	971 

Since
= [i - ( c  + ,3 +2) T, + a - 

(x - Ti)] 
12 (X) 

1 - r,2 

and all ri E (-1, 1), it is sufficient to show 

1 
(ci+/3+2)r+—fl

(X T) 	(x 1-7-2  

The left-hand side is linear in x, so we have to show the inequality only for x = —1 and 
x = 1. For x = —1 we have 

1 - + 0 + 2) 7 + a
-T) = ( + 13 + 1)r + 1 + - /3


	

1—T 2	 1—T 

Now the numerator is again a linear function in r, and it takes the values —2/3 ^! 0 for 
= —1 and 2 + 2a > 0 for T = 1, hence it is greather or equal to 0 for all r E (-1,1). 

The case x = 1 can be handled in the same way: We have 

1— (a+/3+2)r+a—/3	1—a+13—(o+fl+1)T€(1—T)= 

	

1—r2	 1+T 

and the numerator is 2 + 23 > 0 for T = —1 and —2cr > 0 for T = 1 I

Naturally, this bound is sharp - the sum is equal to 1 for x = Ti. 

5. Explicit calculation of	h(x) for Chebyshev 
polynomials 

The explicit calculation of this sum is possible for Chebyshev polynomials of first, second 
and third (or mixed) kinds. Our starting point is the interpolation identity from Lemma 
2. The coefficients c3 defined in Lemma 3 can be calculated from the differential equation 
(8) for any values of c and /3. But we will see that for subsequent simplifications we 
need explicit (and simple) formulas for p',,(Ti). This is possible only for Chebyshev 
polynomials. 

Lemma 4. For any zero T of TTh ,U,VT, we have 

n 
(1 - T2)T,(T) 

= U_i(T) 
n+1 

(1 - T2) U(T) 
= 

(1— T2)V,(T) 
= U_1(T) 

respectively.

T,2(T) 
= 1 - 7-2 

/ + 1 ' and	U(r) 
=	- T2) 

(2n + 1)2 
V2(r) 

= 2(1 - 7- 2 )(1 + T)' 

Proof. This follows immediately from the well-known trigonometric representation 
of Chebyshev polynomials. Differentiating Tn (cos 9) = cos nO we obtain 

sin OT'(cosO) = n sin nO.	 (15)
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If cosO is a zero of T, then we have cosn9 = 0 and consequently sin 2 n9 = 1. This 
implies 

	

(1 - cos2 9) T'(cos 9) = sin  8 T'(cos 9) = n sin  Sfl 
no= nsin9 

sin no =	
n 

 U_ i (cos 9) 

From the above equation (15), by taking squares, we obtain 

(1 - cos2 9) T'2 (COS 9) = sin  OT 12 (COS  9) = 2 sin2 no = n2, 

if cosn9 = 0. 
The derivation of the other equations is very similar. If cos 9 is a zero of U, then 

sin(n + 1)9 = 0 and consequently cos 2 (n + 1)9 = 1. From sin 9U (Cos 9) = sin(n + 1)9 
by differentiating we have the identity 

— sin 29U, (COS 9)+ COS 9U ( COS 9)=(n+l)cos(n+l)9,	( 16) 

and by squaring both sides (using U(cos9) = 0 and cos2 (n + 1)8 = 1) we obtain 

(1— Cos 2 9) 2 U2 (COS 9) = (n + 1)2. 

From equation (16) we conclude 

— sin 2 9U (COS 9) = (n+ 1) cos(n+ 1)9 =
	

n+1
 cos(n+1)9 

(n + 1) sin  
sin  cos(n + 1)9 - Cos 9sin(n + 1)9 
(n+1)sin9	72+1 

— sin n9 - Un _ i (COS 8)' 

where we used again Cos 2 (n + 1)9 = 1 and sin(n + 1)9 = 0. Observing sin  9 1 - cos 2 9 
we arrive at our proposition. 

The proof of the last equations relies on the trigonometric representation (14), and 
the fact that cos (n + ) 8 = 0 implies sin  (n + .) 8 = 1 and 

sin 
72+9	

1 
-	sin(n+)9 

(we omit details here) U 

Now we are able to formulate the main result of this section. 

Theorem 3. In the case of Chebyshev polynomials of first kind (a = /3 = -) the 
following formula holds: 

n	 I	1----xU2_i(x)l 
h(x)	

I 2	1	1	2n	 I T(z). 
-	 1_x2	

j i= I
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For Chebyshev polynomials of second kind (c	/3 =we have€

n

h(x)	1	
1 

- (n + 1)2 [ 
2 + 2 (n2 + - 3)(1 - x2 )] U(x) 

1 
(n + 1) 3 [ 

U 2 (x) - Un 4 (X)] U(x). + 

Finally, for Chebyshev polynomials of third kind (c = -and 13 =	we find 

12 

	

>2h(x) 1	
1 

(2n + 1)2 [-4., + (n2 + n)(x + 1) - Sn(X)] V(x) 

2 
(2ri + 1)3 

[U12 _2(x)+ U12 _ 3 (x)] V(x), 

where
1 

	

1 +	[U12_2(x) - 3U12 _ i (x)] V12(x) 
2n+1

1—x 
and V12 (x) = U12 (x) - 

Proof. As we can see easily, we have h(x) = [1 + 1 d i (r1 )(x - r)] I? (x) and thus, 
using Lemma 3, 

h(x) = b(x) + IGd(r) - d2 (T)) (x - r)2 - d3 (r)(x - r)3 ] 11 (X) 

= b, (_T) +p(x) [(d (T) _d2 (T)) —d3 (r)(x - Ti)] p2(Ti)
 1?(x) 

for any set of orthogonal polynomials. Now we use our explicit formulas for p(T) in 
the three special cases we consider. 

Chebyshev polynomials of first kind: Computing the c,(r1 ) from the differential 
equation (8), d,(7-1 ) from Lemma 3, and observing h(x) = [1 -,r  (x -7i)/(l - r)1 l(x), 
we obtain after an easy (but tedious) calculation 

1 
12n2

1	 2	1 " 
O	= b1 (x) + T(x)	1—.r,2  l(x) -

	
- _) h(x)]. 

From the above interpolation identities we know that 

h1(x) =
	

b(x)	1, 

but we still have to evaluate the polynomial 
n

1—Tit=1
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The trick here is to calculate (1 - x 2 )r(x), since we have  
1 - X 

l(x) - 
1 - T,X 

l(x)	
X - Ti 1 2 (x) = h 1 (x) -	

(x) 
U_i(T1)l(x) 1—ri	- 1—r?	

xT 

(where we used (x - T) l,(x) = T(x)1T(r1 ) and Lemma 4), and this gives immediately 

	

(1 —x 2 )r(x) = 1— 
xT(x) 

U_ 1 (x) = 1—	xU2_i(x). 
n	 2n 

Substituting this into the above equation, we obtain our first proposition. 
Chebyshev polynomials of second kind: As above we compute the representation 

1	U20{[?r22(2 
(n+1)	

+23)(12)] 

__	 20 

	

+ 1	
15" 1 [10 T 

+ (
10 n2 +	

n - -i-) 
Ti] (x - T)} 1? (x). 

Li - T 2  

The sum

Hri 2 _ 2 (n 2 + 2n — 3)(1 _ 7-
)]
 12 (X) 

can be evaluated by equation (10), with c = 8 = 1 and q(x) = - X2 - (n2 + 2n - 
3)(1 - x 2 ), and this gives

n h(x)1+(11)2U(x){q(x)+2	
(x_T)l(x)}. 

i=I	1—T ,r1 

Now we can use (x - T) 1(x) = U(X)/U,ç(T1) and the formula for U(T) from Lemma 
4 to obtain

T-10T / 
2 1 - T	

(x - T) l(x) = 1 U(x)	
(- 

19 
- T - 10r13 ) U_j (ri ) l(x). 

n+1 i=1	 t=I 

Repeatedly applying the recurrence relation for the polynomials U) and observing 
U(r) = 0, we can calculate 

(19 

	

\ 
T 

2	
- lOT	U_() = U_2 ( 1 ) - U_(r), I -  

and by the Lagrange interpolation formula we have 

[	
- Un 4 (Ti )] l(x) = U 2 (x) - U(x). 

Chebyshev polynomials of ihzrd kznd: Our starting point is again a representation 

V(x) [Co(r1 ) + C 1 (r)(x - ri )] 1(x), h(x) = b(x)
- (2n + 1)2
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where
Co(r) = —4r +	+ n)(r + 1) + 

and
- 2 6(n2 + n - 2)7 2 + 2(n2 + n + 3)r - 4n2 - 4n + 3 

72-1 
are rational functions of T. The sum 

q(r)1(x)	with q(r) = —4r ± (2 + n)(r + 1) 

can be calculated from formula (10) again. The sum on the right-hand side of (10) 
combines with >	Ci(r1)(x - Ti ) l(x) to give 

+2	)1(x)	V(x)	
(-47 +2)Ui(r)11(z) 2 (x — r	= 

—T,	 n+i=I 1=1
n 

- V(x)  
+	

i—U_3(r) - U 2 (r1 )J 1(x) 
- n  
- V(x)

[—U_ 3 (x) - U_2(x)] 
—n+ 

(where we used Lemma 4, the recurrence relation for U, and the fact that U(T) = 
U_ 1 (r,)). However, we still have to calculate the sum 

	

s(x)	
1 =	l(x). 

i=1 

We use the above trick to calculate (1 - x)s(x), since we have the identity 

1—x	 r1-2 
i_11(x)=hi(x)+ 12(x—r)1(x). 

With the same procedure as before we easily obtain the proposition. 
This finally proves our theorem. We remark here that the simple but tedious alge-

braic manipulations were performed partially with MAPLE I 

Our last result will be the proof of an inequality conjectured by Gautschi already 
in his paper f61. 

Corollary 2. In the case da(x) = dx//1 - x 2 , the inequality gn(x) < 1 holds for 
all x E [-1,1] and all n > 2. 

Proof. As an immediate consequence of Theorem 3 and Corollary 1, we obtain the 
equation

2	1	1  
g

	

	 __. { - x 2 + - T_2(x)T(x)}] T.2 (x), (17) (x)=1—
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where as in the proof of Theorem 3 we use the abbreviation 

1 
rfl(x)=>12 1(x). 

i= 1 

In order to estimate r(x), we use another way to evaluate this sum. From equation (3) 
and Lemma 4 we have 

	

1	
1(x) - 

1	T, (x) - 1 [Tn(X)_Tn(7_i)1 2 

  n2 (x - r) 2 - 2 
	x - Ti

Now the right-most expression is a polynomial in Ti of degree 2n —2, and thus by virtue 
of the quadrature formula 

r(x)= -1--E 

[Tn(X) _ Tn(,,i)12
	1 J[Tn(X)T_Tn(Y)12d() 

	

irn	 X Ti	 7Tfl 	x — y	j i= I 

Using the identity

T(x) - T(y)	
n-i 

= Un_ i (x) + 2 
x—y

k=1 

(which can be derived easily from the generating functions of Chebyshev polynomials) 
and the orthogonality of Ta_k with respect to a, we obtain 

r(x)=	^U2_,(X)	
U2_1(X) 

This equation implies the inequality 

/	n-i \ 

2	2 rn(x)<(n2+2k =r
2 1 

k=i ) 

Observing Tn_2(x)Tn(x) = X2 - 1 + T 1 (x) <x2 and thus 

1 - X + -- Tn 2 (x)Tn(x) 1 - +	X2  

we see that the expression in square brackets in equation (17) is not less than 

1	1	1	1	1 

for  E [-1,1] and n>21
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