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Abstract. In this paper, we continue our considerations in [1] on a homogeneous integral-
functional equation with a parameter a > 1. In the case of a > 2 the solution satisfies relations 
containing polynomials. By means of these polynomial relations the solution can explicitly be 
computed on a Cantor set with Lebesgue measure 1. Thus the representation of the solution 
is immediately connected with the exploration of some Cantor sets, the corresponding singular 
functions of which can be characterized by a system of functional equations depending on a. 
In the limit case a = 2 we get a formula for the explicit computation of 0 in all dyadic points. 
We also calculate the iterated kernels and approximate 0 by splines in the general case a > 1. 
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tions, relations containing polynomials, iterated kernels, approximation by splines 
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1. Introduction 

In [1] we have shown that the homogeneous integral-functional equation 

at 

= Lc(i),	Lcb(t) = b J ct(r)dr	(b = a a I(1.1) 

at—a+1 

where a > 1 is a fixed parameter and I E R, has a unique compactly supported solution 
up to a constant factor. Since the support is contained in [0,1], the constant factor can 
be fixed by the value of its integral:

f (t)dt = 1.	 (1.2) 

G. J. Wirsching has considered in [12] the case a = 3 and in the paper [13] also 
the case a > 1 , where 0 is the limiting density of a certain transition probability of a 
non-homogeneous Markov process arising in a combinatorial problem. The case a = 2 
was considered by W. Volk in [11] in order to construct some subspaces of C[a, b], 
which are spanned by translates of q. 
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In this paper we continue our considerations in [1], primary for a > 2. For this 
reason, we list such results of [1] which we will need afterwards and, moreover, we make 
some supplements to them. The solution is infinitely often differentiable, symmetric 
with respect to the point , and monotone at both sides of 1 . The solution has the 
support [0,1] and it is strictly positive for t E (0, 1). For a > 2 it is a polynomial 
on each component of an open Cantor set with Lebesgue measure 1. The solution 
of (1.1) - ( 1.2) can be obtained by means of successive approximation. For every L-
integrable function fo on the interval [0,1] with fo(t) = 0 for t [0, 1] and the property 
j fo(t)dt = 1, the iterates f, = Lf0 _ 1 (n > 1) converge uniformly on [0,1] to the 
solution 0 of (1.1) - (1.2). Hence, on account of a result of W. M. Gerstein and B. N. 
Sadowski, the operator L is contractive on a certain subspace of C' [0, 1] equipped with 
a metric p which is equivalent to the maximum norm (cf. [8]). 

The Laplace transform 41, of the compactly supported solution 0 of (1.1) - ( 1.2) has 
the product representation

00 

ri 
1 - 

	

= k	
p/(bak)	 (1.3) 

and the power series representation

00 
pn(a) ,

(1.4) 
n=O 

which are both convergent for all p E C. The coefficients of the series are rational func-
tions with respect to a and, starting with po(a) = 1 for n > 1, they can be determined 
by means of the recursion formula 

pn(a) -
	1	 (fl + 

' ) p(a)(l -a)	.	 (1.5) 

	

- (n+1)(a—l)	V€z'=O 

Moreover, we have

	

00 (-1)	( ) pfl	(lVI <2b7r)	 (1.6) 
p n!	a 

and

n!n an - 1 p	( II <2bir) ,	 (1.7) 

n=' 

where B0 are the Bernoulli numbers 

	

B0 =1, B,=—, B2 =, B3 =0, B4 =—	..... 

The polynomials

=()pnv(a)t	 (1.8)
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will play an essential role later on. Note that in [1] we have used the abbreviation 
for the polynomials (1.8) with I instead of a. The polynomials On have the generating 
function

00 
IMO etI'(p) = E	 (1.9) 

n=O 
and the properties

(t) = n_ i (t)	 (1.10) 

- t) = (-1)'(t) .	 (1.11) 

In the case of a > 2 the solution 0 of (1.1) - (1.2) can be expressed by the polynomials 
in the intervals<t <	(n > 0), namely 

/ (aTh+It\ 
=	"	'	.	 (1.12) 

n! a(1)(n_2)(a - 

Also, the functions On (n E N0 ) defined by q o = from (1.1) - (1.2) and 

= Jn(r)dr	 .	 (1.13) 

for n > 0 are needed in this note. We recall for arbitrary a > 1 the following relations 
between the functions 0, On and On, namely 

	

On(t) = aY(a - 1)n >
- an- l b -	-	(1.14) 

V1	Vn->0 

for all t and n E N, in particular 

	

(i) = a(a - 1) n (a -n t)	for t < a - 1	 (1.15) 

as well as
1 qf(t) = 

(n - 1)I I'fl . I( i )	for t > 1	 (1.16) 

and

,(	
bn_i(at) 

a' 1 -	-	=	
( 1.17) 

	

(n-i). a 
2	(a - 

for t > .1 • The solution f. of (1.1) - (1.2) satisfies the equation - an

= a n b  
anb 

for all i E R and all n E N0 . In [1] this was proved only for n 0, but the general form 
easily follows by means of (1.1) and induction.
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The eigenvalue problem

	

Af(t) = f f(r)d	 (1.18) 
at—a+1 

with a > 1 has the solution f =	= q5o from (1.1) - (1.2) for Ao = , and for the 
eigenvalues An 	(n E N) the eigenfunctions f =	and f = On (cf. (1.8) and

(1.13)), which have non-compact support. 

The aim of this paper is to investigate in detail the Cantor intervals for a > 2, 
in which the solution 0 of (1.1) - (1.2) is equal to certain polynomials, and to find 
these polynomials explicitly, i.e. to generalize (1.12) to the other Cantor intervals. The 
results are also valid in the limit case a = 2, where the Cantor intervals degenerate. In 
this connection we characterize the mapping between corresponding Cantor intervals for 
different a by Sierpiñski-like functional equations. Moreover, for arbitrary a > 1 we find 
the iterated kernels of the integral equation (1.1), as well as new spline approximations 
for the solution. 

2. The sequences	and e 
Besides of the foregoing results from 111, for the piecewise representation of the solution 

of (1.1) - (1.2) by polynomials and for the approximation of 0 by splines we need an 
auxiliary sequence ,, = -y(a) defined as follows: If n has the dyadic representation 
n = d3 . . .d1 d0 with d3 = 1 and d, E {0, 1}, then

(2.1) 

The first elements of this sequence are 

-to O, 71 =a-1, 72 =(a-1)a, 73=(a-1)(a+1)


74 z (a-1)a2 , 75=(a-1)(a2+1), 76=(a-1)(a2+a)

17=(a-1)(a2+a+1), 78 = (a-1)a3 , y9=(a-1)(a3+1) ..... 

For integers a 2 also the numbers	are integers. In particular, for a = 2 we have 

7,, = n. It is easy to see that the sequence ,, has the property 

72 n = 
72n+l=a7n+a_1}	

(n€No).	 (2.2) 

In view of a 0 1 the sequence IN can also be defined by (2.2), because the first equation 
implies -y = 0, and the next terms of the sequence are determined recursively by (2.2). 
According to (2.2), the generating function 

g(z) =
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satisfies the equation

	

g(z)	
z(a-1) 

a(1 + z)g(z 2 ) + 1—

Defining (Tg)(z) g(z2 ), we find for the solution the series 

	

00	 00 a—i	atz2" 
g(z) = (a—i)	a"((i + z)T)" _2 =	 (2.3) 

	

n=O	 n=O +  

which is convergent for Izi < i. For a = 2 we have, of course, g(z) = (I ZZ)2 (cf. also [7: 
p. 451]). For later purpose we list some further properties of 7• 

Lemma 2.1. The sequence -y,, has the following properties: 

(i) 72k-fl = 72k + 71 (k > 0). 
(ii) a'7k = 72'k and a'(7k + 1) = 721(k+I)-1 + 1 (k, 1 2 0). 

(iii) 7k +71+1 = a tm if k+l+ 1 = 2" (k,12 0). 

Proof. Statement (i) and the first equality in (ii) follow immediately from (2.2). 
The second equality in (ii) can easily be proved by induction with respect to 1, since it 
is an identity for I = 0 and the induction step reads in view of (2.2) 

aI+l(7k + 1) a72:(k+1)_j + a = 72'+l(k+l)_l + 1 

In order to show statement (iii) we assume without loss of generality that k > 1 and 
that k has the representation k = d0 + 2d 1 + ... + 2 tm_l dm _ i with d_ 1 = 1 and 
d,, E 10, 11, i.e. the dyadic representation k =dm _ i dm _ 2 - -d0 . This implies that I has 
the representation 1 = 30 + 221 +... + 2m_23_2 with d = 1 - d since 

k +1 =	2 = 2 - i. 

In view of (2.1) with .s = in - 1 and n = k, resp. n = I and d instead of d, we get 

7k+7,=(a_1)av=am_i. 

This completes the proof I 

Lemma 2.2. In the case of a>2 we have -y +' 2 7, + a — i (n EN0). 

Proof. For n = 2k the inequality is even an equality in view of Lemma 2.11(i). 
Moreover, it is true also for n = 1. - Assume that 7m+l 2 7 + a - i is true for 
m <n 2k+ 1. Then in view of (2.2) and a 2 2 weget-y2k+2 = a-yk+l 2 a(7k+a-1) = 
72k+l + a - 1 and the assertion is proved by induction I
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Moreover, we need the sign sequence e,, = (_i)(n), where v(n) denotes the number 
of "1" in the dyadic representation of n, i.e. v(n) is the binary sum-of-digits function 
(cf. [41).

n	0	1	2 3 1 4 5 6	7 1 8 9 10 11 1 12 13 14 15 
v(n) 0	1	1 2	1 2 2	3	1 2	2	3	2	3	3	.1 
En	1 -1 -1	1 -1	1	1 -1 -1	1	1	-1	1	-1	-1	1


Table 1: The first numbers u(n) and e 

	

Considering (2.1) and (2.3) we get in view of	- v(n) for a - 1 the generating

function

1= 	v(n)	(IzI < 1).	 (2.4)


The sequence v(n) mod 2 with values from 10, 11 is the Morse sequence (cf. [5)) which is 
equivalent to en by the mapping 1	—1 and 0 — 1. It is easy to see that the sequence

En can be also defined recursively by 

eo=l 
E2n = e	

(2.5) 
and E2n+j = —en (n > 0). J


According to (2.5) the generating function 

1(z) =	e n z' 

satisfies the equation 1(z) (1 — z)f(z 2 ). Hence, we get in view of 1(0) = Eo = 1 the 
representation

A--) 
=(

1 - Z2"
 < 1). (2.6) 

The sequence e, was already used in [1] for the determination of the signs of the Fourier 
coefficients of the solution 0 of (1.1) - (1.2) in the case of a = 2. 

In view of (2.5) it is easy to show by means of induction that the sequence e has 
the properties

2n	 2n-3-1 
= e,	and	e,, = 0	 (2.7)


as well as
1 0	for v = 22h1 mod 22, 

= <	
€N)	(2.8)
1 2e v else  

where the signs of the non-vanishing differences alternate. Furthermore, we have 

k	 ena27n	for k = 4ri 
I— —e71	for k = 4n + 1 

—1
	 CnY4n+3 for k = 4n + 2 
 0	for k=4n+3


which follows from (2.2) and (2.5) by induction. 
Both sequences 7n and e, appear in the following connection.
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Lemma 2.3. We have the identity

2"-1 
- e_/(6)) = 

	
ee' .	 (2.9) 

	

Proof. This formula is true for n = 1 in view of i..=	= . If (2.9) is true for

a certain n, then it follows 

n	 2n-1 

[1(1 - e /(") =e))ee' 

= eve- > Eve .n+' 

2+1_1 
= 

where we have used (2.2) and (2.5). Thus, assertion (2.9) is proved by induction I 
We remark that

2'-! 
fJ(i - e_l0) 

=	 = 	2"-!	
rn m	(2.10)€P rn!a m L.s 

k0	 rn=O 
implies that the sum

2"-I 
sn(rn) =	 (2.11) €

equals to0 for m=0,1,...,n-1. 

Proposition 2.1. For m n we have 

(-1) m m! a n(2m_+I) rn-n	
p()prn_n_p(a) 2	

>:: (-1)"(m 
fl) 

	

s(m) = (m - n)!	bn 

Proof. From (1.3) we get 

n-I c(p)	ri 1 -	 ab' 

	

= 11	p/(bac)	pn	I[•I(i - e "1 ') 
a	k=O	 k=o 

and in view of (2.10) and (2.11) we find 

______	 (_1)msn(m) 
()	L = a 2	 prnn b" >	m!an2l 

	

(an)	 m0 

Using the representations (1.4) and (1.6), the last with . instead of p, we obtäiñ the 
assertion by means of the Cauchy product and comparison of coefficients I
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In particular, we have 

2'-1 
1: C1,791 = (-1)"n!(a— 1)"a 2	 (2.12) 
p=O 

and
2"-1

- (-1)"(n + 1)! (a - 1)n(an - 1)a 2	 (2.13) n+I_ 

V=0 

3. Cantor sets and singular functions 

In this section, we explore Cantor sets which are immediately connected with the so-
lution 0 of (1.1) - (1.2) in the case of a > 2. First, we note that in the case of a > 2 
Lemma 2.2 implies

Yn + 1 < 7n+I .	 (3.1) 

Hence, we can define the following open intervals Gkn (k = 0, 1,. . , 2" - 1; n E No) 
and the corresponding union Gm: 

	

(72k+1 2k+1\	
m 2-1 

Gk =	1 )	
Gm = U U Gkn .	 (3.2) 

n0 k=O 

In order to show that all Gkn are disjoint, we consider the following closed intervals 
F,, (k = 0,1,..., 2" - 1; n E N0 ) and the corresponding union F: 

	

Fk = 12! , fk + 11	 2"-I 

[a"	an j '
	Fn

	

= U Fk .	 (3.3) 
k=0 

Note that F0 = [0,1] and in view of (3. 1), all Fkn with a fixed n are disjoint. From 
Lemma 2.11(u) we see that Fkn and F2ik+j have the same left end-points and, analo-
gously, Fkn and F2:(k+I)_Ifl+, the same right end-points for all 1 E N0. 

Lemma 3.1. In the case of a >2, for all n EN and .k = 0,1,...;2" —1 we have 
Gkn C Fkn and the disjoint decomposition 

Fk = F2k,fl+l U Gkn U F2k+1,n+1 .	(3.4) 

Proof. In view of (2.2), we have 

Fkn	
a7k a7k + a	72k 72k+1 + 1 

^ 

=	T' a'+1	=	TiT' a'+' 

According to (3.2), we see that from the intervals G,,n (ii = 0, 1,... , 2" - 1) exactly 
the interval Gkfl lies in Fk, since 72k < 7k + 1 < 72k+1 < + 1. In view of (3.3) 
this implies the decomposition (3.4) (cf. Figure 1) 1



Cantor Sets and Integral-Functional Equations	1005 

F 

F0 ,	 G.	 F,, 

F,,	 F12	G!	F32 

F0, 1G 01, F, 3 I	F,3	F,3	
l F43 t,, F,,	 F, 'ci, F,, 

I 

Figure 1: The first Cantor intervals 

The disjoint composition (3.4) shows that also all Gk are disjoint and, moreover, that 
= (0, 11 \ Cm. Since y2k+1 - 72k	a - 1, we get for the measure of * G k that 

I G	=	4-, and for the measure of the open Cantor set 

G =	
2'-1Gk 

n0 k=0 

we have

lCl22 =1 
n=0 

and hence for the perfect Cantor set F = [0, 1]\G the measure I Fl = 0 as in the original 
construction of Cantor, i.e. in the case of a = 3. We remark that the Cantor set G can 
be generated from [0,1] by iteration of the functions f 1 (x) = 1 and f2 (x) = + 1 (cf. 
13: p. 61, [1] or (131). For a = 2 the intervals C k are empty and F = F = [0, 1]. 

Next, for arbitrary a> 1 we introduce numbers x = x(a) of the form 

x=(a_l) V'	(0'E{0,1})	 (3.5) 
p=I 

which lie in [0,1] in view of

(a-1)---=1.	 (3.6)
at' v= I 

In the case of C m = 0 for ii 2 n + 1 we write 

n

(vE{0,1})	 (3.7) L.i at' 

for n E N0 . Denoting , = d,_ 0' for ii = 1,... ,ri and k = d0 + 2d 1 + ... + 

we see from (2.1) thatx = 4- with a certain index k E {O, 1,. .. ,2' - 11, i.e. x,, is 
the left end-point of Fk if we use the notation (3.3) also for 1 < a 2. Clèa.rly, in the	- 
case of a = 2 these numbers are equal to r (n E N; -k = 0,1,... ,2' —1) and they lie
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densely in [0,1]. The points (3.5) fill the whole interval 10,11 not only for a = 2, but also 
for 1 < a < 2. In order to see this we remark that in the case of 1 < a < 2 the intervals 
F2k, and F2k+1,fl are overlapping with F2k,n U F2k+I = Fk,_ 1 , so that F0 = [0,1] 
implies that Fn 10, 11 for all n E N (cf. (3.3)). Hence, the left end-points (3.7) of the 
intervals Fk (k = 0, 1,. . . , 2' –1) form an C-net (e = -) for the interval [0,1] since for 
every fixed n each x E [0, 1] is contained in at least one Fk, i.e. x,. <x x,, +-I- with 

a n 

x, from (3.7). Having already determined x,, for a given x E [0, 1], the next number 
en-i-i in (3.5) reads 

	

- JO for xn <_ x <x,2 +	 i.e. x  F2k,n+1 \F2k+1,fl+1 

- ii  for Xn + TWITT<x X  +-I- , i.e. x  F2k+1,n+I \F2k,+l an 

whereas efl+1 can be chosen arbitrarily for x,, + ir < x < x,, + 1 , i.e. for x E 
F2k,n+1 fl F2k+1,n+1. 

Lemma 3.2. In the case of a >2 the numbers (3.5) and  = (a–	!L. with€
7j , E {0, 1} have the following properties: 

(i) The usual order of x and y is equivalent to the lexicographic order of (' , 
and (ii,'72 .... ). 

(ii) The 2 n intervals Gkn with fixed n are exactly the intervals (x, y) with , = 
ii,. (ii = 1,2,... ,n), n+1 = 0, e0+2 =	= ... = 1 and 17n+1 = 1, 71n+2 = 77n+3 

Proof. Let be (i , 2,...) < (m ,712,...) lexicographically, i.e. , = 77, for 1 v < 
m - 1 and Cm < u rn for a certain m E N, which is only possible for em = 0 and u rn = 1. 
Then we have in view of a> 2 the inequality

00 a–i	 1	a-2 y–x>------(a-1)	—=---->0. am	 oP	am 

Vice versa, (I,e2,...) > (771,772,...) implies analogously x > y, so that property (i) is 
valid. 

In order to show property (ii), we first remark that for k < 2" - 1 the dyadic 
representation of k has at most n digits, i.e. k = d0 + 2d 1 + ... + 2''d_ 1 with 
d E {0, i}. Hence, for the left end-point of Gkn we have as in the foregoing case of Fk 
and in view of (3.6) the representation 

72k + 1	 1	 CO

(a 

	

a"1 =(a	 + –1)-----.j-= -
	oP 

	

V=1	 v=1 

with , = d_ s, for v = 1,2,...,n,	= 0 and	= 1 for ii ? n +2. For the right

end-point of Gkn we have analogously

	

( n	 1) 1	 n-4-1 

an + l	 oP 
=(a-1) 72k+1 

with 77, = d_,, for u = 1,2,... ,n and 77n--I = 1, so that property (ii) is proved I
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Remark. In the case ofa=2,(eI,e2,...)<(77l,2,...) implies only xy. 

Lemma 3.2 shows once more that all Gkn are disjoint. Property (ii) from Lemma 
3.2 means that the left end-points x of Gk and the corresponding right end-points 

can be written in the form

1	 1)(V'-+ x / am + an+l	and	x+ = (a -	all 

with , E {0,1}. Since these end-points belong to the closed set F, also all points of 
the form (3.5) belong to F. 

Now, for a fixed a > 2 and a fixed c 2 2 we define a function go : F '-* [0, 1] by 

	

go(x)=(c-1)-	1: (3.8)  Ct+ V=I 

with x = x(a) from (3.5), i.e. go : x(a) x(c). According to property (1) from Lemma 
2.3, this function is strictly increasing and, obviously, it is also continuous. We extend 
go to the whole interval 10,11 by the definition 

2	 c-2 
go(x + a— 

	

-_-.j _ t) =go(x)+ —, - 1-t	(0< t <1),	(3.9) 

i.e. in view of x + - = we extend the function go linearly on the intervals Gk, 
so that it remains continuous and increasing (but only for c > 2 strictly increasing). 
Moreover, replacing t by 1 - tin (3.9) we get 

—— 
go X+ - 

a 2 j-t) =go(x)— c 2 --, - j-t (0<t <1). (3.10) 

Next, we show that the function g = go satisfies for 0 < t < 1 the following system of 
functional equations: 

(i)  g (!	a-2 

(ii) g() = g(t). 
(iii) g(t) + g(1 - i) = 1. 

The general solution of (ii) alone reads g(t) = t0Q(j) , where Q(x + 1) = Q(x) is an 
arbitrary 1-periodic function and c = 

Proposition 3.1. The function g = g is the unique bounded solution of the func- 
tional equations (i) - (iii) in [0, 1]. 

Proof. 1. First, we show that the function go satisfies equations (i) - (iii). Clearly, 
go satisfies (i) in view of (3.9) with n 0, and (ii) follows immediately from (3.5), (3.8) 
and (3.9). In order to show that go satisfies also equation (iii), we assume first that 
x E F, i.e. x is of the form (3.5). Then in view of (3.6) we have 

1_x=(a_1)>-!'-
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with ,, = 1 - , and in view of (3.8) we get 

00	 00 
90(x)+go(1–x)=(c_1) — + (c — C &I L1	L._ C" v=I	 v=I 

In the case of x	F, i.e. x E Gkn, x has the representation x = x +	4i with

0< t < 1, so that go(x) is given by (3.9). In view of 1 –x = 1 –x — 4t, where 
1 -	= y+ for a certain right end-point y, we get according to (3.10) that 

– go(1–x)=go(1–X—) – c 2 ---1-t. 

This together with (3.9) implies that 

go(x) + go(1 - x) = go(x) + go(1 — x) = 1 

since x E F 
2. Let g be a further solution of equations (i) - (iii). For 0	t	1 we put 

d(t) = Igo(i) - g(t)I. In view of (i) we have d(t) = 0 for t 1 — . Hence, if there 
exists a point 10 E 10,1] with d(to) > 0, then for t 1 = amin{to, i–to } we have t 1 E [0, 1]. 
We show that d(t 1 ) = cd(to). In the case of to < this follows immediately from (ii). 
In the case of to > 1– we first get from (iii) that d(1 –ta) = d(to) and afterwards from 
(ii) that d(t 1 ) = cd(to). Thus for the sequence 1,, = a min {t_ i ,1 — t_} we obtain 
d(t) = c"d(to) and in view of c 2 2 a contradiction to the boundedness of g I 

Proposition 3.2. Suppose that g satisfies properties (ii) and (iii). Then we have 

/ 
g(x 0 + — = go(x n ) + 1-g(t)	 (3.11) " an J cn 

for 0 t < 1, with x, from (3.7). Moreover, g(x) = go(xn). 
Proof. Equation (ii) for t = 0 implies g(0) = 0, hence in view of go(0)	0 we


have an identity for n 0. Assume that the assertion is true for a certain n - 1. Since 
x, E F, we have either x,,	or i 2 1– . In the first case x,, = ! L and we get

from (ii) and (3.8) that 

/	t\ = 1	 1.	
Cl?' 

g kn + —) —go(xn_I)+ — (t) = g0(x)+ —g(t) \	a'/	C 

for 0 <t < 1. In the case of x,, 1 - we have in view of , = 1 the representation 

1–x0=(a--i)	1e +(a-1)	Yn-1+ 
U1	 v=n+1 

with y,,	and in view of (iii) and g(i) = 1 — g(0) = 1 the relation 

' 

	

1g(xn )9(1_xn ) 9 (yn _ i +_1	go(yni)+ 1 _ an J	 ci'
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which implies that
g(x) = 1— gO(Yn-i)—	= g0xn) cn 

Now, we get by application of (iii) the relation 

I 
gixn+_1=g(i_yn_i__+-4)=i_g(yn_i+-t) an)

= 1— go(yn-1) — g(1 - t) = go(xn) +	g(t)
cn 

for 0 <t 1, which proves (3.11) by induction. The second assertion of the proposition 
follows from (3.11) for t = 0 I

Oii±i. Remarks. 1. For g = go and t = (a - 1)	a equation (3.11) easily follows - 
from x = Zn +-1- and (3.8). an 

2. Equations (iii) and (3.11) imply 

g(Zn —	=go(zn)— 
1 g(t) 

for 0 < t < 1 with Zn = 1 - x, and g(zn) = go(Zn). 
3. The statement of Proposition 3.1 is also valid if we replace (iii) by 

'a — i	t\	c—i	1 gi—+—l=------+—g(t)	(0t1), \ a	a)	c	c 

i.e. by (3.11) with n = 1. Proposition 3.2 implies that g = go satisfies this equation. 
The proof of the uniqueness can be carried out analogously as in the second part of the 
proof of Proposition 3.1, however, with the sequence 

— fai n _ i	if t.—i <1 
— ) at_ 1 — a + 1 if tn_i > 1—

Thus we have a generalization of a result of W. Sierpitiski [10] concerning the case of 
a = 3 and c = 2, where go is Cantor's singular function (cf. also [9: p. 241]). A non-
constant g : [0, 11 '- [0, 1] is called (strictly) singular, if it is continuous and (strictly) 
increasing with g'(t) = 0 a.e. (cf. [6], where also some examples of strictly singular 
functions are given). In the case of c = 2, go is a singular function which is constant on 
the closed intervals Gkn, more precisely, (3.10) implies in view of - yk( 2 ) = /c that 

go(t) 
= 2k+1	for I E Gkn .	 (3.12) 

Proposition 3.3. In the case of c = 2, g = go is the unique function of bounded 
variation on [0, 1] satisfying only 

g ( , ) =g(t)	and	g(t) + g(i — I) = 1.	 (3.13)
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Proof. We show that every function g of bounded variation on [0,1] satisfying (3.13) 
has the property

1	 —i 

	

g(t)	-	for 1 -	t	
a	

.	 (3.14) 2	a	a 
Let D denote the total variation of g in the interval G 0 = G00 . In view of (3.11) with 
c = 2 and Lemma 3.1 we have

V(g)=D 
Gk.	

2n 

for k = 0, 1,.. . , 2" - 1 and all n E N. Since the intervals Gkn are disjoint, for the total 
variation of g on the set Gm defined by (3.2) we get 

V(g)=	—D=(rn+1)D. 
n=O k=O 

For m - 00 this implies D = 0 since g has bounded variation, i.e. (3.14) is valid. Now 
the statement follows from Proposition 3.11 

4. Properties of the eigenfunctions 

In order to obtain relations between eigenfunctions of the integral equation (1.18), we 
first remember that a solution f of (1.18) with a > 1 is infinitely often differentiable 
and that we get by differentiation 

Af ( "(i) = a" J f"(r)dT. 
at—a+1 

Hence, the n-th derivative f( ' ) is also an eigenfunction of (1.18) to the eigenvalue Aa", 
so far as f(n) does not vanish identically (cf. [1: Formula (6.6) for A = i ]) . Next, we 
shall see that each derivative of f can be expressed as a linear combination of f with 
different arguments. For the first derivative f' we have 

	

f'(i) = [f (at) - f(at - a + 1)) .	 (4.1) 

In order to obtain a representation for the higher derivatives, we need the former se-
quences y and i,,. 

Lemma 4.1. Suppose that f is an eigenfunction of (1.18) with the eigenvalue A 
and nENo. Then we have 

f"(t) = A"a	e,,f(a"t - yu) .	 (4.2) 
i=0
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Proof. For n = 0 this equation is an identity. If (4.2) is true for an integer n, then 
we have in view of (4.1), (2.2) and (2.5) that 

2'-! 
f(fl+l)(t)= A'a" >i: ef'(a"t - 

v=0
2"-! 

=An1a2	 cv(f(aht_a7L,)_f(a+ht_a7I,_71)) 
v0 

2"	I 
= A' a	E E,f(a''i - 

such that (4.2) is proved by induction I 

Taking into account that f = On is an eigenfunction of (1.18) to the eigenvalue 
A = , and considering

= ab" = 1," 
a2 

(n) as well as (t)	(t) for all t, we get the following inversion of (1.14). 

Corollary 4.1. For alit E R and for all n E N0 , the solution 0 of (1.1)— (1.2) has 
the representation

2"-! O(t) =
	> ecb(a't - y,,)	 (4.3) 
a 2	v=0 

Proposition 4.1. The polynomials On have the property 

2"-1 .(2-- n+1) 
rn! a 2 

vbm(t 'v) = (M - n)!	b'	
bm_n ()	 (4.4)€

V=0 

for arbitrary m n 0. 

Proof. We apply Lemma 4.1 with I = ,bm and A =	and use that 

!I!±!1	a 2 
=

	

	bm_n(t) and A"a 2 = a hl ( m+ 1 ) = (rn—n)! 

Relation (4.4) is proved after replacing t by.0 an 

We remark that for n > rn > 0 the left-hand side of (4.4) vanishes, since the sums 
(2.11) vanish for these in and n. This is also the reason why for in > n the degree of 
the polynomials (4.4) reduces from m to m - n. In particular, for m n = 1 we have 

m(t) - m(t - a +1) = ma'—'(a - 1)m! (i).	 (4.5) 
a
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By analytic continuation this equation is even valid for all a different from the poles of 
as a function of a (these poles lie on the circle jal = 1). For t = (4.5) simplifies in 

view of (1.1) to
fa\ m	 fl\ bm	= -k-a	(a — 1)bm-i	)	 (4.6) 

for m odd. For all m E N0 , considering (1.3) and the generating function '-r for the 
Bernoulli numbers B, we can derive from (1.9) the representation 

	

bm(t)	(m)B(1 _a)am_m(), 

which for t =	contains (4.6) as a special case. Moreover, for all m E N, (1.7), (1.9) 
and	

d 
ap 
_e U 1J 4(p) = et1(p) (t + — ln(p)) 

imply by comparison of coefficients the recursion formula 
m 

	

01-W= (t —	bmi(t) + I	 B, (a	bm—(t), 

which for t = 0 is already known from [1. 
In the following, we once more restrict ourselves to a 2 2 and apply Lemma 4.1 

to the solution 0 of (1.1) - (1.2), i.e. we consider f = and \ = . For t E Fk, i.e. 
according to (3.3) for

7k 
<	7k + 1 

an	- an 
we have 0 <a"t - 7k < 1, but in view of (3.1) a"t — (0,1) for u 0 k. Hence, for 
the solution 0 of (1.1) - (1.2) with a > 2, which vanishes outside of (0,1), we get from 
Lemma 4.1

= E ka b'(a'1t — 7k) for i E Fk (4.7) 
and otherwise we have (1)(t) = 0, namely for t E G_ 1 with n 2 1. In view of (t) > 0 
for t E (0, 1) this result implies [13: Proposition 4.1] that F,, is the support of (") and, 
moreover, for ri = 2 that (t) is strictly convex for tin F02 or F32 , and strictly concave 
for t in F12 or F22 . In the case of a = 2 where 7k = k formula (4.7) reduces to 

= Ek2	0(2"t — k)	(k	[2'1 t])	 (4.8) 
in particular to	= 0 (cf. [11]). Formula (4.7) is very useful for the calculation 

of the L 2 -norms of ("), namely 

2'-1 
ll On) ll 2 =	J	2(a"i - 7k) dt = 

yk /a" 

Moreover, we find for the corresponding scalar product by m partial integrations 
(( n ) , (n+2-)) = ( _ 1) m ((n+-) , (n+-)) = ( _ 1)m 2 n + m a( n + m ) 2 b2 ( n + m) IIII2 

whereas ((n),(n+2m+1)) = 0 in view of the symmetry q(t) = ( 1 - t).
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5. Relations with polynomials 

For a > 2 and t E Okn given by (3.2) we have the inequality	a"t -	1 - 
Hence, we get in view of	,, C F,,, (4.7) and q5(T) '= b for I <r < 1 - that 

= Eka
n( I) 
2 b'1 c6(a't - -7k) = e kabh1+1	(t E Gk) 

Thus for t E Gk, (t) is a polynomial of degree n, a fact which is already known from 
[1], but now we also know the main term of this polynomial: 

g5(t) = Ek	 t +	(i E Gkn)  

Moreover, we can even determine the complete polynomials and include the limit case 
a = 2, where the intervals ?7kn degenerate to single points Since C lies densely 
in [0, 1], the function 0 is uniquely determined by means of these polynomials and 
continuity. 

Theorem 5.1. In the case of a > 2 and t in one of the closed intervals z7kn for 
k = 0,1,.. . , 2 n - 1 (n E N), the solution 0 of (1.1) - ( 1.2) has the representation 

2k 
q(t) = c,,	eJ'(a" 1 t - 7)	(t E Gkn)	 (5.2) 

where c,, is given by

b"1 
=	!.L!!±.l	=	(,.+1)(n-2)	 .	 ( 5.3) 

a 2 n!	a	2 

Proof. We use the representation (4.3) with n + 1 instead of n. For t € Gkn, i.e. 

72k +1 < < 
an+I- - a+l 

we have the inequalities a"t - 72k+1 0 and a"'t - 72k > 1. According to (3.1) 
and +1(r) = 0 for r 0, the terms q51(a+lt - ) vanish for ii> 2k + 1, but for 
ii 2k, in view of (1.16) with n + 1 instead of n, we have the representations 

- ) = 'n(a't 7v) 

for ii = 0, 1,. . . ,2k. This altogether implies the assertion U 

We remark that, for k = 0, formula (5.2) reduces to (1.12). 
Next, we are going to extend (5.2) to the larger interval
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Proposition 5.1. For a > 2 and t E Fk, i.e. j = 2&.±L with 0 < r < 1, the 
solution q of (1.1) —(1.2) has the property 

(7k± T) 
T	cn_,	 + T - 7.)	(0 r < 1)	(5.4) 

where c,, is given by (5.3). 

Proof. According too _< ant — yk =r <1 for tE Fk n and -y,+l <y	for u> 0

(cf. Lemma 2.2) we have the relations

(>1	for i'<k 

	

at-7=7k+T--"y	E[0,1] for v=k 
1<0	for v>k. 

	

Hence, (5.4) follows from (4.3) in view of	(t) = 0 for t	0, as well as (1.15) and 
(1.16)1 

By in differentiations of (5.4) we get in view of (m)(0) = 0 and b = mt,bm_ i the In 
Corollary 5.1. In the case of a > 2 and n > in > 0 the derivatives q(m) of the 

solution of (1.1) - ( 1.2) have the values 

(m)(7k) =	 _y)	(5.5) 

with 0 < k <2's - 1. 
In particular, in the case of a = 2 where	= ii the values (5.5) with m = 0 simplify


to

=	 - 1)!	
e 1 (k - v).	 (5.6) 

2	(n  
Thus in the case of a = 2 we obtain, for example, 

1	
() = 2	 1, 

.)=.,	 )=	..... 
We remark that the particular formula (5.6) can also be derived from (1.17). Namely, 
in the case of a = 2 the left-hand side from (1.17) can be written in the form 

vi >0

=(t)+(t_ ) 
cc 

+2 1:(,,2  + u + i)((t - 4i'+ 2) +
t
 - 4v+ 3))€

L-0	 2n	 2n 

	

+2(v2 + i)((t -
	

+ (t -
	1)) 

V=1	 .2n
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Putting in (1.17) with a = 2 successively 

1	2	3 
t,	t,	t, 

we obtain for the values () (k = 0, 1,2,...) a linear system of equations with a 
Toeplitz matrix T, which is the inverse of the Toeplitz matrix (e s ...,) ( = 0 for i < 0) 

1	 1 
11	 —1	1 
2 1 1  

T = 2 2 1 1	 ,	T' =	1 —1 —1	1 
4 2 2 1 1  
4 4 2 2 1 1 1 —1	1 —1 —1 

Since the right-hand side of (1.17) with a = 2 is c_iTb_i(2Tht) (cf. (5.3)), we obtain 
(5.6) alter simple calculations. 

6. Reduced representations 

The polynomial relation (5.4) reads for k = 1 

71+T 
( a ) + g5 1 - = e_ ibn_i(7i + r)	(0 < T < 1),	(6.1) 

where c, is given by (5.3). For large k, (5.4) is rather redundant so that we want to 
derive a reduced representation. For convenience, the first parameters l i,, e l, and k 
appearing in the later formula (6.2) are shown in Table 2 for the interesting indices u 
with d	0. 

Proposition 6.1. Assume that a 2 and that the number k E N has the dyadic 
representation k = d0 + d 1 2 + d2 22 + ... + d3 23 , d3 = 1 and d, E {0, 1}. Then with 
the notations k = d0 + d 1 2 + ... + d2' and l, = d+ 1 + d+2 2 + ... + d3 2'' for 
0 < u .s we have the relation

3 (7k + T' - Ek l' — ' =	 (P7k. +	(6.2) \ a'	) \ a'	I 

for 0 < r < aa , whenever d0 = d 1 = ... = d_ 1 = 0 and d0 0 0. 

Proof. Equation (6.2) can be derived by successive application of (4.5) to (5.4). 
But an inductive proof is more lucid. For k = 1, the representation is true in view of 
(6.1). In order to prove the assertion by induction, we assume that (6.2) is valid for a
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fixed k and take into consideration that the parameters di,, k 1,, l i,, s and a depend on 
k. Moreover, we recognize that k = k + 12', i.e. k	k mod 21, 0 /c, <2&+1. 

k dyadic Ek 10 Ej,, k0 1 1 Ej, k 1 12 Ej, k2 13 ei, k3 
0 01 
1 1 -1 0 1 1 
2 10-1 0 12 
3 11 1 1 -i 1 0 1 3 

100 -1 0 1 4 
5 101 1 2 -1 1 0 1 5 
6 110 1 1 -1 2 0 1 6 
7 111 -1 3 1 1 1 -1 3 0 1 7 

1000 -1 0 1 8 
9 1001 1 4 -1 1 0 1 9 

10 1010 1 2 -1 2 0 1 10 
11 1011 -1 5 1 1 2 -1 3  0 1 11 
12 11001 1-140 112 
13 1101 -1 6 1 1 1 -1 5 0 1 13 
14 1110 -1 3 1 2 1 -1 6 0 1 14 
15	1 111117-113 131-170 11.5

Table 2: The first parameters 1, E l . and k1, 

1. Induction from k to 2/c: In view of 2k = d0 2+d 1 22 +. . . +d3 2 1 = 2k + 2f21, 
the parameters of 2k depend on the parameters of k in the following way: 

k	4	k	1,,	s	or 

2k d.- I 2k_ 1 1_ I s + 1 a + 1 

Table 3: The parameters of 2k expressed by those of k 

where d_ 1 = k_ 1 = 1, = 0 and 1_ I = k, = k. Making in (6.2) the substitution n -* n—i, 
ii -4 1/-1, r i—i , so that 0< r <a	for the new T, we obtain 

	

(a7+ T)-
	=	 (a7k_, +€

a" 

and in view of a7k = 72k, 6k = 62k and Table 3 this is nothing else than (6.2) with 2k 
instead of k. 

2. Induction from 2k to 2k + 1: Formula (6.2) reads for 2k, instead of k and yi + r 
instead of r 

(72k+71+T	
f71+T\  17k, +7i +T'\ 

an	)	\ an / -	 ) = 
3	

'	a" =0 

where the parameters are those belonging to 2k. According to do = 0 we have a	1, 
so that the last equation is valid at least for 0	i + r	a = ' + 1, i.e. at least for 
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0 r 1. Multiplying (6.1) by E2k and adding the result to the foregoing equation, we 
obtain

(72k + 7' + T' + a'	I
S 

	

= E 2k Cn_1n(7I + r) +	 (7k. + 7i + T). 
\ at' 

L' I 

But this is nothing else than (6.2) with 2k + 1 instead of 2k, since 72k + 71 = 72k+i, 
elk = —Elk-fl, and k of 2k is even so that 7k, + 71 = 7k,+l for v > 1, and the 
parameters of 2k + 1 depend on the parameters of 2k in the following way: 

2k	d	k	1	s 

	

2k+1 d	k+1 L i, s 0 

Table 4: The parameters of 2k + 1 expressed by those of 2k 

for ii > 1, whereas d0 = 1 for 2k + 1 and e = Elk for the parameter lo of 2k + 1 U 

Remark. For large k formula (6.2) has the advantage that the sum on the right-
hand side consists of O(ln k) terms only compared to the k terms in the sum of (5.4). 
Moreover, many di, in (6.2) can vanish. If the terms with di, = 0 are cancelled, then the 
remaining terms have alternating signs ending with ej = 1 in view of 1, = 0. Hence, 
(6.2) implies 

(7k + T
I	" 
+ 

( 7m + fl = cn_,_i_,_i (7k + fl	( 0 <r <ag) 
\ a'	 a'	I	 ' as I 

with m = k,.. 1 , i.e. k = rn + 2' and 7k = 7m + a'71. 

For t E Gk, from Gkn C Fkn, (6.2), (5.3) and (1.12) we obtain instead of (5.2) the 
reduced polynomial representation

S 
(72k + T\ 

) = e k C1I)a( T ) +	 + 
a+	

(6.3)!I 

where 1 < r < a - 1, and the parameters di,, ki,, i i, and s are those of 2k. The first 
term of (6.3) cannot be included into the sum with xi = 0 in view of d0 = 0. 

7. Approximation by splines 

Finally, we return to the general case a > 1. From (1.3) we observe that the Laplace 
transform 4 of the solution 0 of (1.1) - ( 1.2) is the limit of 

1 - e_P/(0k) 
G(p) = ,1:I	p/(ba')	 (7.1)
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for n —* oo. On account of Lemma 2.3 we have for n > 1 

aTb 2"—I 

G(p) = ee' .	 (7.2)€pfl
v=O 

According to £' { p '} =	and the shift property of the Laplace transform, we

obtain for the original function gn of Gn the representation 

2"-1 

g(t) = c,_ 1	e,(a'2t —	1	
(7.3) 

where c, is given by (5.3) and t = t for i > 0 and t+ = 0 elsewhere. We see that 
the functions gn are splines consisting of piecewise polynomials of degree at most Ti — 1. 
Moreover, g(t) 0 for t (0,1) since the sums (2.11) vanish for m <n, and according 
to G(0) = 1 we have f' g(t)dt = 1. In view of G(p) — (p) we get 

	

Tbh1 2-1	 1 
a 

lim	 Ee' =	 e1tf(t)dt 
n_oo p 	

f
0 

and, moreover, from the proof of [1: Theorem 3.11 we know that gn is uniformly con-
vergent to the solution 0 of (1.1) - (1.2), i.e. 

2n_1 

	

(t) = urn c.. 1	CL,(a't — 71,)' .	 ( 7.4) 
TI v= 0 

If we introduce the kernel

lb for! <t< 3+01 
ki(s,t)	

else	re	 (7.5) 1 
then equation (1.1) can be written as Fredhoim integral equation 

= I kj(s,t)0(s)ds 

It is possible to calculate also the iterated kernels kn defined by 

k+ i (s,t) = / kl(s,r)k(T,i)dT 

Proposition 7.1. For the iterated kernels k (n > 1) we have the representation 

k8 (s,t) = gn t — an
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where the splines gn are given by (7.3), i.e. 

2's—I 

	

k(s,t) =c_ 1	E,(a"t—s-7)' .	 (7.6) 
L'O 

Proof. Formula (7.6) is true for n = 1. Assume that (7.6) is valid for a fixed n> 1. 
In view of (7.5) we have 

1. 

e J k 	- r - 
0

(3+a-1)/a 

=be	f - (at—T—)dr 
.9/a

be2, = be2+1 (an + I t - s -	+	(an+lt - $ - 72v )+ , an n 

where we have used (2.2) and (2.5). Hence (7.6) follows by c,, =	c,,_1 and inductions

Starting with fo(t) = k 1 (0,t) and calculating the iterates f,, = Lf_ 1 , we find 

f(t) = g1(t), and (7.4) follows once more from [1: Theorem 3.1]. 
The iterates I,, of the function fa, fo(i) = 1 for t E [0, 1] and fo(t) = 0 elsewhere, 

have the similar representations

2"-1 

	

f(t) = f kn(s,t)ds - RI	E, ((a - 7v) - (a"t -	- i))
n 
0 

with t defined as before, and they also converge to the solution 0 of (1.1) - (1.2). In 
the case of a = 2 where y, = u the last representations reduce to 

2"—I 1 
f(t) =	 (e,, - e,,_ 1 )(2"t - v)	 (7.7) 

2 2 n! =o 

with e... = 0, where the coefficients E. - for i > 1 were calculated by (2.8). Let 
us mention that the function jr = I,, of (7.7) is the (unique up to a constant factor) 
non-vanishing L-integrable solution of a particular two-scale difference equation, which 
arises from (1.1) with a = 2 by means of the trapezoidal rule (cf. [2]). 

Corrections. Unfortunately, [1] contains some misprints. On p. 164 1 replace 
4(O, p) by (0,a). On p. 164 9 cancel: quad. On p. 1653 replace n at the top of the 
product by n—i. On p. 176 replace (6.8) by (6.7). Moreover, the proof of the corollary 
on p. 176 becomes more lucid, if one recognizes that the first relation in (8.1) is also 
valid for t<O.	 -.
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