Cantor Sets and Integral-Functional Equations

L. **Berg and** M. **Krüppel**

Abstract. In this paper, we continue our considerations in [1] on a homogeneous integralfunctional equation with a parameter $a > 1$. In the case of $a > 2$ the solution ϕ satisfies relations containing polynomials. By means of these polynomial relations the solution can explicitly be computed on a Cantor set with Lebesgue measure 1. Thus the representation of the solution ϕ is immediately connected with the exploration of some Cantor sets, the corresponding singular functions of which can be characterized by a system of functional equations depending on a. In the limit case $a = 2$ we get a formula for the explicit computation of ϕ in all dyadic points. We also calculate the iterated kernels and approximate ϕ by splines in the general case $a > 1$.

Keywords: *Integral-functional equations, generating functions, Cantor sets, singular functions, relations containing polynomials, iterated kernels, approximation by splines*

AMS subject classification: 45 D 05, 39 B 22, 34 K 15, 26 A 30, 41 A 15

1. Introduction

In [1] we have shown that the homogeneous integral-functional equation

ction

\nshown that the homogeneous integral-functional equation

\n
$$
\phi(t) = L\phi(t), \qquad L\phi(t) = b \int_{a^t - a + 1}^{a^t} \phi(\tau) d\tau \qquad (b = \frac{a}{a - 1}), \tag{1.1}
$$

where $a > 1$ is a fixed parameter and $t \in \mathbb{R}$, has a unique compactly supported solution up to a constant factor. Since the support is contained in $[0,1]$, the constant factor can be fixed by the value of its integral:

geneous integral-functional equation
\n
$$
t = b \int_{at-a+1}^{at} \phi(\tau) d\tau \qquad (b = \frac{a}{a-1}), \qquad (1.1)
$$
\n
$$
t \in \mathbb{R}, \text{ has a unique compactly supported solution\nimport is contained in [0,1], the constant factor can\n
$$
\int_{0}^{1} \phi(t) dt = 1.
$$
\n
$$
\int_{0}^{1} \phi(t) dt = 1.
$$
\n
$$
(1.2)
$$
\n
$$
12
$$
\n
$$
t = 2, \qquad (1.3)
$$
$$

G. J. Wirsching has considered in $[12]$ the case $a = 3$ and in the paper $[13]$ also the case $a > \frac{3}{2}$, where ϕ is the limiting density of a certain transition probability of a non-homogeneous Markov process arising in a combinatorial problem. The case $a = 2$ was considered by W. Volk in [11] in order to construct some subspaces of $C^{\infty}[a, b]$, which are spanned by translates of ϕ .

Both authors: FB Mathematik der Universität, Universitatspl. 1, D-18051 Rostock

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

In this paper we continue our considerations in [1], primary for $a \geq 2$. For this reason, we list such results of [1] which we will need afterwards and, moreover, we make some supplements to them. The solution is infinitely often differentiable, symmetric with respect to the point $\frac{1}{2}$, and monotone at both sides of $\frac{1}{2}$. The solution has the support $[0,1]$ and it is strictly positive for $t \in (0,1)$. For $a > 2$ it is a polynomial on each component of an open Cantor set with Lebesgue measure 1. The solution ϕ of (1.1) - (*1.2)* can be obtained by means of successive approximation. For every *L*integrable function f_0 on the interval $[0,1]$ with $f_0(t) = 0$ for $t \notin [0,1]$ and the property $\int_0^1 f_0(t) dt = 1$, the iterates $f_n = Lf_{n-1}$ $(n \ge 1)$ converge uniformly on [0,1] to the solution ϕ of (1.1) - (1.2). Hence, on account of a result of W. M. Gerstein and B. N. Sadowski, the operator *L* is contractive on a certain subspace of $C^1[0,1]$ equipped with a metric ρ which is equivalent to the maximum norm (cf. [8]). $e^{(0,1)}$. For a
 p ith Lebesgue meantle is the set of b of $t \neq 2$
 p (*b*) = 0 for *t* $\neq 2$
 p (*c*) = 0 for *t* $\neq 2$
 p (*ba*^k)
 p (*ba*^k)
 p (*ba*^k)

The Laplace transform Φ of the compactly supported solution ϕ of (1.1) - (1.2) has the product representation

to the maximum norm (cf. [8]).

\nof the company supported solution
$$
\phi
$$
 of (1.1) - (1.2) has

\n
$$
\Phi(p) = \prod_{k=0}^{\infty} \frac{1 - e^{-p/(ba^k)}}{p/(ba^k)}
$$

\nto find that p is the number of numbers.

and the power series representation

$$
\Phi(p) = \sum_{n=0}^{\infty} \frac{\rho_n(a)}{n!} p^n \tag{1.4}
$$

which are both convergent for all $p \in \mathbb{C}$. The coefficients of the series are rational functions with respect to *a* and, starting with $\rho_0(a) = 1$ for $n \ge 1$, they can be determined by means of the recursion formula

$$
\Phi(p) = \prod_{k=0}^{\infty} \frac{1 - e^{-p/(ba^2)}}{p/(ba^k)}
$$
(1.3)
series representation

$$
\Phi(p) = \sum_{n=0}^{\infty} \frac{\rho_n(a)}{n!} p^n
$$
(1.4)
convergent for all $p \in \mathbb{C}$. The coefficients of the series are rational func-
ect to *a* and, starting with $\rho_0(a) = 1$ for $n \ge 1$, they can be determined
recursion formula

$$
\rho_n(a) = \frac{1}{(n+1)(a^n-1)} \sum_{\nu=0}^{n-1} {n+1 \choose \nu} \rho_{\nu}(a)(1-a)^{n-\nu}
$$
(1.5)
ave

$$
\frac{1}{\Phi(p)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \rho_n(\frac{1}{a}) p^n
$$
 $(|p| < 2b\pi)$ (1.6)

$$
\ln \Phi(p) = \sum_{n=1}^{\infty} \frac{B_n}{n!n} \frac{(a-1)^n}{a^n-1} p^n
$$
 $(|p| < 2b\pi)$, (1.7)
ne Bernoulli numbers

Moreover, we have

$$
\frac{1}{\Phi(p)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \rho_n \left(\frac{1}{a}\right) p^n \qquad (|p| < 2b\pi) \tag{1.6}
$$

and

$$
\ln \Phi(p) = \sum_{n=1}^{\infty} \frac{B_n}{n!n} \frac{(a-1)^n}{a^n - 1} p^n \qquad (|p| < 2b\pi) \;, \tag{1.7}
$$

where B_n are the Bernoulli numbers

l,

$$
\ln \Psi(p) = \sum_{n=1}^{\infty} \frac{1}{n!n} \frac{1}{a^n - 1} p^n \qquad (|p| < 2b\pi) ,
$$
\nre the Bernoulli numbers

\n
$$
B_0 = 1 \ , \quad B_1 = -\frac{1}{2} \ , \quad B_2 = \frac{1}{6} \ , \quad B_3 = 0 \ , \quad B_4 = -\frac{1}{30} \ , \dots
$$

The polynomials

$$
= \sum_{n=0}^{\infty} \frac{B_n}{n!} \rho_n \left(\frac{1}{a}\right) p^n \qquad (|p| < 2b\pi) \tag{1.6}
$$
\n
$$
= \sum_{n=1}^{\infty} \frac{B_n}{n!n} \frac{(a-1)^n}{a^n - 1} p^n \qquad (|p| < 2b\pi) \,, \tag{1.7}
$$
\nnumbers\n
$$
-\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = 0 \,, \quad B_4 = -\frac{1}{30} \,, \dots \,.
$$
\n
$$
\psi_n(t) = \sum_{\nu=0}^n {n \choose \nu} \rho_{n-\nu}(a) t^{\nu} \tag{1.8}
$$

will play an essential role later on. Note that in [1] we have used the abbreviation ψ_n for the polynomials (1.8) with $\frac{1}{a}$ instead of a. The polynomials ψ_n have the generating function tor Sets and Integral-Functional Equations 999

e that in [1] we have used the abbreviation ψ_n

of a. The polynomials ψ_n have the generating
 $=\sum_{n=0}^{\infty} \frac{\psi_n(t)}{n!} p^n$ (1.9) antor Sets and Integral-Functional Equations 999

ote that in [1] we have used the abbreviation ψ_n

ad of a. The polynomials ψ_n have the generating
 ψ_p) = $\sum_{n=0}^{\infty} \frac{\psi_n(t)}{n!} p^n$ (1.9)

(t) = $n \psi_{n-1}(t)$ (1. Cantor Sets and Integral-Functional Equations 999

Note that in [1] we have used the abbreviation ψ_n

ead of a. The polynomials ψ_n have the generating
 $(p) = \sum_{n=0}^{\infty} \frac{\psi_n(t)}{n!} p^n$ (1.9)
 $\frac{1}{n}(t) = n \psi_{n-1}(t)$ (1

$$
\frac{1}{a} \text{ instead of } a. \text{ The polynomials } \psi_n \text{ have the generating}
$$
\n
$$
e^{tp}\Phi(p) = \sum_{n=0}^{\infty} \frac{\psi_n(t)}{n!} p^n
$$
\n
$$
\psi'_n(t) = n \psi_{n-1}(t) \qquad (1.10)
$$
\n
$$
\psi_n(1-t) = (-1)^n \psi_n(t) \qquad (1.11)
$$
\n
$$
\text{in } \phi \text{ of } (1.1) \cdot (1.2) \text{ can be expressed by the polynomials}
$$
\n
$$
\frac{a-1}{a^{n+1}} \quad (n \ge 0), \text{ namely}
$$
\n
$$
= \frac{\psi_n(a^{n+1}t)}{n! \ a^{\frac{1}{2}(n+1)(n-2)}(a-1)^{n+1}} \qquad (1.12)
$$
\n
$$
\text{in } \phi \text{ of } (1.1) \cdot (1.2) \text{ and}
$$

and the properties

$$
\psi_n'(t) = n \psi_{n-1}(t) \tag{1.10}
$$

$$
\psi_n(1-t) = (-1)^n \psi_n(t) \tag{1.11}
$$

In the case of $a \ge 2$ the solution ϕ of (1.1) - (1.2) can be expressed by the polynomials ψ_n in the intervals $\frac{1}{a^{n+1}} \le t \le \frac{a-1}{a^{n+1}}$ $(n \ge 0)$, namely
 $\phi(t) = \frac{\psi_n(a^{n+1}t)}{(a^n + b)^n}$

$$
\phi(t) = \frac{\psi_n(a^{n+1}t)}{n! \ a^{\frac{1}{2}(n+1)(n-2)}(a-1)^{n+1}} \ . \tag{1.12}
$$

Also, the functions ϕ_n $(n \in \mathbb{N}_0)$ defined by $\phi_0 = \phi$ from $(1.1) \cdot (1.2)$ and

$$
\psi_n'(t) = n \psi_{n-1}(t) \qquad (1.10)
$$
\n
$$
n(1-t) = (-1)^n \psi_n(t) \qquad (1.11)
$$
\n
$$
\phi \text{ of } (1.1) \cdot (1.2) \text{ can be expressed by the polynomials}
$$
\n
$$
\frac{\psi_n(a^{n+1}t)}{n! a^{\frac{1}{2}(n+1)(n-2)}(a-1)^{n+1}} \qquad (1.12)
$$
\ndefined by $\phi_0 = \phi$ from (1.1) \cdot (1.2) and\n
$$
\phi_{n+1}(t) = \int_0^t \phi_n(\tau) d\tau \qquad (1.13)
$$
\ne. We recall for arbitrary $a > 1$ the following relations\n
$$
\phi_n
$$
, namely\n
$$
1)^n \sum_{\nu_1, \dots, \nu_n \ge 0} \phi\left(\frac{t}{a^n} - \frac{\nu_1}{a^{n-1}b} - \dots - \frac{\nu_n}{b}\right) \qquad (1.14)
$$
\n
$$
\frac{3^2}{2^n} (a-1)^n \phi(a^{-n}t) \qquad \text{for } t \le a-1 \qquad (1.15)
$$
\n
$$
\frac{1}{(n-1)!} \psi_{n-1}(t) \qquad \text{for } t \ge 1 \qquad (1.16)
$$

for $n \geq 0$ are needed in this note. We recall for arbitrary $a > 1$ the following relations between the functions ϕ , ψ_n and ϕ_n , namely

$$
\varphi_{n+1}(t) = \int_{0}^{\infty} \varphi_{n}(\tau) d\tau
$$
\n(1.13)\n\nneeded in this note. We recall for arbitrary $a > 1$ the following relations\n\nfunctions ϕ , ψ_{n} and ϕ_{n} , namely\n\n
$$
\phi_{n}(t) = a^{\frac{n(n-3)}{2}} (a-1)^{n} \sum_{\nu_{1}, \dots, \nu_{n} \ge 0} \phi \left(\frac{t}{a^{n}} - \frac{\nu_{1}}{a^{n-1}b} - \dots - \frac{\nu_{n}}{b} \right)
$$
\n(1.14)\n\n
$$
n \in \mathbb{N}, \text{ in particular}
$$
\n
$$
\phi_{n}(t) = a^{\frac{n(n-3)}{2}} (a-1)^{n} \phi(a^{-n}t) \quad \text{for } t \le a-1
$$
\n(1.15)\n\n
$$
\phi_{n}(t) = \frac{1}{(n-1)!} \psi_{n-1}(t) \quad \text{for } t \ge 1
$$
\n(1.16)\n\n
$$
\sum_{\nu_{1} \ge 0} \phi \left(t - \frac{\nu_{1}}{a^{n-1}b} - \dots - \frac{\nu_{n}}{b} \right) = \frac{\psi_{n-1}(a^{n}t)}{(a^{n-3})}
$$
\n(1.17)

for all t and $n \in \mathbb{N}$, in particular

$$
\phi_n(t) = a^{\frac{n(n-3)}{2}} (a-1)^n \phi(a^{-n}t) \quad \text{for } t \leq a-1 \tag{1.15}
$$

as well as

$$
\begin{aligned}\n\text{articular} \\
&= a^{\frac{n(n-3)}{2}} (a-1)^n \phi(a^{-n}t) \qquad \text{for} \ \ t \le a-1 \\
\phi_n(t) &= \frac{1}{(n-1)!} \psi_{n-1}(t) \qquad \text{for} \ \ t \ge 1\n\end{aligned} \tag{1.15}
$$

and

$$
\phi_n(t) = a^{\frac{n(n-3)}{2}} (a-1)^n \sum_{\nu_1, \dots, \nu_n \ge 0} \phi\left(\frac{t}{a^n} - \frac{\nu_1}{a^{n-1}b} - \dots - \frac{\nu_n}{b}\right) \qquad (1.14)
$$

\n1 t and $n \in \mathbb{N}$, in particular
\n
$$
\phi_n(t) = a^{\frac{n(n-3)}{2}} (a-1)^n \phi(a^{-n}t) \qquad \text{for } t \le a-1 \qquad (1.15)
$$

\n11 as
\n
$$
\phi_n(t) = \frac{1}{(n-1)!} \psi_{n-1}(t) \qquad \text{for } t \ge 1 \qquad (1.16)
$$

\n
$$
\sum_{\nu_1, \dots, \nu_n \ge 0} \phi\left(t - \frac{\nu_1}{a^{n-1}b} - \dots - \frac{\nu_n}{b}\right) = \frac{\psi_{n-1}(a^n t)}{(n-1)! \ a^{\frac{n(n-3)}{2}} (a-1)^n} \qquad (1.17)
$$

\n
$$
\ge \frac{1}{a^n}.
$$
 The solution ϕ of (1.1) - (1.2) satisfies the equation
\n
$$
\sum_{\nu = -\infty}^{+\infty} \phi\left(t - \frac{\nu}{a^n b}\right) = a^n b
$$

for $t \geq \frac{1}{a^n}$.

$$
\sum_{k=-\infty}^{+\infty} \phi\left(t-\frac{\nu}{a^n b}\right) = a^n b
$$

for all $t \in \mathbb{R}$ and all $n \in \mathbb{N}_0$. In [1] this was proved only for $n = 0$, but the general form easily follows by means of (1.1) and induction.

The eigenvalue problem

$$
\lambda f(t) = \int_{at-a+1}^{at} f(\tau) d\tau
$$
\n
$$
= \phi = \phi_0 \text{ from (1.1)} - (1.2) \text{ for } \lambda_0 = \frac{1}{4}, \text{ and for the}
$$
\n
$$
\lambda f(t) = \int_{a}^{a} f(\tau) d\tau
$$
\n
$$
= \frac{1}{4} \int_{a}^{b} f(\tau) d\tau
$$

 $\lambda f(t)$
with $a > 1$ has the solution $f = \phi$
eigenvalues $\lambda_n = \frac{a^n}{b}$ $(n \in \mathbb{N})$ the eig $= \phi_0$ from (1.1) - (1.2) for $\lambda_0 = \frac{1}{b}$, and for the eigenvalues $\lambda_n = \frac{a^n}{b}$ ($n \in \mathbb{N}$) the eigenfunctions $f = \psi_{n-1}$ and $f = \phi_n$ (cf. (1.8) and (1.13)), which have non-compact support.

The aim of this paper is to investigate in detail the Cantor intervals for $a > 2$, in which the solution ϕ of (1.1) - (1.2) is equal to certain polynomials, and to find these polynomials explicitly, i.e. to generalize (1.12) to the other Cantor intervals. The results are also valid in the limit case $a = 2$, where the Cantor intervals degenerate. In this connection we characterize the mapping between corresponding Cantor intervals for different a by Sierpiński-like functional equations. Moreover, for arbitrary $a > 1$ we find the iterated kernels of the integral equat different a by Sierpiński-like functional equations. Moreover, for arbitrary $a > 1$ we find the iterated kernels of the integral equation (1.1), as well as new spline approximations for the solution.

Besides of the foregoing results from [1], for the piecewise representation of the solution ϕ of (1.1) - (1.2) by polynomials and for the approximation of ϕ by splines we need an auxiliary sequence $\gamma_n = \gamma_n(a)$ defined as follows: If *n* has the dyadic representation $n = d_s \cdots d_1 d_0$ with $d_s = 1$ and $d_{\nu} \in \{0, 1\}$, then

$$
\gamma_n = (a-1) \sum_{\nu=0}^{s} d_{\nu} a^{\nu}.
$$
 (2.1)

The first elements of this sequence are

$$
\gamma_n = (a-1) \sum_{\nu=0} d_{\nu} a^{\nu}.
$$
\n(2.1)

\nThe first elements of this sequence are

\n
$$
\gamma_0 = 0, \quad \gamma_1 = a - 1, \quad \gamma_2 = (a - 1)a, \quad \gamma_3 = (a - 1)(a + 1)
$$
\n
$$
\gamma_4 = (a - 1)a^2, \quad \gamma_5 = (a - 1)(a^2 + 1), \quad \gamma_6 = (a - 1)(a^2 + a)
$$
\n
$$
\gamma_7 = (a - 1)(a^2 + a + 1), \quad \gamma_8 = (a - 1)a^3, \quad \gamma_9 = (a - 1)(a^3 + 1), \dots
$$
\nFor integers $a \geq 2$ also the numbers γ_n are integers. In particular, for $a = 2$ we have

\n
$$
\gamma_n = n.
$$
 It is easy to see that the sequence γ_n has the property\n
$$
\gamma_{2n} = a \gamma_n
$$
\n
$$
\gamma_{2n+1} = a \gamma_n + a - 1
$$
\nIn view of $a \neq 1$ the sequence γ_n can also be defined by (2.2), because the first equation implies $\gamma_n = 0$ and the next terms of the series.

 $\gamma_n = n$. It is easy to see that the sequence γ_n has the property

$$
\begin{aligned}\n\gamma_1 + 1) \,, \quad \gamma_8 &= (a - 1)a^3 \,, \quad \gamma_9 = (a - 1)(a^3 + 1) \,, \dots \\
\text{the numbers } \gamma_n \text{ are integers. In particular, for } a = 2 \text{ we have} \\
\text{that the sequence } \gamma_n \text{ has the property} \\
\gamma_{2n} &= a \gamma_n \\
\gamma_{2n+1} &= a \gamma_n + a - 1\n\end{aligned}\n\quad (n \in \mathbb{N}_0).
$$
\n(2.2)

In view of $a \neq 1$ the sequence γ_n can also be defined by (2.2), because the first equation implies $\gamma_0 = 0$, and the next terms of the sequence are determined recursively by (2.2). According to (2.2), the generating function

$$
g(z)=\sum_{n=0}^{\infty}\gamma_nz^n
$$

satisfies the equation

Cantor Sets and Integral-Fu
\n
$$
g(z) = a(1 + z)g(z2) + \frac{z(a - 1)}{1 - z2}
$$
\nwe find for the solution the series

Defining $(Tg)(z) = g(z^2)$, we find for the solution the series

Caator Sets and Integral-Functional Equations

\n
$$
g(z) = a(1+z)g(z^2) + \frac{z(a-1)}{1-z^2}
$$
\nwhere

\n
$$
g(z) = g(z^2), \text{ we find for the solution, the series
$$
\n
$$
g(z) = (a-1)\sum_{n=0}^{\infty} a^n((1+z)\dot{T})^n \frac{z}{1-z^2} = \frac{a-1}{1-z}\sum_{n=0}^{\infty} \frac{a^nz^{2^n}}{1+z^{2^n}}
$$
\n(2.3)

\nTherefore, $|z| < 1$. For $a = 2$, we have, of course, $g(z) = \frac{z}{(1-z)^2}$ (cf. also [7:1]

which is convergent for $|z| < 1$. For $a = 2$ we have, of course, $g(z) = \frac{z}{(1-z)^2}$ (cf. also [7: p. 451]). For later purpose we list some further properties of γ_n .

Lemma 2.1. *The sequence* γ_n *has the following properties:*

- (i) $\gamma_{2k+1} = \gamma_{2k} + \gamma_1 \quad (k \geq 0).$
- (ii) $a^l \gamma_k = \gamma_{2^l k}$ and $a^l(\gamma_k + 1) = \gamma_{2^l(k+1)-1} + 1$ $(k, l \ge 0)$.
- (iii) $\gamma_k + \gamma_l + 1 = a^m$ *if* $k + l + 1 = 2^m$ *(k,l 2 0).*

Proof. Statement (i) and the first equality in (ii) follow immediately from (2.2). The second equality in (ii) can easily be proved by induction with respect to *1,* since it is an identity for $l = 0$ and the induction step reads in view of (2.2)

$$
a^{l+1}(\gamma_k+1)=a\,\gamma_{2^l(k+1)-1}+a=\gamma_{2^{l+1}(k+1)-1}+1.
$$

In order to show statement (iii) we assume without loss of generality that $k > l$ and that *k* has the representation $k = d_0 + 2d_1 + \ldots + 2^{m-1}d_{m-1}$ with $d_{m-1} = 1$ and $d_{\nu} \in \{0,1\}$, i.e. the dyadic representation $k = d_{m-1}d_{m-2} \cdots d_0$. This implies that *I* has the representation $l = \bar{d}_0 + 2\bar{d}_1 + ... + 2^{m-2}\bar{d}_{m-2}$ with $\bar{d}_{\nu} = 1 - d_{\nu}$ since *k* = $d_0 + 2d_1 + ... + 2^n$

resentation $k = d_{m-1}d_{m-2}$
 $+ ... + 2^{m-2}\overline{d}_{m-2}$ with $k + l = \sum_{\nu=0}^{m-1} 2^{\nu} = 2^m - 1$.

$$
k+l=\sum_{\nu=0}^{m-1}2^{\nu}=2^m-1.
$$

In view of (2.1) with $s = m - 1$ and $n = k$, resp. $n = l$ and \overline{d}_{ν} instead of d_{ν} , we get

$$
\gamma_k + \gamma_l = (a-1) \sum_{\nu=0}^{m-1} a^{\nu} = a^m - 1
$$
.

This completes the proof \blacksquare

Lemma 2.2. *In the case of* $a \geq 2$ *we have* $\gamma_{n+1} \geq \gamma_n + a - 1$ $(n \in \mathbb{N}_0)$.

Proof. For $n = 2k$ the inequality is even an equality in view of Lemma 2.1/(i). Moreover, it is true also for $n = 1$. Assume that $\gamma_{m+1} \ge \gamma_m + a - 1$ is true for $m < n = 2k+1$. Then in view of (2.2) and $a \geq 2$ we get $\gamma_{2k+2} = a\gamma_{k+1} \geq a(\gamma_k + a - 1) =$ $\gamma_{2k+1} + a - 1$ and the assertion is proved by induction \blacksquare

Moreover, we need the sign sequence $\varepsilon_n = (-1)^{\nu(n)}$, where $\nu(n)$ denotes the number of "1" in the dyadic representation of *n,* i.e. *v(n)* is the binary sum-of-digits function $(cf. [4]).$ *n*, we need the sign sequence $\varepsilon_n = (-1)^{\nu(n)}$, where $\nu(n)$ denotes the dyadic representation of *n*, i.e. $\nu(n)$ is the binary sum-of-digits $\frac{n}{(n)}$ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (*n*) 0 1 1 2 1 2 2 3 1 2 2 3 2 where $\nu(n)$ denotes the number

binary sum-of-digits function
 $\frac{11}{3} \begin{vmatrix} 12 & 13 & 14 & 15 \\ 2 & 3 & 3 & 4 \\ 1 & -1 & -1 & 1 \end{vmatrix}$

and ε_n
 $\nu(n)$ for $a \to 1$ the generating
 $(|z| < 1)$. (2.4)

orse sequence (cf. [5]) which

Provevier, we need the sign sequence
$$
\varepsilon_n = (-1)^{\nu(n)}
$$
, where $\nu(n)$ denotes the $\nu(n)$ and $\nu(n)$ is the binary sum-of-digits.

\n $\frac{n}{\nu(n)} \begin{vmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 2 & 2 & 3 \\ 1 & 2 & 2 & 3 \\ 0 & 1 & 1 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 2 & 2 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 2 & 2 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{vmatrix} = \sum_{n=0}^{\infty} \nu(n) z^n$ \n(|z| < 1).

\nSince $\nu(n)$ mod 2 with values from $\{0,1\}$ is the Morse sequence (cf. [5])

\nIt is easy to see that the solution is the following. Theorem 1 to ε_n by the mapping $1 \mapsto -1$ and $0 \mapsto 1$. It is easy to see that the solution is:

\n $\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^{2^n}}{1 + z^{2^n}} = \sum_{n=0}^{\infty} \nu(n) z^n$

\n $\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^{2^n}}{1 + z^{2^n}}$

Table 1: The first numbers $\nu(n)$ and ε_n

Considering (2.1) and (2.3) we get in view of $\frac{\gamma_n}{a-1} \to \nu(n)$ for $a \to 1$ the generating function

$$
\frac{1}{1-z}\sum_{n=0}^{\infty}\frac{z^{2^n}}{1+z^{2^n}}=\sum_{n=0}^{\infty}\nu(n) z^n \qquad (|z|<1).
$$
 (2.4)

The sequence $\nu(n)$ mod 2 with values from $\{0,1\}$ is the Morse sequence (cf. [5]) which is equivalent to ε_n by the mapping $1 \mapsto -1$ and $0 \mapsto 1$. It is easy to see that the sequence ε_n can be also defined recursively by

Table 1: The first numbers
$$
\nu(n)
$$
 and ε_n
\nand (2.3) we get in view of $\frac{\gamma_n}{a-1} \to \nu(n)$ for $a \to 1$ the generating
\n
$$
\frac{1}{z} \sum_{n=0}^{\infty} \frac{z^{2^n}}{1 + z^{2^n}} = \sum_{n=0}^{\infty} \nu(n) z^n
$$
 (|z| < 1). (2.4)
\n2 with values from {0, 1} is the Morse sequence (cf. [5]) which is
\nmapping $1 \to -1$ and $0 \to 1$. It is easy to see that the sequence
\nrecursively by
\n $\varepsilon_0 = 1$
\n $\varepsilon_{2n} = \varepsilon_n$ and $\varepsilon_{2n+1} = -\varepsilon_n$ $(n \ge 0)$.
\n $f(z) = \sum_{n=0}^{\infty} \varepsilon_n z^n$

According to (2.5) the generating function

$$
f(z) = \sum_{n=0}^{\infty} \varepsilon_n z^n
$$

satisfies the equation $f(z) = (1 - z)f(z^2)$. Hence, we get in view of $f(0) = \varepsilon_0 = 1$ the representation

$$
f(z) = \prod_{n=0}^{\infty} (1 - z^{2^n}) \qquad (|z| < 1) \tag{2.6}
$$

The sequence ε_n was already used in [1] for the determination of the signs of the Fourier coefficients of the solution ϕ of (1.1) - (1.2) in the case of $a = 2$.

In view of (2.5) it is easy to show by means of induction that the sequence ε_n has the properties

renerating function

\n
$$
f(z) = \sum_{n=0}^{\infty} \varepsilon_n z^n
$$
\n
$$
z) = (1 - z)f(z^2).
$$
\nHence, we get in view of $f(0) = \varepsilon_0 = 1$ the

\n
$$
f(z) = \prod_{n=0}^{\infty} (1 - z^{2^n}) \qquad (|z| < 1).
$$
\n(2.6)

\neady used in [1] for the determination of the signs of the Fourier

\non ϕ of (1.1) - (1.2) in the case of $a = 2$.

\neasy to show by means of induction that the sequence ε_n has

\n
$$
\sum_{\nu=0}^{2n} \varepsilon_{\nu} = \varepsilon_n \qquad \text{and} \qquad \sum_{\nu=0}^{2n+1} \varepsilon_{\nu} = 0 \qquad (2.7)
$$
\n
$$
= \begin{cases} 0 & \text{for } \nu = 2^{2\mu - 1} \mod 2^{2\mu} \\ 2\varepsilon_{\nu} & \text{else} \end{cases} \qquad (\nu, \mu \in \mathbb{N}) \qquad (2.8)
$$
\non-vanishing differences alternate. Furthermore, we have

\n
$$
\frac{k}{\varepsilon} \qquad \begin{cases} \varepsilon_n a^2 \gamma_n & \text{for } k = 4n \end{cases}
$$

as well as

$$
\varepsilon_{\nu} - \varepsilon_{\nu - 1} = \begin{cases} 0 & \text{for } \nu = 2^{2\mu - 1} \text{ mod } 2^{2\mu} \\ 2\varepsilon_{\nu} & \text{else} \end{cases} \quad (\nu, \mu \in \mathbb{N}) \tag{2.8}
$$

where the signs of the non-vanishing differences alternate. Furthermore, we have

is easy to show by means of induction that
\n
$$
\sum_{\nu=0}^{2n} \varepsilon_{\nu} = \varepsilon_n \quad \text{and} \quad \sum_{\nu=0}^{2n+1} \varepsilon_{\nu} = 0
$$
\n
$$
e_1 = \begin{cases}\n0 & \text{for } \nu = 2^{2\mu - 1} \mod 2^{2\mu} \\
2\varepsilon_{\nu} & \text{else}\n\end{cases}
$$
\n
$$
e_n = \begin{cases}\n\varepsilon_n a^2 \gamma_n & \text{for } k = 4n \\
-\varepsilon_n \gamma_1 & \text{for } k = 4n + 1 \\
-\varepsilon_n \gamma_4 n + 3 & \text{for } k = 4n + 2 \\
0 & \text{for } k = 4n + 3\n\end{cases}
$$
\n
$$
e_n = \begin{cases}\n\varepsilon_n a^2 \gamma_n & \text{for } k = 4n + 1 \\
-\varepsilon_n \gamma_4 n + 3 & \text{for } k = 4n + 2 \\
0 & \text{for } k = 4n + 3\n\end{cases}
$$
\n
$$
e_n = \begin{cases}\n\varepsilon_n a^2 \gamma_n & \text{for } k = 4n + 1 \\
0 & \text{for } k = 4n + 3\n\end{cases}
$$
\n
$$
e_n = \begin{cases}\n\varepsilon_n a^2 \gamma_n & \text{for } k = 4n + 1 \\
0 & \text{for } k = 4n + 3\n\end{cases}
$$

which follows from (2.2) and (2.5) by induction.

Both sequences γ_n and ε_n appear in the following connection.

Lemma 2.3. *We have the identity*

Cautor Sets and Integral-Functional Equations

\nLemma 2.3. We have the identity

\n
$$
\prod_{k=0}^{n-1} (1 - e^{-p/(ba^k)}) = \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} e^{-\frac{\gamma_{\nu}}{a^k} p}.
$$
\nProof. This formula is true for $n = 1$ in view of $\frac{\gamma_1}{a} = \frac{a-1}{a} = \frac{1}{b}$. If (2.9) is true for $n = 1$ in view of $\frac{\gamma_1}{a} = \frac{a-1}{a} = \frac{1}{b}$. If (2.9) is true for $n = 1$.

a certain *n,* then it follows

2.3. We have the identity

\n
$$
\prod_{k=0}^{n-1} (1 - e^{-p/(ba^k)}) = \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{7}{4}k p}.
$$
\nThis formula is true for $n = 1$ in view of $\frac{\gamma_1}{a} = \frac{a-1}{a} = \frac{1}{b}$. If then it follows

\n
$$
\prod_{k=0}^{n} (1 - e^{-p/(ba^k)}) = (1 - e^{-p/(ba^n)}) \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{7}{4}k p}
$$
\n
$$
= \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{a\gamma_1}{a\gamma_1 + 1}p} - \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{a\gamma_1 + a - 1}{a\gamma_1 + 1}p}
$$
\n
$$
= \sum_{\nu=0}^{2^{n+1} - 1} \varepsilon_{\nu} e^{-\frac{2\gamma}{a\gamma_1 + 1}p}
$$
\nWe used (2.2) and (2.5). Thus, assertion (2.9) is proved by it that

\n
$$
\prod_{k=0}^{n-1} (1 - e^{-p/(ba^k)}) = \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{7}{4}k p} = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! a^{nm}} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} \gamma_{\nu}^m
$$
\nthe sum

\n
$$
s_n(m) = \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} \gamma_{\nu}^m
$$
\nor $m = 0, 1, \ldots, n - 1$.

\ntion 2.1. For $m \ge n$ we have

where we have used (2.2) and (2.5). Thus, assertion (2.9) *is* proved by induction I

We remark that

$$
= \sum_{\nu=0}^{2^{n+1}-1} \varepsilon_{\nu} e^{-\frac{2\nu}{a^{n+1}} p}
$$

we used (2.2) and (2.5). Thus, assertion (2.9) is proved by induction **I**
ark that

$$
\prod_{k=0}^{n-1} (1 - e^{-p/(ba^k)}) = \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} e^{-\frac{2\mu}{a^{n}} p} = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! a^{nm}} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} \gamma_{\nu}^m p^m
$$
(2.10)
the sum

$$
s_n(m) = \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} \gamma_{\nu}^m
$$
(2.11)
or $m = 0, 1, ..., n - 1$.
ition 2.1. For $m \ge n$ we have

$$
m) = \frac{(-1)^m m!}{(m-n)!} \frac{a^{\frac{n(2m-n+1)}{2}}}{b^n} \sum_{\mu=0}^{m-n} (-1)^{\mu} {m-n \choose \mu} \frac{\rho_{\mu}(\frac{1}{a}) \rho_{m-n-\mu}(a)}{a^{n\mu}}.
$$

implies that the sum

$$
s_n(m) = \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} \gamma_{\nu}^m \tag{2.11}
$$

equals to 0 for $m=0,1,\ldots,n-1$.

Proposition 2.1. For $m \geq n$ we have

hat the sum
\n
$$
s_n(m) = \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} \gamma_{\nu}^m
$$
\n0 for $m = 0, 1, ..., n - 1$.
\nposition 2.1. For $m \ge n$ we have
\n
$$
s_n(m) = \frac{(-1)^m m!}{(m - n)!} \frac{a^{\frac{n(2m - n + 1)}{2}}}{b^n} \sum_{\mu=0}^{m - n} (-1)^{\mu} {m - n \choose \mu} \frac{\rho_{\mu}(\frac{1}{a})\rho_{m - n - \mu}(a)}{a^{n\mu}}
$$
\nof. From (1.3) we get
\n
$$
\frac{\Phi(p)}{\Phi(\frac{p}{a^n})} = \prod_{k=0}^{n-1} \frac{1 - e^{-p/(ba^k)}}{p/(ba^k)} = \frac{a^{\frac{n(n-1)}{2}}b^n}{p^n} \prod_{k=0}^{n-1} (1 - e^{-p/(ba^k)})
$$
,
\new of (2.10) and (2.11) we find
\n
$$
\phi(p) \frac{1}{\phi(\frac{p}{a^n})} = a^{\frac{n(n-1)}{2}}b^n \sum_{m=0}^{\infty} \frac{(-1)^m s_n(m)}{m! a^{mn}} p^{m-n}
$$
.
\ne representations (1.4) and (1.6), the last with $\frac{p}{a^n}$ instead of p, we
\nby means of the Cauchy product and comparison of coefficients \blacksquare

Proof. From (1.3) we get

$$
E(t) = \frac{(-1)^{n} m!}{(m-n)!} \frac{a}{b^n} \sum_{\mu=0}^{\infty} (-1)^{\mu} {m-n \choose \mu} \frac{p_{\mu} (\frac{\pi}{a}) p_{m-n-\mu}}{a^{n\mu}}
$$

from (1.3) we get

$$
\frac{\Phi(p)}{\Phi(\frac{p}{a^n})} = \prod_{k=0}^{n-1} \frac{1 - e^{-p/(ba^k)}}{p/(ba^k)} = \frac{a^{\frac{n(n-1)}{2}} b^n}{p^n} \prod_{k=0}^{n-1} (1 - e^{-p/(ba^k)})
$$

if (2.10) and (2.11) we find

$$
\phi(p) \frac{1}{\phi(\frac{p}{a^n})} = a^{\frac{n(n-1)}{2}} b^n \sum_{m=0}^{\infty} \frac{(-1)^m s_n(m)}{m! a^{mn}} p^{m-n}.
$$

and in view of *(2.10)* and *(2.11)* we find

$$
\frac{1}{p} = \prod_{k=0}^{\infty} \frac{1 - e^{-p/(b a^k)}}{p/(b a^k)} = \frac{a^{-\frac{1}{2}} - b^n}{p^n} \prod_{k=0}^{\infty} (1 - e^{-p/(b a^k)})
$$
\n(a) and (2.11) we find

\n
$$
\phi(p) \frac{1}{\phi(\frac{p}{a^n})} = a^{\frac{n(n-1)}{2}} b^n \sum_{m=0}^{\infty} \frac{(-1)^m s_n(m)}{m! a^{mn}} p^{m-n}
$$

Using the representations (1.4) and (1.6), the last with $\frac{p}{a^n}$ instead of p, we obtain the assertion by means of the Cauchy product and comparison of coefficients \blacksquare

In particular, we have

$$
\begin{aligned}\n\text{C,} \text{C,} \text{C
$$

and

$$
\sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} \gamma_{\nu}^{n+1} = \frac{1}{2} (-1)^n (n+1)! (a-1)^n (a^n-1) a^{\frac{n(n-1)}{2}} . \tag{2.13}
$$

3. Cantor sets and singular functions

In this section, we explore Cantor sets which are immediately connected with the solution ϕ of (1.1) - (1.2) in the case of $a > 2$. First, we note that in the case of $a > 2$ Lemma 2.2 implies $y^{n}(n+1)!(a-1)^{n}(a^{n}-1)a^{\frac{n(n-1)}{2}}$. (2.13)
 Ar functions
 Areold 12.13 . (2.13)
 Areold 12.1 . (2.13)
 Areold 12.1 . (3.1)
 $y_{n} + 1 < y_{n+1}$. (3.1)
 Open intervals G_{kn} $(k = 0, 1, ..., 2^{n} - 1; n \in \mathbb{N}_{0})$ **f** singular functions

re Cantor sets which are im

n the case of $a > 2$. First,
 $\gamma_n + 1 < \gamma_{n+1}$.

: following open intervals *G*

ion G_m :
 $\left(\frac{\gamma_{2k}+1}{a^{n+1}}, \frac{\gamma_{2k+1}}{a^{n+1}}\right)$, G_m

I G_{kn} are disiont, we co **g**
 g immediately connected with the so-
 g is G_{kn} ($k = 0, 1, ..., 2^n - 1; n \in \mathbb{N}_0$)
 $G_m = \bigcup_{n=0}^{m} \bigcup_{k=0}^{2^n - 1} G_{kn}$ (3.2)

Consider the following closed intervals

$$
\gamma_n + 1 < \gamma_{n+1} \tag{3.1}
$$

Hence, we can define the following open intervals G_{kn} $(k = 0, 1, \ldots, 2ⁿ - 1; n \in \mathbb{N}_0)$ and the corresponding union *Gm:*

es
\n
$$
\gamma_n + 1 < \gamma_{n+1} \tag{3.1}
$$
\n
$$
\text{effine the following open intervals } G_{kn} \quad (k = 0, 1, \dots, 2^n - 1; \, n \in \mathbb{N}_0)
$$
\n
$$
G_{kn} = \left(\frac{\gamma_{2k} + 1}{a^{n+1}}, \frac{\gamma_{2k+1}}{a^{n+1}}\right), \qquad G_m = \bigcup_{n=0}^m \bigcup_{k=0}^{2^n - 1} G_{kn} \tag{3.2}
$$
\n
$$
\text{that all } G_{kn} \text{ are disjoint, we consider the following closed intervals}
$$

In order to show that all G_{kn} are disjoint, we consider the following closed intervals

lution
$$
\phi
$$
 of (1.1) - (1.2) in the case of $a > 2$. First, we note that in the case of $a > 2$
\nLemma 2.2 implies
\n
$$
\gamma_n + 1 < \gamma_{n+1}
$$
.\n(3.1)
\nHence, we can define the following open intervals G_{kn} $(k = 0, 1, ..., 2^n - 1; n \in \mathbb{N}_0)$
\nand the corresponding union G_m :
\n
$$
G_{kn} = \left(\frac{\gamma_{2k} + 1}{a^{n+1}}, \frac{\gamma_{2k+1}}{a^{n+1}}\right), \qquad G_m = \bigcup_{n=0}^{m} \bigcup_{k=0}^{2^n - 1} G_{kn}
$$
.\n(3.2)
\nIn order to show that all G_{kn} are disjoint, we consider the following closed intervals
\n F_{kn} $(k = 0, 1, ..., 2^n - 1; n \in \mathbb{N}_0)$ and the corresponding union F_n :
\n
$$
F_{kn} = \left[\frac{\gamma_k}{a^n}, \frac{\gamma_k + 1}{a^n}\right], \qquad F_n = \bigcup_{k=0}^{2^n - 1} F_{kn}
$$
.\n(3.3)
\nNote that $F_0 = [0, 1]$ and in view of (3.1), all F_{kn} with a fixed *n* are disjoint. From

Note that $F_0 = [0,1]$ and in view of (3.1), all F_{kn} with a fixed *n* are disjoint. From Lemma 2.1/(ii) we see that F_{kn} and $F_{2^ik,n+l}$ have the same left end-points and, analogously, F_{kn} and $F_{2^l(k+1)-1,n+l}$ the same right end-points for all $l \in \mathbb{N}_0$. $F_n = \bigcup_{k=0} F_{kn}$. (3.3)

in view of (3.1), all F_{kn} with a fixed *n* are disjoint. From
 F_{kn} and $F_{2^ik, n+l}$ have the same left end-points and, analo-
 F_{kn} and $F_{2^ik, n+l}$ have the same left end-points and, analo

Lemma 3.1. *In the case of a > 2, for all n* $\in \mathbb{N}$ *and k* = 0, 1, ...; $2^{n} - 1$ *we have* $G_{kn} \subset F_{kn}$ and the disjoint decomposition

$$
F_{kn} = F_{2k, n+1} \cup G_{kn} \cup F_{2k+1, n+1} . \tag{3.4}
$$

Proof. In view of (2.2), we have

$$
k+1)-1, n+l
$$
 the same right end-points for all $l \in$
\n*n* the case of $a > 2$, for all $n \in \mathbb{N}$ and $k = 0, 1$
\ndisjoint decomposition
\n
$$
F_{kn} = F_{2k, n+1} \cup G_{kn} \cup F_{2k+1, n+1}
$$
\nof (2.2), we have
\n
$$
F_{kn} = \left[\frac{a\gamma_k}{a^{n+1}}, \frac{a\gamma_k + a}{a^{n+1}}\right] = \left[\frac{\gamma_{2k}}{a^{n+1}}, \frac{\gamma_{2k+1} + 1}{a^{n+1}}\right].
$$

According to (3.2), we see that from the intervals $G_{\nu n}$ ($\nu = 0, 1, \ldots, 2^{n} - 1$) exactly the interval G_{kn} lies in F_{kn} , since $\gamma_{2k} < \gamma_{2k} + 1 < \gamma_{2k+1} < \gamma_{2k+1} + 1$. In view of (3.3) this implies the decomposition (3.4) (cf. Figure 1) **1**

Figure 1: The first Cantor intervals

The disjoint composition (3.4) shows that also all G_{kn} are disjoint and, moreover, that Figure 1: The firs
sjoint composition (3.4) shows that a
= $[0, 1] \setminus G_m$. Since $\gamma_{2k+1} - \gamma_{2k} =$
= $\frac{a-2}{2a+1}$, and for the measure of the op $a - 1$, we get for the measure of G_{kn} that Figure 1: The first Cantor inter
The disjoint composition (3.4) shows that also all G_{kn} are
 $F_{m+1} = [0,1] \setminus G_m$. Since $\gamma_{2k+1} - \gamma_{2k} = a - 1$, we get
 $|G_{kn}| = \frac{a-2}{a^{n+1}}$, and for the measure of the open Cantor set

$$
- \gamma_{2k} = a - 1,
$$
 we
of the open Canto

$$
G = \bigcup_{n=0}^{\infty} \bigcup_{k=0}^{2^n - 1} G_{kn}
$$

we have

$$
|G| = \sum_{n=0}^{\infty} 2^n \frac{a-2}{a^{n+1}} = 1,
$$

and hence for the perfect Cantor set $F = [0, 1] \setminus G$ the measure $|F| = 0$ as in the original construction of Cantor, i.e. in the case of $a = 3$. We remark that the Cantor set *G* can construction of Cantor, i.e. in the case of $a = 3$. We remark that the Cantor set G can
be generated from [0,1] by iteration of the functions $f_1(x) = \frac{x}{a}$ and $f_2(x) = \frac{x+a-1}{a}$ (cf. [3: p. 6], [1] or [13]). For $a = 2$ the intervals G_{kn} are empty and $F_n = F = [0, 1]$. $G = \bigcup_{n=0}^{{\infty}} \bigcup_{k=0}^{n} G_{kn}$
 $|G| = \sum_{n=0}^{\infty} 2^n \frac{a-2}{a^{n+1}} = 1$,
 \therefore antor set $F = [0,1] \setminus G$ the measure $|F| = 0$ as in the original
 x_i in the case of $a = 3$. We remark that the Cantor set G can
 x_i iter $\begin{aligned}\n\mathbf{q} &= \sum_{n=0}^{n} 2^{-n} \frac{1}{a^{n+1}} = 1, \\
\text{et } F &= [0,1] \setminus G \text{ the measure } |F| = 0 \text{ as in the original case of } a = 3. \text{ We remark that the Cantor set } G \text{ can} \\
\text{on of the functions } f_1(x) &= \frac{x}{a} \text{ and } f_2(x) = \frac{x+a-1}{a} \text{ (cf.}\n\end{aligned}$

re intervals G_{kn} are empty and $F_n = F = [0,1].$

ntroduce n

Next, for arbitrary $a > 1$ we introduce numbers $x = x(a)$ of the form

$$
x = (a - 1) \sum_{\nu=1}^{\infty} \frac{\xi_{\nu}}{a^{\nu}} \qquad (\xi_{\nu} \in \{0, 1\})
$$
 (3.5)

which lie in [0,1] in view of

$$
(-1)\sum_{\nu=1}^{\infty} \frac{3\nu}{a^{\nu}} \qquad (\xi_{\nu} \in \{0, 1\}) \tag{3.5}
$$
\n
$$
(a-1)\sum_{\nu=1}^{\infty} \frac{1}{a^{\nu}} = 1 \tag{3.6}
$$
\n1 we write

\n
$$
-1)\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} \qquad (\xi_{\nu} \in \{0, 1\}) \tag{3.7}
$$

In the case of $\xi_{\nu} = 0$ for $\nu \ge n + 1$ we write

$$
x_n = (a-1) \sum_{\nu=1}^n \frac{\xi_{\nu}}{a^{\nu}} \qquad (\xi_{\nu} \in \{0,1\})
$$
 (3.7)

for $n \in \mathbb{N}_0$. Denoting $\xi_{\nu} = d_{n-\nu}$ for $\nu = 1, ..., n$ and $k = d_0 + 2d_1 + ... + 2^{n-1}d_{n-1}$, we see from (2.1) that $x_n = \frac{\gamma_k}{a^n}$ with a certain index $k \in \{0, 1, ..., 2^n - 1\}$, i.e. x_n is for $n \in \mathbb{N}_0$. Denoting $\xi_{\nu} = d_{n-\nu}$ for $\nu = 1, ..., n$ and $k = d_0 + 2d_1 + ... + 2^{n-1}d_{n-1}$,
we see from (2.1) that $x_n = \frac{\gamma_k}{a^n}$ with a certain index $k \in \{0, 1, ..., 2^n - 1\}$, i.e. x_n is
the left end-point of F_{kn} if w the left end-point of F_{kn} if we use the notation (3.3) also for $1 < a \le 2$. Clearly, in the case of $a = 2$ these numbers are equal to $\frac{k}{2^n}$ $(n \in \mathbb{N}; k = 0, 1, ..., 2^n - 1)$ and they lie

densely in [0,1]. The points (3.5) fill the whole interval [0,1] not only for $a = 2$, but also for $1 < a < 2$. In order to see this we remark that in the case of $1 < a < 2$ the intervals *F*_{2k,n} and *F*_{2k+1,n} are overlapping with $F_{2k,n} \cup F_{2k+1,n} = F_{k,n-1}$, so that $F_0 = [0,1]$ implies that $F_n = [0, 1]$ for all $n \in \mathbb{N}$ (cf. (3.3)). Hence, the left end-points (3.7) of the intervals F_{kn} $(k = 0, 1, ..., 2ⁿ - 1)$ form an ε -net $(\varepsilon = \frac{1}{2a^n})$ for the interval [0,1] since for every fixed *n* each $x \in [0, 1]$ is contained in at least one F_{kn} , i.e. $x_n \leq x \leq x_n + \frac{1}{a^n}$ with x_n from (3.7). Having already determined x_n for a given $x \in [0,1]$, the next number ξ_{n+1} in (3.5) reads $F_n = [0,1]$ for all $n \in \mathbb{N}$ (cf. (3.3)). Hence, the left end-points (3.
 $(k = 0,1,\ldots,2^n - 1)$ form an ε -net $(\varepsilon = \frac{1}{2a^n})$ for the interval [0,1]
 α each $x \in [0,1]$ is contained in at least one F_{kn} , i.e. $x_n \$ **Let up the case of a** L **Let up the interval** [0,1] since for y fixed *n* each $x \in [0,1]$ is contained in at least one F_{kn} , i.e. $x_n \le x \le x_n + \frac{1}{a^n}$ with rom (3.7). Having already determined x_n for a given $x \in [0$

$$
\xi_{n+1} = \begin{cases} 0 & \text{for } x_n \le x < x_n + \frac{a-1}{a^{n+1}}, \qquad \text{i.e. } x \in F_{2k, n+1} \setminus F_{2k+1, n+1} \\ 1 & \text{for } x_n + \frac{1}{a^{n+1}} < x \le x_n + \frac{1}{a^n}, \text{ i.e. } x \in F_{2k+1, n+1} \setminus F_{2k, n+1} \end{cases}
$$

whereas ξ_{n+1} can be chosen arbitrarily for $x_n + \frac{a-1}{a^{n+1}} \leq x \leq x_n + \frac{1}{a^{n+1}}$, i.e. for $x \in$ $F_{2k,n+1} \cap F_{2k+1,n+1}$.

Lemma 3.2. *In the case of a* > 2 *the numbers* (3.5) *and* $y = (a-1) \sum_{\nu=1}^{\infty} \frac{\eta_{\nu}}{a^{\nu}}$ *with* $\eta_{\nu} \in \{0,1\}$ *have the following properties:*

(i) The usual order of x and y is equivalent to the lexicographic order of (ξ_1, ξ_2, \ldots) *and* (η_1, η_2, \ldots) *.*

(ii) The 2ⁿ intervals G_{kn} with fixed n are exactly the intervals (x, y) with $\xi_{\nu} =$ *i*_{2k,n+1} \cap *i*<sub>2k+1,n+1.
 Lemma 3.2. *In the case of a* > 2 *the numbers* (3.5) and $y = (a - 1) \sum_{\nu=1}^{\infty} \frac{\eta_{\nu}}{a^{\nu}}$ *i*<sub> $\eta_{\nu} \in \{0,1\}$ *have the following properties:*

(i) *The usual order of x and y is </sub></sub>*

Proof. Let be $(\xi_1, \xi_2, \ldots) < (\eta_1, \eta_2, \ldots)$ lexicographically, i.e. $\xi_{\nu} = \eta_{\nu}$ for $1 \leq \nu \leq \nu$ $m-1$ and $\xi_m < \eta_m$ for a certain $m \in \mathbb{N}$, which is only possible for $\xi_m = 0$ and $\eta_m = 1$. Then we have in view of $a > 2$ the inequality *n* the case of $a > 2$ the numbers (3.5) and $y = ($
following properties:
rder of x and y is equivalent to the lexicographic
ervals G_{kn} with fixed n are exactly the interval,
 $f_{n+1} = 0$, $f_{n+2} = f_{n+3} = ... = 1$ and η_{n+

$$
y-x \ge \frac{a-1}{a^m} - (a-1) \sum_{\nu=m+1}^{\infty} \frac{1}{a^{\nu}} = \frac{a-2}{a^m} > 0.
$$

Vice versa, $(\xi_1, \xi_2, \ldots) > (\eta_1, \eta_2, \ldots)$ implies analogously $x > y$, so that property (i) is valid.

In order to show property (ii), we first remark that for $k \leq 2^{n} - 1$ the dyadic representation of k has at most n digits, i.e. $k = d_0 + 2d_1 + \ldots + 2^{n-1}d_{n-1}$ with $d_{\mu} \in \{0,1\}$. Hence, for the left end-point of G_{kn} we have as in the foregoing case of F_{kn} and in view of (3.6) the representat $d_{\mu} \in \{0, 1\}$. Hence, for the left end-point of G_{kn} we have as in the foregoing case of F_{kn} and in view of (3.6) the representation *n*₁ for a certain $m \in \mathbb{N}$, which is only possible wo f $a > 2$ the inequality
 $y - x \ge \frac{a-1}{a^m} - (a-1) \sum_{\nu=m+1}^{\infty} \frac{1}{a^{\nu}} = \frac{a-1}{a^m}$
 \cdots) > (η_1, η_2, \ldots) implies analogously $x >$

ow property (ii), we $\alpha = 2$ $\alpha = 1$ $\alpha = 1$ $\alpha = 1$ $\beta = 1$ $\alpha = 2$ $\alpha = 2$
 $\alpha = 2$ $\alpha = 1$ $\beta = 1$ $\alpha = 2$ $\alpha = 2$
 $\alpha = 1$ $\beta = 1$ $\beta = 2$
 $\alpha = 2$ $\alpha = 1$ $\beta = 1$ $\beta = 1$ $\alpha = 1$ $\beta = 1$
 $\alpha = 1$ $\alpha = 1$ $\beta = 1$ $\alpha = 1$ $\beta = 1$ $\alpha = 1$ $(a-1)$ $\sum_{\nu=m+1}^{\infty} \frac{1}{a^{\nu}} = \frac{a-2}{a^m}$ >
implies analogously $x > y$, s
we first remark that for k
iigits, i.e. $k = d_0 + 2d_1 +$
oint of G_{kn} we have as in the
on
 $\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}} = (a-1) \sum_{\nu=1}^$ (a) implies analogously $x > y$

(b), we first remark that for

(a) digits, i.e. $k = d_0 + 2d_1$

(b) $\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}} = (a-1) \sum_{\nu=1}^{n}$

($\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}} = (a-1)$

($\sum_{\nu=1}^{n} \frac{\xi$ *an + l*

$$
\frac{\gamma_{2k}+1}{a^{n+1}} = (a-1)\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}} = (a-1)\sum_{\nu=1}^{\infty} \frac{\xi_{\nu}}{a^{\nu}}
$$

with $\xi_{\nu} = d_{n-\nu}$ for $\nu = 1, 2, ..., n, \xi_{n+1} = 0$ and $\xi_{\nu} = 1$ for $\nu \ge n+2$. For the right end-point of G_{kn} we have analogously

$$
\frac{\gamma_{2k+1}}{a^{n+1}} = (a-1)\left(\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}}\right) = (a-1)\sum_{\nu=1}^{n+1} \frac{\eta_{\nu}}{a^{\nu}}
$$

with $\eta_{\nu} = d_{n-\nu}$ for $\nu = 1,2,\ldots,n$ and $\eta_{n+1} = 1$, so that property (ii) is proved \blacksquare

Remark. In the case of $a=2$, $(\xi_1,\xi_2,...)<(\eta_1,\eta_2,...)$ implies only $x\leq y$.

Lemma 3.2 shows once more that all *Gkn* are disjoint. Property (ii) from Lemma Lemma 3.2 shows once more that all G_{kn} are disjoint. Property (ii) from Lemma 3.2 means that the left end-points x^- of G_{kn} and the corresponding right end-points x^+ can be written in the form Cantor Se

= 2, $(\xi_1, \xi_2, ...)$

ce that all *G*

ints x^- of *G*
 $\frac{1}{x+1}$ and

and-points be *e* case of $a = 2$, (ξ_1, ξ_2)
ys once more that a
left end-points x^- of
i the form
 $\sum_{\nu=1}^n \frac{\xi_\nu}{a^\nu} + \frac{1}{a^{n+1}}$ or Sets and Integral-Functional 1
 ξ_2, \ldots $\leq (\eta_1, \eta_2, \ldots)$ implies

Il G_{kn} are disjoint. Propert

of G_{kn} and the correspondit

and $x^+ = (a-1) \left(\sum_{\nu=1}^n x^+ \right)$

s belong to the closed set F ightarrow $2, (\xi_1, \xi_2, \ldots) < (\eta_1, \eta_2, \ldots)$ implies only $x \leq y$.

that all G_{kn} are disjoint. Property (ii) from Lemma

tts x^- of G_{kn} and the corresponding right end-points
 $\frac{1}{\sqrt{1-x^2}}$ and $x^+ = (a-1)\left(\sum_{\nu=1}$

$$
x^{-} = (a - 1) \sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}} \quad \text{and} \quad x^{+} = (a - 1) \left(\sum_{\nu=1}^{n} \frac{\xi_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}} \right)
$$

with $\xi_{\nu} \in \{0,1\}$. Since these end-points belong to the closed set F, also all points of the form (3.5) belong to *F.*

Now, for a fixed $a > 2$ and a fixed $c \geq 2$ we define a function $g_0 : F \mapsto [0,1]$ by

$$
g_0(x) = (c-1) \sum_{\nu=1}^{\infty} \frac{\xi_{\nu}}{c^{\nu}}
$$
 (3.8)

with $x = x(a)$ from (3.5), i.e. $g_0: x(a) \mapsto x(c)$. According to property (i) from Lemma 2.3, this function is strictly increasing and, obviously, it is also continuous. We extend g_0 to the whole interval $[0,1]$ by the definition 1) $\sum_{\nu=1} \frac{\zeta_{\nu}}{a^{\nu}} + \frac{1}{a^{n+1}}$ and x^+

Since these end-points belong to

elong to *F*.

xed $a > 2$ and a fixed $c \ge 2$ we defi
 $g_0(x) = (c-1) \sum_{\nu=1}^{\infty}$

om (3.5), i.e. $g_0 : x(a) \mapsto x(c)$. Acco

i is strictly a^{n+1} and $x = (a^{n+1}) \left(\sum_{\nu=1}^{\infty} a^{\nu} \right) a^{n+1}$

esee end-points belong to the closed set F, also all points of
 $g_0(x) = (c-1) \sum_{\nu=1}^{\infty} \frac{\xi_{\nu}}{c^{\nu}}$ (3.8)

i.e. $g_0 : x(a) \mapsto x(c)$. According to property (i) from

$$
g_0\left(x^- + \frac{a-2}{a^{n+1}}t\right) = g_0(x^-) + \frac{c-2}{c^{n+1}}t \qquad (0 < t < 1), \tag{3.9}
$$

i.e. in view of $x^- + \frac{a-2}{a+1} = x^+$ we extend the function g_0 linearly on the intervals G_{kn} , so that it remains continuous and increasing (but only for $c > 2$ strictly increasing). Moreover, replacing t by $1 - t$ in (3.9) we get
 $q_0\left(x^+ - \frac{a-2}{a-1}t\right) = q_0(x^+) - \frac{c-1}{a-1}$

$$
g_0\left(x^+ - \frac{a-2}{a^{n+1}}t\right) = g_0(x^+) - \frac{c-2}{c^{n+1}}t \qquad (0 < t < 1) \ . \tag{3.10}
$$

Next, we show that the function $g = g_0$ satisfies for $0 \le t \le 1$ the following system of functional equations: we show
ional equa
(i) $g(\frac{1}{a} +$

- *a-2*
- (ii) $g(\frac{t}{a}) = \frac{1}{a}g(t)$.
- (iii) $g(t) + g(1 t) = 1$.

The general solution of (ii) alone reads $g(t) = t^{\alpha} Q(\frac{\ln t}{\ln a})$, where $Q(x + 1) = Q(x)$ is an arbitrary 1-periodic function and $\alpha = \frac{\ln c}{\ln a}$.

Proposition 3.1. The function $g = g_0$ is the unique bounded solution of the func*tional equations (i) - (iii) in [0, 1].*

Proof. 1. First, we show that the function g_0 satisfies equations (i) - (iii). Clearly, g_0 satisfies (i) in view of (3.9) with $n = 0$, and (ii) follows immediately from (3.5), (3.8) and (3.9). In order to show that g_0 satisfies also equation (iii), we assume first that $x \in F$, i.e. x is of the form (3.5). Then in view of (3.6) we have

$$
1 - x = (a - 1) \sum_{\nu=1}^{\infty} \frac{\overline{\xi}_{\nu}}{a^{\nu}}
$$

with $\overline{\xi}_{\nu} = 1 - \xi_{\nu}$, and in view of (3.8) we get

L. Berg and M. Krüppel
\n
$$
= 1 - \xi_{\nu}
$$
, and in view of (3.8) we get
\n
$$
g_0(x) + g_0(1 - x) = (c - 1) \sum_{\nu=1}^{\infty} \frac{\xi_{\nu}}{c^{\nu}} + (c - 1) \sum_{\nu=1}^{\infty} \frac{\overline{\xi}_{\nu}}{c^{\nu}} = (c - 1) \sum_{\nu=1}^{\infty} \frac{1}{c^{\nu}} = 1
$$
\ncase of $x \notin F$, i.e. $x \in G_{kn}$, x has the representation $x = x - \frac{a-2}{a+1}$.
\n2. 1. so that $g_0(x)$ is given by (3.9) In view of $1 - x = 1 - x = -\frac{a-2}{a+1}$.

In the case of $x \notin F$, i.e. $x \in G_{kn}$, x has the representation $x = x^- + \frac{a-2}{a^{n+1}}t$ with $0 < t < 1$, so that $g_0(x)$ is given by (3.9). In view of $1 - x = 1 - x^- - \frac{a-2}{a^{n+1}}t$, where $1 - x^- = y^+$ for a certain right end-poi $0 < t < 1$, so that $g_0(x)$ is given by (3.9). In view of $1 - x = 1 - x - \frac{a-2}{a-1}t$, where $g_0(x) + g_0(1-x) = (c-1) \sum_{\nu=1} \frac{1}{c^{\nu}} + (c-1) \sum_{\nu=1} \frac{1}{c^{\nu}} = (c-1) \sum_{\nu=1} \frac{1}{c^{\nu}} =$
In the case of $x \notin F$, i.e. $x \in G_{kn}$, x has the representation $x = x^- + \frac{a}{a}$,
 $0 < t < 1$, so that $g_0(x)$ is given by (3.9). In vi

$$
g_0(1-x)=g_0(1-x^-)-\frac{c-2}{c^{n+1}}t.
$$

This together with (3.9) implies that

$$
g_0(x) + g_0(1-x) = g_0(x^-) + g_0(1-x^-) = 1
$$

since $x^- \in F$.

This together with (3.9) implies that
 $g_0(x) + g_0(1 - x) = g_0(x^-) + g_0(1 - x^-) = 1$

since $x^- \in F$.

2. Let g be a further solution of equations (i) - (iii). For $0 \le t \le 1$ we put
 $d(t) = |g_0(t) - g(t)|$. In view of (i) we have $d(t) = 0$ exists a point $t_0 \in [0,1]$ with $d(t_0) > 0$, then for $t_1 = a \min\{t_0, 1-t_0\}$ we have $t_1 \in [0,1]$. We show that $d(t_1) = c d(t_0)$. In the case of $t_0 < \frac{1}{a}$ this follows immediately from (ii). In the case of $t_0 > 1-\frac{1}{a}$ we first get from (iii) that $d(1-t_0) = d(t_0)$ and afterwards from In the case of $t_0 > 1 - \frac{1}{a}$ we first get from (ii) that $d(1 - t_0) = d(t_0)$ and atterwards from

(ii) that $d(t_1) = c d(t_0)$. Thus for the sequence $t_n = a \min\{t_{n-1}, 1 - t_{n-1}\}$ we obtain
 $d(t_n) = c^n d(t_0)$ and in view of $c \ge 2$ $d(t_n) = c^n d(t_0)$ and in view of $c \geq 2$ a contradiction to the boundedness of g *g(1 - x)* = $g_0(x^-) + g_0(1 - x^-) = 1$

solution of equations (i) - (iii). For $0 \le t \le 1$ we put

v of (i) we have $d(t) = 0$ for $\frac{1}{a} \le t \le 1 - \frac{1}{a}$. Hence, if there
 $d(t_0) > 0$, then for $t_1 = a \min\{t_0, 1 - t_0\}$ we have

Proposition 3.2. *Suppose that g satisfies properties* (ii) *and (*iii). *Then we have*

$$
g\left(x_n + \frac{t}{a^n}\right) = g_0(x_n) + \frac{1}{c^n} g(t)
$$
\n(3.11)

for $0 \le t \le 1$, *with* x_n *from* (3.7). Moreover, $g(x_n) = g_0(x_n)$.

 $g\left(x_n + \frac{t}{a^n}\right) = g_0(x_n) + \frac{1}{c^n} g(t)$ (3.11)

for $0 \le t \le 1$, with x_n from (3.7). Moreover, $g(x_n) = g_0(x_n)$.
 Proof. Equation (ii) for $t = 0$ implies $g(0) = 0$, hence in view of $g_0(0) = 0$ we

have an identity for $n =$ $g\left(x_n + \frac{t}{a^n}\right) = g_0(x_n) + \frac{1}{c^n} g(t)$
for $0 \le t \le 1$, with x_n from (3.7). Moreover, $g(x_n) = g_0(x_n)$.
Proof. Equation (ii) for $t = 0$ implies $g(0) = 0$, hence in view of g_0
have an identity for $n = 0$. Assume that the and we get from (ii) and (3.8) that *c* $d(t_0)$. Thus for the sequence $t_n = a$ mind
in view of $c \ge 2$ a contradiction to the
3.2. Suppose that g satisfies properties (i
 $g\left(x_n + \frac{t}{a^n}\right) = g_0(x_n) + \frac{1}{c^n} g(t)$
h x_n from (3.7). Moreover, $g(x_n) = g_0(x_n)$
tion (i ation (ii) for $t = 0$ implies $g(0) = 0$, hence in view of

for $n = 0$. Assume that the assertion is true for a cert

e either $x_n \leq \frac{1}{a}$ or $x_n \geq 1 - \frac{1}{a}$. In the first case $x_n =$

(8) that
 $g\left(x_n + \frac{t}{a^n}\right) = \frac{1}{$ $g(u_n + a_n) = g_0(u_n) + \frac{1}{C^n} g(t)$

with x_n from (3.7). Moreover, $g(x_n) = g_0(x_n)$.

Quation (ii) for $t = 0$ implies $g(0) = 0$, hence in view

ity for $n = 0$. Assume that the assertion is true for a cer

ave either $x_n \leq \frac{1}{a}$

$$
g\left(x_n + \frac{t}{a^n}\right) = \frac{1}{c}g_0(x_{n-1}) + \frac{1}{c^n}g(t) = g_0(x_n) + \frac{1}{c^n}g(t)
$$

for $0 \le t \le 1$. In the case of $x_n \ge 1 - \frac{1}{a}$ we have in view of $\xi_n = 1$ the representation

$$
x_n \in F
$$
, we have either $x_n \leq \frac{1}{a}$ or $x_n \geq 1 - \frac{1}{a}$. In the first case $x_n = \frac{x_n}{a}$
from (ii) and (3.8) that

$$
g\left(x_n + \frac{t}{a^n}\right) = \frac{1}{c}g_0(x_{n-1}) + \frac{1}{c^n}g(t) = g_0(x_n) + \frac{1}{c^n}g(t)
$$
for $0 \leq t \leq 1$. In the case of $x_n \geq 1 - \frac{1}{a}$ we have in view of $\xi_n = 1$ the re
$$
1 - x_n = (a - 1)\sum_{\nu=1}^{n-1} \frac{1 - \xi_{\nu}}{a^{\nu}} + (a - 1)\sum_{\nu=n+1}^{\infty} \frac{1}{a^{\nu}} = y_{n-1} + \frac{1}{a^n}
$$
with $y_{n-1} \leq \frac{1}{a}$ and in view of (iii) and $g(1) = 1 - g(0) = 1$ the relation

$$
1 - g(x_n) = g(1 - x_n) = g\left(y_{n-1} + \frac{1}{a^n}\right) = g_0(y_{n-1}) + \frac{1}{c^n}
$$

$$
1 - g(x_n) = g(1 - x_n) = g\left(y_{n-1} + \frac{1}{a^n}\right) = g_0(y_{n-1}) + \frac{1}{c^n}
$$

which implies that

Cantor Sets and Integral-Funct
\n
$$
g(x_n) = 1 - g_0(y_{n-1}) - \frac{1}{c^n} = g_0(x_n).
$$

Now, we get by application of (iii) the relation

$$
g\left(x_n + \frac{t}{a^n}\right) = g\left(1 - y_{n-1} - \frac{1}{a^n} + \frac{t}{a^n}\right) = 1 - g\left(y_{n-1} + \frac{1-t}{a^n}\right)
$$
\n
$$
= 1 - g_0(y_{n-1}) - \frac{g(1-t)}{c^n} = g_0(x_n) + \frac{1}{c^n}g(t)
$$
\n
$$
0 \le t \le 1
$$
, which proves (3.11) by induction. The second assertion of the proposition was from (3.11) for $t = 0$ **Remarks.** 1. For $g = g_0$ and $t = (a - 1) \sum_{\nu=1}^{\infty} \frac{\xi_{n+\nu}}{a^{\nu}}$ equation (3.11) easily follows
\n $x = x_n + \frac{t}{a^n}$ and (3.8).
\n2. Equations (iii) and (3.11) imply

for $0 \le t \le 1$, which proves (3.11) by induction. The second assertion of the proposition follows from (3.11) for $t = 0$

from $x = x_n + \frac{t}{a^n}$ and (3.8). **Remarks.** 1. For $g = g_0$ and $t = (a-1)\sum_{\nu=1}^{\infty} \frac{\xi_{n+\nu}}{a^{\nu}}$ equation (3.11) easily follows

2. Equations (iii) and (3.11) imply

$$
g\left(z_n-\frac{t}{a^n}\right)=g_0(z_n)-\frac{1}{c^n}g(t)
$$

for $0 \le t \le 1$ with $z_n = 1 - x_n$ and $g(z_n) = g_0(z_n)$.

3. The statement of Proposition 3.1 is also valid if we replace (iii) by

$$
g\left(z_n - \frac{1}{a^n}\right) = g_0(z_n) - \frac{1}{c^n} g(t)
$$
\n
$$
z_n = 1 - x_n \text{ and } g(z_n) = g_0(z_n).
$$
\nent of Proposition 3.1 is also valid if we replace (i)

\n
$$
g\left(\frac{a-1}{a} + \frac{t}{a}\right) = \frac{c-1}{c} + \frac{1}{c} g(t) \qquad (0 \le t \le 1),
$$
\n
$$
n = 1. \text{ Proposition 3.2 implies that } g = g_0 \text{ sati}
$$

i.e. by (3.11) with $n = 1$. Proposition 3.2 implies that $g = g_0$ satisfies this equation. The proof of the uniqueness can be carried out analogously as in the second part of the proof of Proposition 3.1, however, with the sequence $g(z_n - \frac{1}{a^n}) = g_0(z_n) - \frac{1}{c^n} g(t_n)$
 $f(z_n) = g_0(z_n)$.
 $f(z_n) = g_0(z_n)$.
 $f(z_n) = \frac{1}{c} + \frac{1}{c} g(t)$ (0
 $f(z_n) = \frac{1}{c} + \frac{1}{c} g(t)$ (1)
 $f(z_n) = \begin{cases} a^t e^{-t} & \text{if } t_{n-1} < \frac{1}{a} \\ a^t e^{-t} > 1 \end{cases}$
 $f(z_n) = \begin{cases} a^t e^{-t} & \text{if } t_{n-1} &$

$$
t_n = \begin{cases} a \, t_{n-1} & \text{if } t_{n-1} < \frac{1}{a} \\ a \, t_{n-1} - a + 1 & \text{if } t_{n-1} > 1 - \frac{1}{a} \end{cases}
$$

Thus we have a generalization of a result of W. Sierpiński [10] concerning the case of $a = 3$ and $c = 2$, where g_0 is Cantor's singular function (cf. also [9: p. 241]). A nonconstant $g : [0,1] \mapsto [0,1]$ is called *(strictly) singular*, if it is continuous and *(strictly)*
increasing with $g'(t) = 0$ a.e. *(cf.* [6*]*, where also some examples of strictly singular
functions are given). In the case increasing with $g'(t) = 0$ a.e. (cf. [6], where also some examples of strictly singular functions are given). In the case of $c = 2$, g_0 is a singular function which is constant on the closed intervals \overline{G}_{kn} , more precisely, (3.10) implies in view of $\gamma_k(2) = k$ that if $t_{n-1} < \frac{1}{a}$
if $t_{n-1} > 1 - \frac{1}{a}$.
V. Sierpiński [10] concerning the case of
r function (cf. also [9: p. 241]). A non-
ingular, if it is continuous and (strictly)
also some examples of strictly singular
a singula *g* ($\frac{1}{a}$) = $\frac{1}{2}g(t)$ and $g(t)$ + $g(t)$ = $\frac{1}{2}g(t)$ = $\frac{1}{2}g(t)$ = $\frac{1}{2}g(t)$ = $\frac{1}{2}g(t)$ = $\frac{1}{2}g(t)$ = $\frac{1}{2}g(t)$ = 0 a.e. (cf. ly) *singular*, if it is continuous and (strictly) $\frac{1}{2}$) = 0 a.

$$
g_0(t) = \frac{2k+1}{2^{n+1}} \qquad \text{for } t \in \overline{G}_{kn} . \tag{3.12}
$$

Proposition 3.3. In the case of $c = 2$, $g = g_0$ is the unique function of bounded *variation on* [0, 1] *satisfying only*

$$
g\left(\frac{t}{a}\right) = \frac{1}{2}g(t) \qquad \text{and} \qquad g(t) + g(1-t) = 1. \tag{3.13}
$$

Proof. We show that every function *g of* bounded variation on [0,1] satisfying (3.13) has the property

upper

\nvery function
$$
g
$$
 of bounded variation on $[0,1]$ satisfying (3.13)

\n $g(t) = \frac{1}{2}$ for $\frac{1}{a} \leq t \leq \frac{a-1}{a}$.

\n(3.14)

\nlation of g in the interval $G_0 = G_{00}$. In view of (3.11) with $a^{1/2}$.

Let *D* denote the total variation of *g* in the interval $G_0 = G_{00}$. In view of (3.11) with $c = 2$ and Lemma 3.1 we have

$$
\text{for } \frac{1}{a} \leq t
$$
\n
$$
g \text{ in the interval}
$$
\n
$$
\bigvee_{G_{kn}} (g) = \frac{1}{2^n} D
$$
\n
$$
U
$$
\nSince the int

for $k = 0, 1, \ldots, 2ⁿ - 1$ and all $n \in \mathbb{N}$. Since the intervals G_{kn} are disjoint, for the total variation of g on the set G_m defined by (3.2) we get

$$
g(t) = \frac{1}{2} \quad \text{for} \quad \frac{1}{a} \le t \le \frac{a-1}{a}.
$$

variation of g in the interval $G_0 = G_0$
 \Rightarrow have

$$
\bigvee_{G_{kn}} (g) = \frac{1}{2^n} D
$$

and all $n \in \mathbb{N}$. Since the intervals G_{kn}
 G_m defined by (3.2) we get

$$
\bigvee_{G_m} (g) = \sum_{n=0}^{m} \sum_{k=0}^{2^n - 1} \frac{1}{2^n} D = (m+1) D.
$$

 $D = 0$ since g has bounded variation,

For $m \to \infty$ this implies $D = 0$ since g has bounded variation, i.e. (3.14) is valid. Now the statement follows from Proposition 3.1

4. Properties of the eigenfunctions

In order to obtain relations between eigenfunctions of the integral equation (1.18), we first remember that a solution f of (1.18) with $a > 1$ is infinitely often differentiable and that we get by differentiation

$$
\lambda f^{(n)}(t) = a^n \int_{at-a+1}^{at} f^{(n)}(\tau) d\tau.
$$

Hence, the *n*-th derivative $f^{(n)}$ is also an eigenfunction of (1.18) to the eigenvalue λa^{-n} , Hence, the *n*-th derivative $f^{(n)}$ is also an eigenfunction of (1.18) to the eigenvalue λa^{-n} , so far as $f^{(n)}$ does not vanish identically (cf. [1: Formula (6.6) for $\lambda = \frac{1}{b}$]). Next, we shall see that each derivative of *f* can be expressed as a linear combination of *f* with different arguments. For the first derivative *f'* we have ftration
 $\lambda f^{(n)}(t) = a^n \int_{at-a+1}^{at} f^{(n)}(\tau) d\tau$.
 $f^{(n)}$ is also an eigenfunction of (1.18) to the eigenvalue λa^{-n} ,

sish identically (cf. [1: Formula (6.6) for $\lambda = \frac{1}{b}$]). Next, we

we of f can be expressed as a

$$
f'(t) = \frac{a}{\lambda} [f(at) - f(at - a + 1)].
$$
 (4.1)

In order to obtain a representation for the higher derivatives, we need the former sequences γ_n and ε_n .

Lemma 4.1. Suppose that f is an eigenfunction of (1.18) with the eigenvalue λ and $n \in \mathbb{N}_0$. Then we have

ivative of
$$
f
$$
 can be expressed as a linear combination of f with
or the first derivative f' we have

\n
$$
f'(t) = \frac{a}{\lambda} [f(at) - f(at - a + 1)] .
$$
\n(4.1)

\nrepresentation for the higher derivatives, we need the former se-
pose that f is an eigenfunction of (1.18) with the eigenvalue λ
have

\n
$$
f^{(n)}(t) = \lambda^{-n} a^{\frac{n(n+1)}{2}} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} f(a^n t - \gamma_{\nu}) .
$$
\n(4.2)

Proof. For $n = 0$ this equation is an identity. If (4.2) is true for an integer *n*, then we have in view of (4.1) , (2.2) and (2.5) that

Cartor Sets and Integral-Functional Equations

\nProof. For
$$
n = 0
$$
 this equation is an identity. If (4.2) is true for an integer n, t

\nhave in view of (4.1), (2.2) and (2.5) that

\n
$$
f^{(n+1)}(t) = \lambda^{-n} a^{\frac{n(n+1)}{2} + n} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} f'(a^n t - \gamma_{\nu})
$$
\n
$$
= \lambda^{-n-1} a^{\frac{n(n+1)}{2} + n+1} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} \left(f(a^{n+1} t - a \gamma_{\nu}) - f(a^{n+1} t - a \gamma_{\nu} - \gamma_1) \right)
$$
\n
$$
= \lambda^{-n-1} a^{\frac{(n+1)(n+2)}{2}} \sum_{\nu=0}^{2^{n+1}-1} \varepsilon_{\nu} f(a^{n+1} t - \gamma_{\nu}),
$$
\nthat (4.2) is proved by induction

such that (4.2) is proved by induction \blacksquare

Taking into account that $f = \phi_n$ is an eigenfunction of (1.18) to the eigenvalue $\lambda = \frac{a^n}{b}$, and considering

$$
\lambda^{-n} a^{\frac{n(n+1)}{2}} = \frac{a^{\frac{n(n+1)}{2}} b^n}{a^{n^2}} = \frac{b^n}{a^{\frac{n(n-1)}{2}}}
$$

as well as $\phi(t) = \phi_n^{(n)}(t)$ for all *t*, we get the following inversion of (1.14).

the representation

Taking into account that
$$
f = \phi_n
$$
 is an eigenfunction of (1.18) to the eigenvalue $\frac{a^n}{b}$, and considering
\n
$$
\lambda^{-n} a^{\frac{n(n+1)}{2}} = \frac{a^{\frac{n(n+1)}{2}}b^n}{a^{n^2}} = \frac{b^n}{a^{\frac{n(n-1)}{2}}}
$$
\nwell as $\phi(t) = \phi_n^{(n)}(t)$ for all t , we get the following inversion of (1.14).
\nCorollary 4.1. For all $t \in \mathbb{R}$ and for all $n \in \mathbb{N}_0$, the solution ϕ of (1.1) – (1.2) has
\nrepresentation
\n
$$
\phi(t) = \frac{b^n}{a^{\frac{n(n-1)}{2}}} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} \phi_n(a^n t - \gamma_{\nu})
$$
\n(4.3)
\nProposition 4.1. The polynomials ψ_n have the property

Proposition 4.1. *The polynomials* ψ_n *have the property*

2"-1 .(2-- n+1) *rn! a 2 vbm(t 'v) = (M - n)! b' bm_n () (4.4) V=0* **Proof.** We apply Lemma 4.1 with *I* = *,bm* and *A = bm_n(t)* and *A"a 2 = a*

for arbitrary $m \ge n \ge 0$.

and use that

rbitrary
$$
m \ge n \ge 0
$$
.
\n**Proof.** We apply Lemma 4.1 with $f = \psi_m$ and $\lambda = \frac{a^{m+1}}{b}$ and use that
\n
$$
\psi_m^{(n)}(t) = \frac{m!}{(m-n)!} \psi_{m-n}(t) \quad \text{and} \quad \lambda^{-n} a^{\frac{n(n+1)}{2}} = \frac{a^{\frac{n(n+1)}{2}b^n}}{a^{n(m+1)}} = \frac{b^n}{a^{\frac{n(2m-n+1)}{2}}}
$$

Relation (4.4) is proved after replacing t by $\frac{t}{a^n}$

We remark that for $n > m \geq 0$ the left-hand side of (4.4) vanishes, since the sums (2.11) vanish for these m and n. This is also the reason why for $m > n$ the degree of the polynomials (4.4) reduces from *m* to $m - n$. In particular, for $m \ge n = 1$ we have se that
 $\frac{b^n}{a^{\frac{n(2m-n+1)}{2}}}$

es, since the dependence of $n \geq n = 1$ where $n \geq 2$

$$
\psi_m(t) - \psi_m(t - a + 1) = ma^{m-1}(a - 1)\psi_{m-1}\left(\frac{t}{a}\right).
$$
 (4.5)

By analytic continuation this equation is even valid for all *a* different from the poles of as a function of *a* (these poles lie on the circle $|a| = 1$). For $t = \frac{a}{2}$ (4.5) simplifies in view of (1.1) to equation is even valued
boles lie on the circle
 $\left(\frac{a}{2}\right) = \frac{m}{2}a^{m-1}(a - a)$
on derive from (1.9) to *flatteriata* is even valid for all *a*
 f se poles lie on the circle $|a| = 1$). F
 $\psi_m\left(\frac{a}{2}\right) = \frac{m}{2}a^{m-1}(a-1)\psi_{m-1}\left(\frac{1}{2}\right)$
 f, considering (1.3) and the general *i* different fr

For $t = \frac{a}{2}$ (4)

)

 ating function ν (these poles
 $\nu_m\left(\frac{a}{2}\right)$
 $\nu \in \mathbb{N}_0$, consi
 μ , we can de
 $\nu_m(t) = \sum_{\mu=0}^m$

ains (4.6) as 1012 L. Ber
By analytic cor
 ψ_m as a function
view of (1.1) to
for m odd. For
Bernoulli numb
which for $t = \frac{6}{2}$
and
imply by compaint

$$
\psi_m\left(\frac{a}{2}\right) = \frac{m}{2}a^{m-1}(a-1)\psi_{m-1}\left(\frac{1}{2}\right)
$$
\n(4.6)

for *m* odd. For all $m \in \mathbb{N}_0$, considering (1.3) and the generating function $\frac{p}{e^p-1}$ for the Bernoulli numbers B_{μ} , we can derive from (1.9) the representation

$$
\psi_m(t) = \sum_{\mu=0}^m \binom{m}{\mu} B_\mu (1-a)^\mu a^{m-\mu} \psi_{m-\mu} \left(\frac{t}{a} \right) ,
$$

 $\psi_m(t) = \sum_{\mu=0}^m \binom{m}{\mu} B_{\mu} (1-a)^{\mu} a^{m-\mu} \psi_{m-\mu} \left(\frac{t}{a}\right)$,
which for $t = \frac{a}{2}$ contains (4.6) as a special case. Moreover, for all $m \in \mathbb{N}$, (1.7), (1.9)
and

$$
\frac{\partial}{\partial p}e^{tp}\Phi(p) = e^{tp}\Phi(p)\Big(t + \frac{d}{dp}\ln \Phi(p)\Big)
$$

imply by comparison of coefficients the recursion formula

$$
\psi_m(t) = \sum_{\mu=0} {m \choose \mu} B_{\mu} (1-a)^{\mu} a^{m-\mu} \psi_{m-\mu} \left(\frac{t}{a}\right),
$$

\n
$$
= \frac{a}{2} \text{ contains (4.6) as a special case. Moreover, for all } m \in \mathbb{N},
$$

\n
$$
\frac{\partial}{\partial p} e^{tp} \Phi(p) = e^{tp} \Phi(p) \left(t + \frac{d}{dp} \ln \Phi(p)\right)
$$

\nmparison of coefficients the recursion formula
\n
$$
\psi_m(t) = \left(t - \frac{1}{2}\right) \psi_{m-1}(t) + \frac{1}{m} \sum_{\mu=2}^{m} {m \choose \mu} B_{\mu} \frac{(a-1)^{\mu}}{a^{\mu}-1} \psi_{m-\mu}(t),
$$

which for $t = 0$ is already known from [1].

In the following, we once more restrict ourselves to $a \geq 2$ and apply Lemma 4.1 to the solution ϕ of (1.1) - (1.2), i.e. we consider $f = \phi$ and $\lambda = \frac{1}{b}$. For $t \in F_{kn}$, i.e. according to (3.3) for [1].
strict
we con
 $\leq t \leq$ which for $t = 0$ is already known from [1].

In the following, we once more restrict ourselves to $a \ge 2$ and apply Lemma 4.1

to the solution ϕ of (1.1) - (1.2), i.e. we consider $f = \phi$ and $\lambda = \frac{1}{b}$. For $t \in F_{kn}$

$$
\frac{\gamma_k}{a^n} \leq t \leq \frac{\gamma_k+1}{a^n} ,
$$

the solution ϕ of (1.1) - (1.2) with $a \ge 2$, which vanishes outside of (0,1), we get from
 Lemma 4.1 $\phi^{(n)}(t) = \varepsilon_k a^{\frac{n(n+1)}{2}} b^n \phi(a^n t - \gamma_k)$ for $t \in F_{kn}$, (4.7) Lemma 4.1

$$
\phi^{(n)}(t) = \varepsilon_k a^{\frac{n(n+1)}{2}} b^n \phi(a^n t - \gamma_k) \qquad \text{for } t \in F_{kn} , \qquad (4.7)
$$

and otherwise we have $\phi^{(n)}(t) = 0$, namely for $t \in G_{n-1}$ with $n \ge 1$. In view of $\phi(t) > 0$ for $t \in (0,1)$ this result implies [13: Proposition 4.1] that F_n is the support of $\phi^{(n)}$ and, moreover, for $n = 2$ that $\phi(t)$ is strictly convex for t in F_{02} or F_{32} , and strictly concave for *t* in F_{12} or F_{22} . In the case of $a = 2$ where $\gamma_k = k$ formula (4.7) reduces to (1.2), i.e. we consider $f = \phi$ and $\lambda = \frac{1}{b}$. For $t \in F_{kn}$, i.e.
 $\frac{\gamma_k}{a^n} \le t \le \frac{\gamma_k + 1}{a^n}$,

but in view of (3.1) $a^n t - \gamma_\nu \notin (0, 1)$ for $\nu \ne k$. Hence, for

2) with $a \ge 2$, which vanishes outside of (0,1), we ge we have $0 \le a^n t - \gamma_k \le 1$, but in view of $(3.1) a^n t - \gamma_{\nu} \notin (0,1)$ for $\nu \ne k$. Hence, for
the solution ϕ of (1.1) - (1.2) with $a \ge 2$, which vanishes outside of $(0,1)$, we get from
Lemma 4.1
 $\phi^{(n)}(t) = \varepsilon_k a^{\frac{n$ $\psi_m(t) = (t - \frac{1}{2})\psi_{m-1}(t)$
 $t = 0$ is already known from

a following, we once more restrict to ϕ of (1.1) - (1.2), i.e.
 $\frac{\gamma_k}{a^n}$:
 $0 \le a^n t - \gamma_k \le 1$, but in view

on ϕ of (1.1) - (1.2) with $a \ge$
 $\phi^{(n)}(t) = \v$

$$
\phi^{(n)}(t) = \varepsilon_k 2^{\frac{n(n+3)}{2}} \phi(2^n t - k) \qquad (k = [2^n t]) , \qquad (4.8)
$$

of the L_2 -norms of $\phi^{(n)}$, namely in particular to $\phi^{(n)}(\frac{k}{2^n}) = 0$ (cf. [11]). Formula (4.7) is very useful for the calculation

$$
\|\phi^{(n)}\|^2 = a^{n(n+1)}b^{2n} \sum_{k=0}^{2^n-1} \int_{-\gamma_k/a^n}^{(\gamma_k+1)/a^n} \phi^2(a^nt-\gamma_k) dt = 2^n a^{n^2}b^{2n} \|\phi\|^2
$$

Moreover, we find for the corresponding scalar product by *m* partial integrations

$$
(\phi^{(n)}, \phi^{(n+2m)}) = (-1)^m (\phi^{(n+m)}, \phi^{(n+m)}) = (-1)^m 2^{n+m} a^{(n+m)^2} b^{2(n+m)} ||\phi||^2
$$

whereas $(\phi^{(n)}, \phi^{(n+2m+1)}) = 0$ in view of the symmetry $\phi(t) = \phi(1-t)$.

5. Relations with polynomials

Cantor Sets and Integral-Functional Equations

5. Relations with polynomials

For $a > 2$ and $t \in \overline{G}_{kn}$ given by (3.2) we have the inequality $\frac{1}{a} \le a^n t - \gamma_k \le$

Hence, we get in view of $\overline{G}_{kn} \subset F_{kn}$, (4.7) and For $a > 2$ and $t \in \overline{G}_{kn}$ given by (3.2) we have the inequality $\frac{1}{a} \leq a^n t - \gamma_k \leq 1 - \frac{1}{a}$.

$$
\phi^{(n)}(t)=\varepsilon_k a^{\frac{n(n+1)}{2}}b^n\phi(a^nt-\gamma_k)=\varepsilon_k a^{\frac{n(n+1)}{2}}b^{n+1}\qquad(t\in\overline{G}_{kn})
$$

Thus for $t \in \overline{G}_{kn}$, $\phi(t)$ is a polynomial of degree *n*, a fact which is already known from [1], but now we also know the main term of this polynomial:

if the polynomials

\n
$$
\overline{S}_{kn}
$$
 given by (3.2) we have the inequality $\frac{1}{a} \leq a^n t - \gamma_k \leq 1 - \frac{1}{a}$.\nor of $\overline{G}_{kn} \subset F_{kn}$, (4.7) and $\phi(\tau) = b$ for $\frac{1}{a} \leq \tau \leq 1 - \frac{1}{a}$ that

\n
$$
\varepsilon_k a^{\frac{n(n+1)}{2}} b^n \phi(a^n t - \gamma_k) = \varepsilon_k a^{\frac{n(n+1)}{2}} b^{n+1} \qquad (t \in \overline{G}_{kn})
$$
.\nif, it is a polynomial of degree n, a fact which is already known from the main term of this polynomial:

\n
$$
\phi(t) = \varepsilon_k \frac{a^{\frac{n(n+1)}{2}} b^{n+1}}{n!} t^n + \dots \qquad (t \in \overline{G}_{kn})
$$
.\n(5.1)

\nThen determine the complete polynomials and include the limit case

\nexists \overline{G} , \overline{G} represents to single points $\frac{2k+1}{2}$. Since G lies densely.

Moreover, we can even determine the complete polynomials and include the limit case $a = 2$, where the intervals \overline{G}_{kn} degenerate to single points $\frac{2k+1}{2n+1}$. Since *G* lies densely in [0, 1], the function ϕ is uniquely determined by means of these polynomials and continuity. $f \in \overline{G}_{kn}$.

ials and include the

its $\frac{2k+1}{2n+1}$. Since *G* lians of these polync

of the closed interva

(2) has the represen

($t \in \overline{G}_{kn}$)

Theorem 5.1. *In the case of a* \geq 2 and t in one of the closed intervals \overline{G}_{kn} for $k = 0, 1, \ldots, 2^n - 1$ ($n \in \mathbb{N}$), the solution ϕ of $(1.1) - (1.2)$ has the representation

$$
\begin{aligned}\n\phi & \text{is uniquely determined by means of these polynomials and} \\
\hline\n\end{aligned}\n\begin{aligned}\nI_n \text{ the case of } a \geq 2 \text{ and } t \text{ in one of the closed intervals } \overline{G}_{kn} \text{ for } (n \in \mathbb{N}), \text{ the solution } \phi \text{ of } (1.1) - (1.2) \text{ has the representation} \\
\phi(t) &= c_n \sum_{\nu=0}^{2k} \varepsilon_{\nu} \psi_n(a^{n+1}t - \gamma_{\nu}) \qquad (t \in \overline{G}_{kn}) \qquad (5.2) \\
\mathbf{c}_n &= \frac{b^{n+1}}{a^{\frac{n(n+1)}{2}} n!} = \frac{1}{a^{\frac{(n+1)(n-2)}{2}} (a-1)^{n+1} n!} \qquad (5.3) \\
\text{the representation (4.3) with } n+1 \text{ instead of } n. \text{ For } t \in \overline{G}_{kn}, \text{ i.e.}\n\end{aligned}
$$

where c_n *is given by*

$$
c_n = \frac{b^{n+1}}{a^{\frac{n(n+1)}{2}} n!} = \frac{1}{a^{\frac{(n+1)(n-2)}{2}} (a-1)^{n+1} n!}
$$
(5.3)

Proof. We use the representation (4.3) with $n + 1$ instead of *n*. For $t \in \overline{G}_{kn}$, i.e.

$$
\frac{\gamma_{2k}+1}{a^{n+1}}\leq t\leq \frac{\gamma_{2k+1}}{a^{n+1}},
$$

we have the inequalities $a^{n+1}t - \gamma_{2k+1} \leq 0$ and $a^{n+1}t - \gamma_{2k} \geq 1$. According to (3.1) and $\phi_{n+1}(\tau) = 0$ for $\tau \leq 0$, the terms $\phi_{n+1}(a^{n+1}t - \gamma_{\nu})$ vanish for $\nu \geq 2k + 1$, but for and $\phi_{n+1}(\tau) = 0$ for $\tau \le 0$, the terms $\phi_{n+1}(a^{n+1}t - \gamma_{\nu})$ vanish for $\nu \ge 2k + 1$, but for $\nu \le 2k$, in view of (1.16) with $n + 1$ instead of *n*, we have the representations

$$
\phi_{n+1}(a^{n+1}t-\gamma_\nu)=\frac{1}{n!}\psi_n(a^{n+1}t-\gamma_\nu)
$$

for $\nu = 0, 1, \ldots, 2k$. This altogether implies the assertion \blacksquare

We remark that, for $k = 0$, formula (5.2) reduces to (1.12).

Next, we are going to extend (5.2) to the larger interval $F_{kn} \supset G_{kn}$.

Proposition 5.1. For $a \geq 2$ and $t \in F_{kn}$, i.e. $t = \frac{\gamma_k + r}{a^n}$ with $0 \leq \tau \leq 1$, the *solution* ϕ of (1.1) – (1.2) has the property

4 L. Berg and M. Krüppel

\nProposition 5.1. For
$$
a \geq 2
$$
 and $t \in F_{kn}$, i.e. $t = \frac{\gamma_k + \tau}{a^n}$ with $0 \leq \tau \leq 1$, the *tion* ϕ of (1.1) – (1.2) has the property

\n
$$
\phi\left(\frac{\gamma_k + \tau}{a^n}\right) - \varepsilon_k \phi\left(\frac{\tau}{a^n}\right) = c_{n-1} \sum_{\nu=0}^{k-1} \varepsilon_{\nu} \psi_{n-1}(\gamma_k + \tau - \gamma_{\nu}) \qquad (0 \leq \tau \leq 1) \qquad (5.4)
$$
\nre c_n is given by (5.3).

\nProof. According to $0 \leq a^n t - \gamma_k = \tau \leq 1$ for $t \in F_{kn}$ and $\gamma_{\nu} + 1 \leq \gamma_{\nu+1}$ for $\nu \geq 0$

\nLemma 2.2) we have the relations

\n
$$
a^n t - \gamma_{\nu} = \gamma_k + \tau - \gamma_{\nu} \begin{cases} \geq 1 & \text{for } \nu < k \\ \in [0,1] & \text{for } \nu = k \\ \leq 0 & \text{for } \nu > k. \end{cases}
$$
\nce, (5.4) follows from (4.3) in view of $\phi_n(t) = 0$ for $t \leq 0$, as well as (1.15) and

where c_n *is given by* (5.3).

(cf. Lemma 2.2) we have the relations

$$
a^{n}t - \gamma_{\nu} = \gamma_{k} + \tau - \gamma_{\nu} \begin{cases} \geq 1 & \text{for } \nu < k \\ \in [0,1] & \text{for } \nu = k \\ \leq 0 & \text{for } \nu > k. \end{cases}
$$

Hence, (5.4) follows from (4.3) in view of $\phi_n(t) = 0$ for $t \leq 0$, as well as (1.15) and (1.16)

By m differentiations of (5.4) we get in view of $\phi^{(m)}(0) = 0$ and $\psi'_m = m\psi_{m-1}$ the *Corollary 5.1. In the case of* $a \geq 2$ *and* $n > m \geq 0$ *the derivatives* $\phi^{(m)}$ *of the solution of* $(1.1) - (1.2)$ *have the values* we have the relations
 $a^n t - \gamma_\nu = \gamma_k + \tau$.

ws from (4.3) in view

tiations of (5.4) we ge

tiations of (5.4) we ge

1. In the case of $a \ge$

(m) $\left(\frac{\gamma_k}{a^n}\right) = \frac{a^{mn} c_{n-1}}{(n-m)}$

(m) $\left(\frac{\gamma_k}{a^n}\right) = \frac{a^{mn} c_{n-1}}{(n-m)}$ as well as (1.15)

and $\psi'_m = m\psi_{m-1}$
 generivatives $\phi^{(m)}$
 (ψ_m) $f \phi^{(m)}(0) = 0$ and $\psi'_m = m\psi_{m-1}$ the
 $> m \ge 0$ the derivatives $\phi^{(m)}$ of the
 $\phi^{(m)} = \phi^{(m)}$ (5.5)
 $\phi^{(m)} = \phi^{(m)}$ (5.5)
 $\phi^{(m)}(k - \psi)$ (5.6)
 $\phi^{(m)}(k - \psi) = \phi^{(m)}(k - \psi)$ (5.6)

$$
\phi^{(m)}\left(\frac{\gamma_k}{a^n}\right) = \frac{a^{mn} c_{n-1} (n-1)!}{(n-m-1)!} \sum_{\nu=0}^{k-1} \varepsilon_{\nu} \psi_{n-m-1}(\gamma_k - \gamma_{\nu})
$$
(5.5)
0 \le k \le 2ⁿ - 1.
In particular, in the case of $a = 2$ where $\gamma_{\nu} = \nu$ the values (5.5) with $m = 0$ simplify

with $0 \leq k \leq 2^n - 1$.

to

In the case of
$$
a \ge 2
$$
 and $n > m \ge 0$ the derivatives $\phi^{(m)}$ of the
\n1.2) have the values
\n
$$
\left(\frac{\gamma_k}{a^n}\right) = \frac{a^{mn} c_{n-1} (n-1)!}{(n-m-1)!} \sum_{\nu=0}^{k-1} \epsilon_{\nu} \psi_{n-m-1}(\gamma_k - \gamma_{\nu})
$$
\n
$$
\text{the case of } a = 2 \text{ where } \gamma_{\nu} = \nu \text{ the values (5.5) with } m = 0 \text{ simplify}
$$
\n
$$
\phi\left(\frac{k}{2^n}\right) = \frac{1}{2^{\frac{n(n-3)}{2}} (n-1)!} \sum_{\nu=0}^{k-1} \epsilon_{\nu} \psi_{n-1}(k-\nu) \,. \tag{5.6}
$$
\n
$$
a = 2 \text{ we obtain, for example,}
$$

Thus in the case of $a = 2$ we obtain, for example,

Prolary 3.1. In the case of
$$
a \geq 2
$$
 and $n > m \geq 0$ the derivatives $\phi^{(m)}$

\n
$$
\phi^{(m)}\left(\frac{\gamma_k}{a^n}\right) = \frac{a^{mn}c_{n-1}(n-1)!}{(n-m-1)!} \sum_{\nu=0}^{k-1} \varepsilon_{\nu} \psi_{n-m-1}(\gamma_k - \gamma_{\nu})
$$
\n
$$
\leq k \leq 2^n - 1.
$$
\nparticular, in the case of $a = 2$ where $\gamma_{\nu} = \nu$ the values (5.5) with $m = 0$ s

\n
$$
\phi\left(\frac{k}{2^n}\right) = \frac{1}{2^{\frac{n(n-3)}{2}(n-1)!}} \sum_{\nu=0}^{k-1} \varepsilon_{\nu} \psi_{n-1}(k - \nu).
$$
\nIn the case of $a = 2$ we obtain, for example,

\n
$$
\phi\left(\frac{1}{2}\right) = 2, \quad \phi\left(\frac{1}{4}\right) = 1, \quad \phi\left(\frac{1}{8}\right) = \frac{1}{9}, \quad \phi\left(\frac{3}{8}\right) = \frac{17}{9},
$$
\n
$$
\phi\left(\frac{1}{16}\right) = \frac{1}{24}, \quad \phi\left(\frac{3}{16}\right) = \frac{145}{288}, \quad \phi\left(\frac{5}{16}\right) = \frac{431}{288}, \quad \phi\left(\frac{7}{16}\right) = \frac{575}{288}, \dots
$$
\nmark that the particular formula (5.6) can also be derived from (1.17). No case of $a = 2$ the left-hand side from (1.17) can be written in the form

\n
$$
\sum_{\nu=0}^{\infty} \frac{\nu_1}{\nu_2} \psi_{\nu}(\nu_1, \nu_2)
$$

We remark that the particular formula (5.6) can also be derived from (1.17). Namely, in the case of $a = 2$ the left-hand side from (1.17) can be written in the form

$$
\phi\left(\frac{1}{2}\right) = 2, \quad \phi\left(\frac{1}{4}\right) = 1, \quad \phi\left(\frac{1}{8}\right) = \frac{1}{9}, \quad \phi\left(\frac{3}{8}\right) = \frac{17}{9},
$$
\n
$$
\frac{1}{6} = \frac{1}{24}, \quad \phi\left(\frac{3}{16}\right) = \frac{145}{288}, \quad \phi\left(\frac{5}{16}\right) = \frac{431}{288}, \quad \phi\left(\frac{7}{16}\right) = \frac{575}{288},
$$
\nthat the particular formula (5.6) can also be derived from (1.1)

\nof $a = 2$ the left-hand side from (1.17) can be written in the for

\n
$$
\sum_{\nu_i \geq 0} \phi\left(t - \frac{\nu_1}{2^n} - \ldots - \frac{\nu_n}{2}\right)
$$
\n
$$
= \phi(t) + \phi\left(t - \frac{1}{2^n}\right)
$$
\n
$$
+ 2\sum_{\nu=0}^{\infty} (\nu^2 + \nu + 1) \left(\phi\left(t - \frac{4\nu + 2}{2^n}\right) + \phi\left(t - \frac{4\nu + 3}{2^n}\right)\right)
$$
\n
$$
+ 2\sum_{\nu=1}^{\infty} (\nu^2 + 1) \left(\phi\left(t - \frac{4\nu}{2^n}\right) + \phi\left(t - \frac{4\nu + 1}{2^n}\right)\right).
$$

Putting in (1.17) with $a = 2$ successively

Cantor Sets and Integral-Functi
\n
$$
t = 2
$$
 successively
\n $t = \frac{1}{2^n}$, $t = \frac{2}{2^n}$, $t = \frac{3}{2^n}$, ...
\n $\Rightarrow \phi(\frac{k}{2^n})$ $(k = 0, 1, 2, ...)$ a linear sys

we obtain for the values $\phi(\frac{k}{2^n})$ $(k = 0, 1, 2, ...)$ a linear system of equations with a Toeplitz matrix *T*, which is the inverse of the Toeplitz matrix (ε_{i-1}) $(\varepsilon_i = 0 \text{ for } i < 0)$

1 1 11 —1 1 *2 1 1 T = 2 2 1 1 , T' = 1 —1 —1 1 4 2 2 1 1 4 4 2 2 1 1 1 —1 1 —1 —1*

Since the right-hand side of (1.17) with $a = 2$ is $c_{n-1}\psi_{n-1}(2^n t)$ (cf. (5.3)), we obtain (5.6) alter simple calculations.

6. Reduced representations

The polynomial relation (5.4) reads for $k = 1$

71+T (a) ⁺*g5 ¹ -* ⁼e_*ibn_i(7i + r)* (0 < *T <* 1), (6.1)

where c_n is given by (5.3). For large k , (5.4) is rather redundant so that we want to derive a reduced representation. For convenience, the first parameters l_{ν} , $\varepsilon_{l_{\nu}}$ and k_{ν} appearing in the later formula (6.2) are shown in Table 2 for the interesting indices ν with $d_{\nu} \neq 0$.

Proposition 6.1. Assume that $a \geq 2$ and that the number $k \in \mathbb{N}$ has the dyadic *representation* $k = d_0 + d_1 2 + d_2 2^2 + \ldots + d_s 2^s$, $d_s = 1$ and $d_\sigma \in \{0, 1\}$. Then with *the notations* $k_{\nu} = d_0 + d_1 2 + \ldots + d_{\nu} 2^{\nu}$ and $l_{\nu} = d_{\nu+1} + d_{\nu+2} 2 + \ldots + d_s 2^{s-\nu-1}$ for $0 \leq \nu \leq s$ *we have the relation* $\left(\frac{\gamma_1 + \tau}{a^n}\right) + \phi\left(\frac{\tau}{a^n}\right) = c_{n-1}\psi_{n-1}(\gamma_1 - \rho_2)$

2 **3** and representation. For convenience,
 α leads representation. For convenience,
 α leads formula (6.2) are shown in T

2 **3** and that
 $k = d_0 + d_1 2 + d_2$ $\leq \tau \leq 1$),

ant so that we war

rameters l_{ν} , $\varepsilon_{l_{\nu}}$ an

he interesting indic
 $r \ k \in \mathbb{N}$ has the dy
 $d_{\sigma} \in \{0,1\}$. Then
 $2^2 + \ldots + d_s 2^{s-\nu-1}$
 $\left(\frac{\gamma_{k_{\nu}} + \tau}{a^{\nu}}\right)$

have the relation
\n
$$
\phi\left(\frac{\gamma_k + \tau}{a^n}\right) - \varepsilon_k \phi\left(\frac{\tau}{a^n}\right) = \sum_{\nu=0}^s \varepsilon_{l_\nu} d_\nu c_{n-\nu-1} \psi_{n-\nu-1} \left(\frac{\gamma_{k_\nu} + \tau}{a^\nu}\right)
$$
\n(6.2)

for $0 \le \tau \le a^{\sigma}$, whenever $d_0 = d_1 = \ldots = d_{\sigma-1} = 0$ and $d_{\sigma} \ne 0$.

Proof. Equation (6.2) can be derived by successive application of (4.5) to (5.4). But an inductive proof is more lucid. For $k = 1$, the representation is true in view of (6.1). In order to prove the assertion by induction, we assume that (6.2) *is* valid for a fixed *k* and take into consideration that the parameters d_{ν} , k_{ν} , l_{ν} , *s* and σ depend on **1016** L. Berg and M. Krüppel

fixed *k* and take into consideration that the parameters d_{ν} , k_{ν} , l_{ν} , *s* and *σ* depend or
 k. Moreover, we recognize that $k = k_{\nu} + l_{\nu}2^{\nu+1}$, i.e. $k \equiv k_{\nu} \mod 2^{\nu+1}$

k	dyadic	ε_k	\mathbf{I} l_0	ε_{l_0}	k_0	l ₁	ε_{l_1}	k ₁	l ₂	ε_{l_2}	k_2	l_3	ε_{l_2}	k_3
0	0	ı												
\mathbf{I}	1	-1	0	1	ı									
$\overline{2}$	10	-1				0	1	$\overline{2}$						
3	11	ı	ı	-1	1	0	ı	3						
$\boldsymbol{4}$	100	-1							0	ı	4			
$\overline{5}$	101	ı	$\mathbf{2}$	-1	$\mathbf{1}$				0	1	5			
6	110	\mathbf{l}				1	-1	$\mathbf{2}$	0	ı	6			
$\overline{7}$	111	-1	3	ı	1	I	-1	3	0	1	$\overline{7}$			
8	1000	-1										$\boldsymbol{0}$		8
9	1001	1	4	-1	ı							0	ı	9
10	1010	ı				$\overline{2}$	-1	$\mathbf{2}$				0	1	10
11	1011	-1	5	ı	1	$\overline{2}$	-1	3				0	ı	11
12	1100	1							1	-1	4	$\bf{0}$		12
13	1101	-1	6	ı	ı				1	-1	5	0	ı	13
14	1110	-1				3	$\mathbf 1$	$\boldsymbol{2}$	1	-1	6	$\mathbf 0$	1	14
15	1111	1	7	-1	1	3	1	3	1	-1	7	0	1	15

Table 2: The first parameters l_{ν} , $\varepsilon_{l_{\nu}}$ and k_{ν}

1. *Induction from k to 2k:* In view of $2k = d_0 2 + d_1 2^2 + \ldots + d_s 2^{s+1} = 2k_{\nu} + 2^{\nu+2}l_{\nu}$, the parameters of *2k* depend on the parameters of *k* in the following way: $k = \frac{d}{d}$ **c** $\frac{1}{2}$ **c c** $\frac{1}{2}$ **c c** $\frac{1}{2}$ **c c** $\frac{1}{2}$ **c** $\frac{1}{2}$

$$
\begin{array}{c|cccccc}\nk & d_{\nu} & k_{\nu} & l_{\nu} & s & \sigma \\
\hline\n2k & d_{\nu-1} & 2k_{\nu-1} & l_{\nu-1} & s+1 & \sigma+1\n\end{array}
$$

Table *3:* The parameters of *2k* expressed by those of *^k*

where $d_{-1} = k_{-1} = l_s = 0$ and $l_{-1} = k_s = k$. Making in (6.2) the substitution $n \mapsto n-1$, Table 3: The parameters of 2k expressed by those
where $d_{-1} = k_{-1} = l_s = 0$ and $l_{-1} = k_s = k$. Making in (6.2) the so
 $\nu \mapsto \nu - 1$, $\tau \mapsto \frac{\tau}{a}$, so that $0 \le \tau \le a^{\sigma+1}$ for the new τ , we obtain

Induction from k to 2k: In view of
$$
2k = d_0 2 + d_1 2^2 + ... + d_s 2^{s+1} = 2k_{\nu}
$$

\nameters of 2k depend on the parameters of k in the following way:
\n
$$
\frac{k}{2k} \frac{d_{\nu}}{d_{\nu-1}} \frac{k_{\nu}}{2k_{\nu-1}} \frac{1}{l_{\nu-1}} \frac{s}{s+1} \frac{\sigma}{\sigma+1}
$$
\nTable 3: The parameters of 2k expressed by those of k
\n
$$
l_{-1} = k_{-1} = l_s = 0 \text{ and } l_{-1} = k_s = k.
$$
 Making in (6.2) the substitution $n = 1, \tau \mapsto \frac{\tau}{a}$, so that $0 \le \tau \le a^{\sigma+1}$ for the new τ , we obtain
\n
$$
\phi\left(\frac{a\gamma_k + \tau}{a^n}\right) - \varepsilon_k \phi\left(\frac{\tau}{a^n}\right) = \sum_{\nu=0}^{s+1} \varepsilon_{l_{\nu-1}} d_{\nu-1} c_{n-\nu-1} \psi_{n-\nu-1} \left(\frac{a\gamma_{k_{\nu-1}} + \tau}{a^{\nu}}\right),
$$
\nview of $a\gamma_k = \gamma_{2k}$, $\varepsilon_k = \varepsilon_{2k}$ and Table 3 this is nothing else than (6.2) of k.
\nInduction from 2k to 2k + 1: Formula (6.2) reads for 2k instead of k and of τ
\n
$$
\left(\frac{\gamma_{2k} + \gamma_1 + \tau}{a^n}\right) - \varepsilon_{2k} \phi\left(\frac{\gamma_1 + \tau}{a^n}\right) = \sum_{\nu=0}^{s} \varepsilon_{l_{\nu}} d_{\nu} c_{n-\nu-1} \psi_{n-\nu-1} \left(\frac{\gamma_{k_{\nu}} + \gamma_1 + \gamma_{k_{\nu-1}}}{a^{\nu}}\right)
$$
\nthe parameters are those belonging to 2k. According to $d_0 = 0$ we have

and in view of $a\gamma_k = \gamma_{2k}$, $\varepsilon_k = \varepsilon_{2k}$ and Table 3 this is nothing else than (6.2) with $2k$ instead of *k.*

2. Induction from 2k to 2k + 1: Formula (6.2) reads for 2k, instead of *k* and $\gamma_1 + \tau$
 $\phi\left(\frac{\gamma_{2k} + \gamma_1 + \tau}{\sigma^n}\right) - \epsilon_{2k}\phi\left(\frac{\gamma_1 + \tau}{\sigma^n}\right) = \sum_{k=1}^{s} \epsilon_{l_k} d_{k} c_{n-k-1} \psi_{n-k-1}\left(\frac{\gamma_{k_k} + \gamma_1 + \tau}{\sigma^n}\right)$ instead of *^r*

instead of k.
\n2. *Induction from 2k to 2k + 1*: Formula (6.2) reads for 2k instead of k and
$$
\gamma_1 + \tau
$$

\ninstead of τ
\n
$$
\phi\left(\frac{\gamma_{2k} + \gamma_1 + \tau}{a^n}\right) - \epsilon_{2k}\phi\left(\frac{\gamma_1 + \tau}{a^n}\right) = \sum_{\nu=0}^s \epsilon_{l_{\nu}} d_{\nu} c_{n-\nu-1} \psi_{n-\nu-1} \left(\frac{\gamma_{k_{\nu}} + \gamma_1 + \tau}{a^{\nu}}\right)
$$
\nwhere the parameters are those belonging to 2k. According to $d_0 = 0$ we have $\sigma \ge 1$,
\nso that the last equation is valid at least for $0 \le \gamma_1 + \tau \le a = \gamma_1 + 1$, i.e. at least for

 $0 \leq \tau \leq 1$. Multiplying (6.1) by ε_{2k} and adding the result to the foregoing equation, we obtain

Cartor Sets and Integral-Functional Equations

\n1. Multiplying (6.1) by
$$
\varepsilon_{2k}
$$
 and adding the result to the foregoing equa

\n
$$
\phi\left(\frac{\gamma_{2k} + \gamma_1 + \tau}{a^n}\right) + \varepsilon_{2k}\phi\left(\frac{\tau}{a^n}\right)
$$
\n
$$
= \varepsilon_{2k}c_{n-1}\psi_n(\gamma_1 + \tau) + \sum_{\nu=1}^s \varepsilon_{l_{\nu}}d_{\nu}c_{n-\nu-1}\psi_{n-\nu-1}\left(\frac{\gamma_{k_{\nu}} + \gamma_1 + \tau}{a^{\nu}}\right).
$$
\nis nothing else than (6.2) with $2k + 1$ instead of $2k$, since $\gamma_{2k} + \gamma_1$

But this is nothing else than (6.2) with $2k + 1$ instead of $2k$, since $\gamma_{2k} + \gamma_1 = \gamma_{2k+1}$, $\varepsilon_{2k} = -\varepsilon_{2k+1}$, and k_{ν} of $2k$ is even so that $\gamma_{k_{\nu}} + \gamma_1 = \gamma_{k_{\nu}+1}$ for $\nu \geq 1$, and the parameters of $2k + 1$ depend on the parameters of $2k$ in the following way:
 $\frac{2k}{2k+1} \frac{d_{\nu}}{d_{\nu}} \frac{k_{\nu}}{k_{\nu}+1} \frac{l_{\nu}}{l_{\nu}} \frac{s}{s}$ or (6.2) with $2k + 1$ instear
is even so that γ_{k_v} +
on the parameters of $2k$
 $2k$ d_v k_v l_v s
 $i+1$ d_v $k_v + 1$ l_v s

$$
\begin{array}{c|cccc}\n2k & d_{\nu} & k_{\nu} & l_{\nu} & s & \sigma \\
\hline\n2k+1 & d_{\nu} & k_{\nu}+1 & l_{\nu} & s & 0\n\end{array}
$$

Table 4: The parameters of *2k + 1* expressed by those of *2k*

for $\nu \ge 1$, whereas $d_0 = 1$ for $2k + 1$ and $\varepsilon_{l_0} = \varepsilon_{2k}$ for the parameter l_0 of $2k + 1$

Remark. For large *k* formula (6.2) has the advantage that the sum on the righthand side consists of O(ln *k)* terms only compared to the *k* terms in the sum of (5.4). Moreover, many d_{ν} in (6.2) can vanish. If the terms with $d_{\nu} = 0$ are cancelled, then the remaining terms have alternating signs ending with $\varepsilon_{l_n} = 1$ in view of $l_s = 0$. Hence, (6.2) implies
 $\phi\left(\frac{\gamma_k + \tau}{a^n}\right$ remaining terms have alternating signs ending with $\varepsilon_{l_a} = 1$ in view of $l_a = 0$. Hence, (6.2) implies Table 4: The parameters of $2k + 1$ *l_v* s 0

Table 4: The parameters of $2k + 1$ expressed by those of $2k$

whereas $d_0 = 1$ for $2k + 1$ and $\varepsilon_{l_0} = \varepsilon_{2k}$ for the parameter l_0 of $2k +$

rk. For large k formula for $2k + 1$ and $\varepsilon_{l_0} = \varepsilon_{2k}$ for th
 k formula (6.2) has the advants
 i k) terms only compared to th

2) can vanish. If the terms with
 ernating signs ending with ε_{l_s}
 $\frac{\gamma_m + \tau}{a^n}$ = $c_{n-s-1}\psi_{n-s-1}$

$$
\phi\left(\frac{\gamma_k+\tau}{a^n}\right)+\phi\left(\frac{\gamma_m+\tau}{a^n}\right)=c_{n-s-1}\psi_{n-s-1}\left(\frac{\gamma_k+\tau}{a^s}\right) \qquad (0\leq \tau \leq a^{\sigma})
$$

with $m = k_{s-1}$, i.e. $k = m + 2^s$ and $\gamma_k = \gamma_m + a^s \gamma_1$.

For $t \in \overline{G}_{kn}$, from $\overline{G}_{kn} \subset F_{kn}$, (6.2), (5.3) and (1.12) we obtain instead of (5.2) the reduced polynomial representation

$$
\frac{1+\tau}{n} + \phi\left(\frac{\gamma_m + \tau}{a^n}\right) = c_{n-s-1}\psi_{n-s-1}\left(\frac{\gamma_k + \tau}{a^s}\right) \qquad (0 \le \tau \le a^{\sigma})
$$

, i.e. $k = m + 2^s$ and $\gamma_k = \gamma_m + a^s \gamma_1$.

n, from $\overline{G}_{kn} \subset F_{kn}$, (6.2), (5.3) and (1.12) we obtain instead of (5.2) the
omial representation

$$
\phi\left(\frac{\gamma_{2k} + \tau}{a^{n+1}}\right) = \varepsilon_k c_n \psi_n(\tau) + \sum_{\nu=1}^s \varepsilon_{l_\nu} d_\nu c_{n-\nu} \psi_{n-\nu} \left(\frac{\gamma_{k_\nu} + \tau}{a^\nu}\right) \qquad (6.3)
$$

 $\le a - 1$, and the parameters d_ν , k_ν , l_ν and s are those of 2k. The first

where $1 \leq r \leq a-1$, and the parameters d_{ν} , k_{ν} , l_{ν} and *s* are those of 2k. The first term of (6.3) cannot be included into the sum with $\nu = 0$ in view of $d_0 = 0$.

7. Approximation by splines

Finally, we return to the general case $a > 1$. From (1.3) we observe that the Laplace transform Φ of the solution ϕ of (1.1) - (1.2) is the limit of

e parameters
$$
d_{\nu}
$$
, k_{ν} , l_{ν} and s are those of 2k. The first
ded into the sum with $\nu = 0$ in view of $d_0 = 0$.
splines
eral case $a > 1$. From (1.3) we observe that the Laplace
of (1.1) - (1.2) is the limit of

$$
G_n(p) = \prod_{k=0}^{n-1} \frac{1 - e^{-p/(ba^k)}}{p/(ba^k)}
$$
(7.1)

1018 L. Berg and M. Krüppel

for $n \to \infty$. On account of Lemma 2.3 we have for $n \geq 1$

üppel
\nLemma 2.3 we have for
$$
n \ge 1
$$

\n
$$
G_n(p) = \frac{a^{\frac{n(n-1)}{2}} b^n}{p^n} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} e^{-\frac{1}{a} \kappa p}.
$$
\n(7.2)

1018 L. Berg and M. Krüppel

for $n \to \infty$. On account of Lemma 2.3 we have for $n \ge 1$
 $G_n(p) = \frac{a^{\frac{n(n-1)}{2}} b^n}{p^n} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{2\kappa}{a} p}$. (7.2)

According to $\mathcal{L}^{-1} \{p^{-n}\} = \frac{t^{n-1}}{(n-1)!}$ and the shi obtain for the original function g_n of G_n the representation

$$
G_n(p) = \frac{a^{\frac{n(n-1)}{2}}b^n}{p^n} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} e^{-\frac{7\kappa}{4}\mu}.
$$
 (7.2)

$$
\frac{t^{n-1}}{(n-1)!}
$$
 and the shift property of the Laplace transform, we
ction g_n of G_n the representation

$$
g_n(t) = c_{n-1} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} (a^n t - \gamma_{\nu})_+^{n-1}
$$
 (7.3)

where c_n is given by (5.3) and $t_+ = t$ for $t \ge 0$ and $t_+ = 0$ elsewhere. We see that the functions g_n are splines consisting of piecewise polynomials of degree at most $n-1$. Moreover, $g_n(t) = 0$ for $t \notin (0,1)$ since the sums (2.11) vanish for $m < n$, and according to $G_n(0) = 1$ we have $\int_0^1 g_n(t) dt = 1$. In view of $G_n(p) \to \Phi(p)$ we get *Theory* ϵ_{n-1} $\sum_{\nu=0} \epsilon_{\nu} (a^n t)$
 Theory $t \geq 0$ *i*
 Theory Theory I is increase 1) since the sums (2.
 Theory Z Z Theory Theory Theory Z Z Z Theory Z Z Z Z Z Z Z Z Z $\binom{n}{n} = \frac{t^{n-1}}{(n-1)!}$ and the shift property of the L

l function g_n of G_n the representation
 $g_n(t) = c_{n-1} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} (a^n t - \gamma_{\nu})_+^{n-1}$

(5.3) and $t_+ = t$ for $t \ge 0$ and $t_+ = 0$ else

ollines consis $\begin{aligned}\n\sigma^n\end{aligned} = \frac{t^{n-1}}{(n-1)!}$ and the shift property

al function g_n of G_n the representation
 $g_n(t) = c_{n-1} \sum_{\nu=0}^{2^n-1} \varepsilon_\nu (a^n t - \gamma_\nu)!$

(5.3) and $t_+ = t$ for $t \ge 0$ and t_+

plines consisting of piecewise po *es* consisting of piecewise polynomials of degree at most $n - 1$.
 $\notin (0, 1)$ since the sums (2.11) vanish for $m < n$, and according
 $g_n(t) dt = 1$. In view of $G_n(p) \to \Phi(p)$ we get
 $\frac{a^{\frac{n(n-1)}{2}} b^n}{p^n} \sum_{\nu=0}^{2^n - 1} \varepsilon_{$

$$
\lim_{n \to \infty} \frac{a^{\frac{n(n-1)}{2}} b^n}{p^n} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{2\mu}{a} p} = \int_{0}^{1} e^{-pt} \phi(t) dt
$$

and, moreover, from the proof of [1: Theorem 3.1] we know that g_n is uniformly convergent to the solution ϕ of (1.1) - (1.2), i.e.

$$
\lim_{n \to \infty} \frac{a^{\frac{n(n-1)}{2}} b^n}{p^n} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} e^{-\frac{2\mu}{a} p} = \int_0^1 e^{-pt} \phi(t) dt
$$
\nthe proof of [1: Theorem 3.1] we know that g_n is uniformly con-
\n ϕ of (1.1) - (1.2), i.e.
\n
$$
\phi(t) = \lim_{n \to \infty} c_{n-1} \sum_{\nu=0}^{2^n - 1} \varepsilon_{\nu} (a^n t - \gamma_{\nu})_+^{n-1}.
$$
\n(7.4)
\nthe kernel
\n
$$
k_1(s, t) = \begin{cases} b & \text{for } \frac{s}{a} \leq t \leq \frac{s + a - 1}{a} \\ 0 & \text{elsewhere,} \end{cases}
$$
\n(7.5)
\nan be written as Fredholm integral equation

If we introduce the kernel

 \bullet

$$
k_1(s,t) = \begin{cases} b & \text{for } \frac{s}{a} \le t \le \frac{s+a-1}{a} \\ 0 & \text{elsewhere,} \end{cases} \tag{7.5}
$$

then equation (1.1) can be written as Fredholm integral equation

$$
\phi(t)=\int\limits_0^1 k_1(s,t)\phi(s)\,ds\,.
$$

It is possible to calculate also the iterated kernels k_n defined by

$$
k_{n+1}(s,t) = \int_{0}^{1} k_1(s,\tau) k_n(\tau,t) d\tau
$$

Proposition 7.1. For the iterated kernels k_n $(n \geq 1)$ we have the representation

$$
k_n(s,t)=g_n\left(t-\frac{s}{a^n}\right)
$$

where the splines g_n are given by (7.3) , i.e.

Cantor Sets and Integral-Functional Equations 1019
re given by (7.3), i.e.

$$
k_n(s,t) = c_{n-1} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} (a^n t - s - \gamma_{\nu})_+^{n-1} . \qquad (7.6)
$$

7.6) is true for $n = 1$. Assume that (7.6) is valid for a fixed $n \ge 1$.

Proof. Formula (7.6) is true for $n = 1$. Assume that (7.6) is valid for a fixed $n \geq 1$. In view of (7.5) we have

Formula (7.5) is true for
$$
n = 1
$$
. Assume that (7.6) is valid for a fixe
\n(7.5) we have
\n
$$
\varepsilon_{\nu} \int_{0}^{1} k_{1}(s,\tau)(a^{n}t - \tau - \gamma_{\nu})_{+}^{n-1} d\tau
$$
\n
$$
= b \varepsilon_{\nu} \int_{s/a}^{(s+a-1)/a} (a^{n}t - \tau - \gamma_{\nu})_{+}^{n-1} d\tau
$$
\n
$$
= \frac{b \varepsilon_{2\nu+1}}{a^{n}n} (a^{n+1}t - s - \gamma_{2\nu+1})_{+}^{n} + \frac{b \varepsilon_{2\nu}}{a^{n}n} (a^{n+1}t - s - \gamma_{2\nu})_{+}^{n},
$$
\nhave used (2.2) and (2.5). Hence (7.6) follows by $c_{n} = \frac{b}{a^{n}n} c_{n-1}$ and in

where we have used (2.2) and (2.5). Hence (7.6) follows by $c_n = \frac{b}{a^n n} c_{n-1}$ and induction

 $f_n(t) = g_{n+1}(t)$, and (7.4) follows once more from [1: Theorem 3.1].

have the similar representations

Starting with
$$
f_0(t) = k_1(0, t)
$$
 and calculating the iterates $f_n = Lf_{n-1}$, we find
\n $f_0(t) = g_{n+1}(t)$, and (7.4) follows once more from [1: Theorem 3.1].
\nThe iterates f_n of the function f_0 , $f_0(t) = 1$ for $t \in [0, 1]$ and $f_0(t) = 0$ elsewhere,
\nthe similar representations
\n
$$
f_n(t) = \int_0^1 k_n(s,t) ds = \frac{c_{n-1}}{n} \sum_{\nu=0}^{2^n-1} \varepsilon_\nu ((a^n t - \gamma_\nu)_+^n - (a^n t - \gamma_\nu - 1)_+^n)
$$

with t_+ defined as before, and they also converge to the solution ϕ of (1.1) - (1.2). In the case of $a = 2$ where $\gamma_{\nu} = \nu$ the last representations reduce to

(7.4) follows once more from [1: Theorem 3.1].
\nIf the function
$$
f_0
$$
, $f_0(t) = 1$ for $t \in [0, 1]$ and $f_0(t) = 0$ elsewhere,
\nsentations
\n
$$
f_n(s,t) ds = \frac{c_{n-1}}{n} \sum_{\nu=0}^{2^n-1} \varepsilon_{\nu} ((a^n t - \gamma_{\nu})_+^n - (a^n t - \gamma_{\nu} - 1)_+^n)
$$
\nbefore, and they also converge to the solution ϕ of (1.1) - (1.2). In
\n
$$
f_n(t) = \frac{1}{2^{\frac{n(n-3)}{2}n!}} \sum_{\nu=0}^{2^n-1} (\varepsilon_{\nu} - \varepsilon_{\nu-1})(2^n t - \nu)_+^n
$$
\n(7.7)
\nthe coefficients $\varepsilon_{\nu} - \varepsilon_{\nu-1}$ for $\nu \ge 1$ were calculated by (2.8). Let

with $\varepsilon_{-1} = 0$, where the coefficients $\varepsilon_{\nu} - \varepsilon_{\nu-1}$ for $\nu \ge 1$ were calculated by (2.8). Let us mention that the function $f = f_n$ of (7.7) is the (unique up to a constant factor) non-vanishing L-integrable solution of a particular two-scale difference equation, which arises from (1.1) with $a = 2$ by means of the trapezoidal rule (cf. [2]).

Corrections. Unfortunately, [1] contains some misprints. On p. 164¹ replace $\Phi(0, p)$ by $\Phi(0, a)$. On p. 164⁹ cancel: *quad*. On p. 165₃ replace *n* at the top of the product by $n-1$. On p. 176⁷ replace (6.8) by (6.7). Moreover, the proof of the corollary on p. 176 becomes more lucid, if one recognizes that the first relation in (8.1) is also valid for $t < 0$. $f_n(t) = \frac{1}{2^{\frac{n(n-3)}{2}} n!} \sum_{\nu=0}^{2^n-1} (\varepsilon_{\nu} - \varepsilon_{\nu-1}) (2^n t - \nu)$
with $\varepsilon_{-1} = 0$, where the coefficients $\varepsilon_{\nu} - \varepsilon_{\nu-1}$ for $\nu \ge 1$ were us mention that the function $f = f_n$ of (7.7) is the (unique non-vanishi

References

- [1] Berg, L. and M. Krüppel: *On the solution of an integral-functional equation with a parameter. Z.* Anal. Anw. 17 (1998), 159 - 181.
- *[2] Berg, L. and C. Plonka: Some notes on two-scale difference equations.* In: Recent Progress in Functional Equations (ed.: T. M. Rassias) (to appear).
- [3] Edgar, C. A.: *Measure, Topology, and Fractal Geometry.* New York et al.: Springer-Verlag 1992.
- [4] Flajolet, F., Crabner, P., Prodinger, H. and R. F. Tichy: *Mellin transform and asyvnptotics: digital sums.* Theoret. Comput. Sci. 123 (1994), 291 - 314.
- [5] Jacobs, K.: *Selecta Mathematica I.* Berlin-Heidelberg-New York: Springer-Verlag 1969.
- [6] Kairies, H.-H.: *Functional equations for continuous nowhere differentiable, singular and other peculiar functions.* Mathematik-Bericht 96/1, Techn. Univ. Clausthal 1996.
- [7] Knopp, K.: *Theorie und Anwendung der unendlichen Reihen.* Berlin-Heidelberg: Springer-Verlag 1947.
- *[8] Krasnoselskii, M. A. et al.: Approximate Solution of Operator Equations.* Groningen: Wolters- Noordhoff PubI. 1972.
- [9] Kuczma, M.: *Functional Equations in a Single Variable* (PAN Monografie Mat.: Vol 46). Warsaw: Polish Sci. PubI. 1968.
- *[10) Sierpiriski, W.: Sur un système d'équations fonctionelles définissant une fonction* ensemble dense d'intervalles d'invariabilité. Bull. Inter. Acad. Sci. Cracovie, Cl. Sci. Math. Nat. Sér. A (1911), 577 - 582.
- [11] Volk, W.: *Properties of subspaces generated by an infinitely often differentiable function and its translates. Z.* Ang. Math. Mech. (ZAMM) 76 (1996) Suppl.1, 575 - 576.
- [12] Wirsching, C. J.: *The Dynamical System Generated by the 3n +* 1 *Function.* Lect. Notes Math. 1681 (1998), 1 - 158.
- [13] Wirsching, G. J.: *Balls in constrained urns and Cantor-like sets. Z.* Anal. Anw. 17 $(1998), 979 - 996.$

Received 12.06.1998; in revised form 22.09.1998