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Domain Identification 
for a Nonlinear Elliptic Equation 

D. D. Trong 

Abstract. It is proposed to identify the domain ci C R' of a nonlinear elliptic equation subject 
to given Cauchy data on part of the known outer boundary F and to the zero condition on the 
unknown inner boundary -y. It is proved that under the assumption ci = ci, the domain ci is 
uniquely determined. 
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Let ci C R'1 be a bounded domain limited by an outer boundary F and an inner boundary 
y, where F is known, but y is unknown. Let 

	

F: R" x R x R n x R 2	R 

be a continuously differentiable function. We consider the nonlinear partial differential 
equation

	

F(x,u, Du, D2 u)=O	(zEci),	 (1) 

( where u = u(x), Du =	 and D2u= 8u 	subject to the boundary
conditions

ulro = f,	
au	

= g,	U1, = 0	 (2)€

where F0 is an open subset of F. 
In the present paper, we consider domains ci C R'1 satisfying 

	

ci=ci	 (3) 

where A is the interior of the set A. Our problem is to determine a pair (ci, u) satisfying 
(1) - ( 2). The case that u is a harmonic function and the interior boundary -y is a star-
shaped Jordan curve was considered in [1]. The present paper extends [1] in two ways. 
First, our equation is a fully nonlinear elliptic one (satisfying the maximum principle) 
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curves that are the boundaries of simply connected subdomains with mutually disjoint 
closures. For physical applications of the problem, the reader is referred to, e.g., [1] and 
the references therein. 

We assume that

	

d(r,7) >0	 (4) 
where d(A, B) is the distance between two subsets A, B C R. We say that equation 
(1) is elliptic if

 cii2	 (5) 

with a constant where C >0, for all =(fi,e 1R, II 2	+ ... +, x E ci,€
(u,p,q) E R x R'3 x R n 2 and q = (qij),<z,,<n. We also assume that 

	

aF (x ) u,p,q) 0	for all (x,u,p,q) €	x R x R' x R 2 <	 R 	(6) 

	

F(x,0,0,0) = 0	for all x  R.	 (7) 

We note here that if F(x, u,p, q) = q ii +q22 + ... + qñn, then F(x, u, Du, D2 u) = AU. 
We have the following result. 

Theorem. If f 0 0 or if g	0 on F0 , then there exists at most one pair (ci, u)€
with u E C 2 (Q) fl C'(ci U To) fl C(ci) satisfying (1) - (2) provided (3) - (7) hold. 

Proof. Suppose (Q', u') satisfy (1) - (2) with 

u' € C2 (ci')n C'(ci' U To) fl C(?) 

and let -y' be the inner boundaries of ci' (i = 1, 2). Put 

= { I € ci': d(,, r) < min {d(T,71),d(r,y2)}}.	 (8) 

By (4), w is connected and w 0 0. By the properties of ci' we have w C 12' fl 122. Let 
W be the connected component of ci' fl 122 such that w C W. We shall prove that 

U  = U 2	On w c ci' n ci 2	 (9)€

Putting v = u - u' and 

u°(x,t) = u'(x) + t(u2 (x) - u'(x)) 
p°(x,t) = Du'(x) + t(Du2 (x) - Du'(x)) 
q°(x,t) = D2 u'(x) + t(D2 u 2 (x) - D2u'(x)) 

we have

	

g(x, 1)— g(x,0) = f	(x,i)dt
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where
g(x,t) = F(x,u°(x,i),p°(x,t),q°(x,t)). 

This gives
02v	' 

a,(z)	+Ebi(x)—+c(x)v=0	 (10) 

where
1	 S 

OF = —(x,u ,p°,q°)dt a(x)	 I J 
Oqij	 I 

o	 I 

1	 I 

J 
OF	 I b(x) =	—(x,u ,p° 
pi	

,q°)dt >	 (11) 
-	 I 

o	 I 
I	 I 

f 
OF

°,q°)dt. I c(x)=
U o	 J 

Since 1' C OW, we get from (2) 

v iro = 0	and	= 0.	 (12) 

In view of (10), (12) and (6), we can use the uniqueness theorem for the Cauchy problem 
for elliptic equations (see, e.g., [3]) to get v = 0 on W, i.e. (9) holds. To continue with 
the proof, we suppose by contradiction that ci' 96 ci2 . Without loss of generality, we 
can assume that ci' \ ci 54 0 (in fact, if Il' \ ci = ci2 \ ci' = 0, then ci' = ci2, and by 
(3), ci' = ci i = Q2 = ci2 ) Since !Q' \ ci2 C ci 1 \ W we have 

ci'\W0.	 (13) 

Let U be a connected component of ci' \ W. In view of (8), we have 

U c t x E ci 1 : d(x,f) min {d(r,11),d(r,72)}}.	 (14) 

Hence
aunr=0.	 (15) 

Note that
OU c O(ci' \ W) = O(cl' fl (R' \ W)) c Oci' u OW. 

We can combine the above inclusion with (15) to get 

OUc'y'uOW.	 (16) 

We claim that	-	 - 
u' 18u = 0.	 (17)
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In fact, for x E OU, there are two cases: 
(a) x E y ' . In this case, (2) gives

u'(x)=O.	 (18) 

(b) x VHy'. By (16), X  OW\'. But OW C O(' flV)c ' U72 . Hence x  72 

We prove that x E W. Indeed, x E OU C '. From (15), we get 

xE'\(rU-y')=cl'\O' =111. 

In this case, one has in view of (9)

	

u'(x) = u 2 (x) = 0.	 (19) 

In either case, from (18) and (19) we have that (17) holds. 
Similarly as for (10), we get in view of (7) 

02 u'	 0u1 
x)-+c'(x)u' =0	 (20) a(x)9	+>b( 0x 

1,1=1	 i=1 

for x E cl', where a,b,c' have the same forms as in (11). We do not write out their 
explicit forms but only note that (20) is an elliptic equation with 

C  <0. (21) 

Using the maximum principle for elliptic equations (see [2: Chapter 2/p. 53]), we get 
in view of (17) and (21)

u1(x) = 0 on U. (22) 

Now, using the uniqueness result for elliptic continuation [3], we get from (22) u'(x) = 0 
on Il'. Hence

u'Iro= 
au,	—0.
On I r0 

This is a contradiction and the proof of the theorem is completed I 
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