A Note on Convergence of Level Sets

F. Camilli

Abstract. Given a sequence of functions f_n converging in some topology to a function f, in general the 0-level set of f_n does not give a good approximation of the one of f. In this paper we show that, if we consider an appropriate perturbation of the 0-level set of f_n , we get a sequence of sets converging to the 0-level set of *f,* where the type of set convergence depends on the type of convergence of *f,* to *f.*

Keywords: Perturbed level sets, set convergence, capacity

AMS subject classification: 28 A 12, 46 E 35

1. Introduction

In several fields (phase transition, free boundary problems, front propagation, etc.), a set of interest for the solution of the problem is represented by a level or a sublevel set of a function f . Let us suppose that by means of some approximation technique (f.e. discretization, regularization, rescaling of an order parameter) we get a sequence of functions converging in some topology to *f.* In general, no matter how strong is the convergence of f_n to f, the level sets of f_n do not give a good approximation of the ones of *f.*

Pursuing an idea used in Baiocchi and Pozzi [1], we show that appropriately perturbing the level sets of f_n (the same can be done for the sublevels or the superlevels), we get a sequence of sets defined by means of f_n converging to the level set of f . The type of set convergence is the convergence to zero of the measure of the symmetric difference between the level set of f_n and the correpsonding one of f, and the measure depends on the type of convergence of the sequence f_n .

We analyze the case of convergence in L^p and in $W^{1,p}$, but this technique could be useful in other situations.

The paper is organized as follows. In Section 2, we analyze the case of convergence in L^{∞} and $W^{1,\infty}$ and the associated convergence of perturbed level sets in set-theoretical sense. In Section 3 we first consider the case of convergence in L^p , which gives the convergence in the sense of Lebesgue measure. Then we analyze the case of convergence in $W^{1,p}$ and the corresponding set convergence in the sense of capacity and Hausdorf measure.

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

F. Camilli: Univ. di Torino, Dip. di Matematica, Via Carlo Alberto 10, 10123 Torino (Italy) New address: Univ. dell' Aquila, Dip. di Energetica, 67040 Roio Poggio (AQ), Italy e-mail: camilli©ing.univaq.it

4 F. Camilli
C. T.

2. The case $p = \infty$

In this section we will study (extending the result given in [1]) the case of the convergenc in L^{∞} . We will see that the natural set convergence associated to the L^{∞} convergence is the convergence in set-theoretical sense. $\frac{dy}{dx}$ (extendin
the natural s
theoretical s
en a sequen
 $\begin{CD} \infty & \infty \ \mathcal{A}_m \end{CD}$ lim sup $A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$ and $\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$, we set the supplier of sets $\{A_n\}_{n \in \mathbb{N}}$, we set $\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$ and $\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$ ∞
ndy (extending the
the natural set co-theoretical sense
ven a sequence of
 $\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$
nverges to A in set ing the result given

al set convergence

l sense.

ence of sets $\{A_n\}_n$

and lin

A in set-theoretica

m sup $A_n = \lim_{n \to \infty}$

f be continuous for

Definition 2.1. Given a sequence of sets $\{A_n\}_{n\in\mathbb{N}}$, we set

$$
\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m \quad \text{and} \quad \liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m.
$$

at $\{A_n\}_{n \in \mathbb{N}}$ converges to A in set-theoretical sense and write $A = \lim_{n \to \infty} A_n$
 $A = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n.$
we the following result.
position 2.1. Let f_n and f be continuous functions on \mathbb{R}^N such that

$$
||f - f_n||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n
$$
(2.1)
 $\to 0$ for $n \to \infty$. Let $\{\delta_n\}_{n \in \mathbb{N}}$ be a sequence such that

We say that ${A_n}_{n\in\mathbb{N}}$ converges to *A* in *set-theoretical sense* and write $A = \lim_{n\to\infty} A_n$ if

$$
A = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n.
$$

We have the following result.

$$
||f - f_n||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n
$$
\n(2.1)

ک

We say that
$$
\{A_n\}_{n\in\mathbb{N}}
$$
 converges to A in set-theoretical sense and write $A = \lim_{n\to\infty} A_n$
\nif
\n
$$
A = \lim_{n\to\infty} A_n = \lim_{n\to\infty} A_n.
$$
\nWe have the following result.
\nProposition 2.1. Let f_n and f be continuous functions on \mathbb{R}^N such that
\n
$$
||f - f_n||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n
$$
\n(2.1)
\nwhere $\varepsilon_n \to 0$ for $n \to \infty$. Let $\{\delta_n\}_{n\in\mathbb{N}}$ be a sequence such that
\n
$$
\delta_n > 0 \quad (n \in \mathbb{N})
$$
\n
$$
\delta_n \to 0 \quad (n \to \infty)
$$
\n
$$
\frac{\varepsilon_n}{\delta_n} \to 0 \quad (n \to \infty).
$$
\nSet, for any $n \in \mathbb{N}$,
\n
$$
\Gamma = \{x \in \mathbb{R}^N : f(x) = 0\}
$$
\n
$$
\Gamma_n = \{x \in \mathbb{R}^N : |f_n(x)| \le \delta_n\}.
$$
\nThen $\Gamma \subset \Gamma_n$, for n sufficiently large, and
\n
$$
\Gamma = \lim_{n \to \infty} \Gamma_n.
$$
\nProof. Let $\overline{n} \in \mathbb{N}$ be such that $\delta_n \ge \varepsilon_n$ for any $n \ge \overline{n}$ (recall that $\frac{\varepsilon_n}{\delta_n} \to 0$). If
\n $x \in \Gamma$, then, for $n \ge \overline{n}$, we have from (2.1)

Set, for any $n \in \mathbb{N}$ *,*

$$
\frac{c_n}{\delta_n} \to 0 \qquad (n \to \infty).
$$
\n
$$
\Gamma = \{x \in \mathbb{R}^N : f(x) = 0\}
$$
\n
$$
\Gamma_n = \{x \in \mathbb{R}^N : |f_n(x)| \le \delta_n\}.
$$
\nwith large and

Then $\Gamma \subset \Gamma_n$, for n sufficiently large, and

$$
\Gamma = \lim_{n \to \infty} \Gamma_n. \tag{2.4}
$$

Proof. Let $\overline{n} \in \mathbb{N}$ be such that $\delta_n \ge \varepsilon_n$ for any $n \ge \overline{n}$ (recall that $\frac{\varepsilon_n}{\delta_n} \to 0$). If
 $|f_n(x)| \le |f(x)| + ||f_n - f||_{L^\infty(\mathbb{R}^N)} = \varepsilon_n \le \delta_n$, $x \in \Gamma$, then, for $n \geq \overline{n}$, we have from (2.1)

$$
|f_n(x)| \leq |f(x)| + ||f_n - f||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n \leq \delta_n,
$$

hence $x \in \Gamma_n$. Hence $\Gamma \subset \Gamma_n$ for $n \geq \overline{n}$ and therefore $\Gamma \subset \liminf_{n \to \infty} \Gamma_n$. Let us prove yet that $\limsup_{n\to\infty} \Gamma_n \subset \Gamma$. If $x \in \limsup_{n\to\infty} \Gamma_n$, then by definition there exists a subsequence ${\{\Gamma_{n_k}\}_{k\geq 1}}$ such that $x \in \Gamma_{n_k}$ for any $k \in \mathbb{N}$. It follows that $|f_{n_k}(x)| \leq \delta_{n_k}$ for any $k \in \mathbb{N}$ and therefore $f(x) = \lim_{k \to \infty} f_{n_k}(x) = 0$ which yields $x \in \Gamma$

Remark 2.1 Observe that if Γ_n and Γ are contained in a compact set *K*, then the previous proposition gives the convergence to zero of the Hausdorff distance between Γ_n and Γ .

In the next proposition we show that improving the convergence of f_n to f , we get some additional information on the type of convergence of Γ_n to Γ .

Proposition 2.2. Let $f, f_n \in C^1(\mathbb{R}^N)$ $(n \in \mathbb{N})$ be such that

$$
||f - f_n||_{W^{1,\infty}(\mathbb{R}^N)} = \varepsilon_n
$$

where $\varepsilon_n \to 0$ for $n \to \infty$. Let δ_n and Γ and Γ_n be defined as in (2.2) - (2.3). Set

Convergen
\n2. Let
$$
f, f_n \in C^1(\mathbb{R}^N)
$$
 $(n \in \mathbb{N})$ be such that
\n
$$
||f - f_n||_{W^{1,\infty}(\mathbb{R}^N)} = \varepsilon_n
$$
\n
$$
\to \infty.
$$
 Let δ_n and Γ and Γ_n be defined as in (2)
\n
$$
\Gamma^{reg} = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } \nabla f(x) \neq 0 \right\}
$$

\n
$$
\Gamma^{sing} = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } \nabla f(x) = 0 \right\}
$$

\n
$$
g = \left\{ x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \text{ and } |\nabla f_n(x)| > \delta \right\}
$$

and

12.2. Let
$$
f, f_n \in C^{\bullet}(\mathbb{R}^n)
$$
 $(n \in \mathbb{N})$ be such that
\n
$$
||f - f_n||_{W^{1,\infty}(\mathbb{R}^N)} = \varepsilon_n
$$
\n
$$
n \to \infty. Let δ_n and Γ and Γ_n be defined as in (2.2)
$$

\n
$$
\Gamma^{reg} = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } \nabla f(x) \neq 0 \right\}
$$

\n
$$
\Gamma^{sing} = \left\{ x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \text{ and } |\nabla f_n(x)| > \delta_n \right\}
$$

\n
$$
\Gamma^{sing}_n = \left\{ x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \text{ and } |\nabla f_n(x)| > \delta_n \right\}
$$

\n
$$
\Gamma^{reg} = \lim_{n \to \infty} \Gamma^{reg}_n \quad \text{and} \quad \Gamma^{sing} = \lim_{n \to \infty} \Gamma^{sing}_n.
$$

\n
$$
\overline{\iota} \in \mathbb{N} \text{ be such that } \delta_n \ge \varepsilon_n \text{ for } n \ge \overline{n}. \text{ Then, for } n \ge 0
$$

\nwe
\n
$$
|\nabla f_n(x)| < |\nabla f(x)| + |\nabla f_n - \nabla f| \le |\nabla f_n| \le \delta_n
$$

Then

$$
\Gamma^{reg} = \lim_{n \to \infty} \Gamma_n^{reg} \qquad \text{and} \qquad \Gamma^{sing} = \lim_{n \to \infty} \Gamma_n^{sing}
$$

Proof. Let $\bar{n} \in \mathbb{N}$ be such that $\delta_n \geq \varepsilon_n$ for $n \geq \bar{n}$. Then, for $n \geq \bar{n}$, $\Gamma \subset \Gamma_n$ and, if $x \in \Gamma^{sing}$, we have $\begin{aligned} \n\bar{n} &= \infty \quad n \quad \text{and} \quad \bar{n} \in \mathbb{N} \text{ be such that } \delta_n \geq \varepsilon_n \text{ for } n \geq \bar{n}. \text{ Then, for } n \geq \bar{n} \n\end{aligned}$
 $|\nabla f_n(x)| \leq |\nabla f(x)| + ||\nabla f_n - \nabla f||_{L^\infty(\mathbb{R}^N)} = \varepsilon_n \leq \delta_n.$
 $\subset \text{Psing for } n \geq \bar{n}. \text{ If } n \in \text{lim sum.} \quad \text{Psing then}$

$$
|\nabla f_n(x)| \leq |\nabla f(x)| + ||\nabla f_n - \nabla f||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n \leq \delta_n.
$$

 $\label{eq:1.1} \begin{split} \Gamma^{sing}_n &= \left\{ x \in \mathbb{R}^N : |f_n(x)| \leq \delta_n \text{ and } |\nabla f_n(x)| \leq \delta_n \right\}.\\ \textup{Then} \\ \Gamma^{reg} &= \lim_{n \to \infty} \Gamma^{reg}_n \qquad \textup{and} \\ \textup{Proof. Let } \overline{n} \in \mathbb{N} \text{ be such that } \delta_n \geq \varepsilon_n \text{ for } n \geq \overline{n}. \text{ Then, for } n \geq \overline{n}, \, \Gamma \subset \Gamma_n \text{ and, if } \\ x \in \Gamma^{sing}, \text{ we have} \\ |\nabla f_n(x)|$ Then $\Gamma^{reg} = \lim_{n \to \infty} \Gamma^{reg}_n$ and
 $\text{Proof.} \text{ Let } \overline{n} \in \mathbb{N} \text{ be such that } \delta_n \geq \varepsilon_n \text{ for }$
 $x \in \Gamma^{sing}$, we have $|\nabla f_n(x)| \leq |\nabla f(x)| + ||\nabla f_n - \nabla$

Therefore $\Gamma^{sing} \subset \Gamma^{sing}_n$ for $n \geq \overline{n}$. If $x \in \text{lin}$

subsequence Γ_{n_k} . subsequence Γ_{n_k} . It follows that $|f_{n_k}(x)| \leq \delta_{n_k}$ and $|\nabla f_{n_k}(x)| \leq \delta_{n_k}$ for any $k \in \mathbb{N}$ and therefore $|\nabla f_n(x)| \leq |\nabla f(x)| + ||\nabla f_n - \nabla f||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n \leq \delta_n.$
 f^{sing} $\subset \Gamma_n^{sing}$ for $n \geq \overline{n}$. If $x \in \limsup_{n \to \infty} \Gamma_n^{sing}$, then $x \in \mathbb{R}$
 f_n . It follows that $|f_{n_k}(x)| \leq \delta_{n_k}$ and $|\nabla f_{n_k}(x)| \leq \delta_{n_k}$ for $\Gamma^{reg} = \lim_{n \to \infty} \Gamma^{reg}_n$ and $\Gamma^{sing} = \lim_{n \to \infty}$
 $\in \mathbb{N}$ be such that $\delta_n \ge \varepsilon_n$ for $n \ge \overline{n}$. Then, f
 $\mathbb{N}f_n(x) \le |\nabla f(x)| + ||\nabla f_n - \nabla f||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon$
 Γ^{sing}_n for $n \ge \overline{n}$. If $x \in \limsup_{n \to \infty} \Gamma^{sing}_n$

$$
f(x) = \lim_{k \to \infty} f_{n_k}(x) = 0 \quad \text{and} \quad \nabla f(x) = \lim_{k \to \infty} \nabla f_{n_k}(x) = 0.
$$

therefore $f(x) = \lim_{k \to \infty} f_{n_k}(x) = 0$ and $\nabla f(x) = \lim_{k \to \infty} \nabla f_{n_k}(x) = 0$.
Therefore $x \in \Gamma^{sing}$ and $\Gamma^{sing} = \lim_{n \to \infty} \Gamma_n^{sing}$. Since (2.4) holds, we get also $\Gamma^{reg} =$ $\lim_{n\to\infty}\Gamma_n^{reg}$

We conclude this section giving an estimate of the Hausdorff distance between Γ and Γ_n in the case that Γ is regular.

Proposition 2.3. Assume the same hypothesis as in Proposition 2.1, with δ_n and Γ , Γ _n defined as in (2.2) - (2.3). Moreover, assume that Γ is compact and that f is *differentiable with* $\nabla f \neq 0$ *on* Γ . Then there exists a constant $C > 0$ such that *d* $|f_{n_k}(x)| \leq o_{n_k}$ and $|Vf_{n_k}(x)| \leq o_{n_k}$ for any $k \in \mathbb{N}$ and
 $= 0$ and $\nabla f(x) = \lim_{k \to \infty} \nabla f_{n_k}(x) = 0.$
 $= \lim_{n \to \infty} \Gamma_n^{sing}$. Since (2.4) holds, we get also $\Gamma^{reg} =$

iving an estimate of the Hausdorff distan

$$
d_{\mathcal{H}}(\Gamma,\Gamma_n) \leq C(\varepsilon_n + \delta_n) \tag{2.5}
$$

for n sufficiently large, where $d_{\mathcal{H}}$ *denotes the Hausdorff distance.*

Proof. By the assumptions on f and Γ , there exist $\eta_0 > 0$ and $C_0 > 0$ such that $|\nabla f(x)| \geq C_0$ on $\Gamma_{\eta_0} = \{x : d(x,\Gamma) \leq \eta_0\}$. For $\eta \leq \eta_0$, consider $y \in \partial(\Gamma_{\eta}) = \partial\{x : d(x,\Gamma)\}$ $d(x,\Gamma) \leq \eta$ and let $x \in \Gamma$ be such that $d(y,\Gamma) = |y-x| = \eta$. Then

$$
|(y-x)\cdot\nabla f(x)|=\eta|\nabla f(x)|\geq C_0\eta.
$$

Since $f(x) = 0$, if ω is a modulus of continuity of ∇f on Γ_{η_0} , then

$$
|f(y)| \ge |(y-x) \cdot \nabla f(x)| - \omega(|y-x|)|y-x| \ge \eta(C_0 - \omega(\eta)). \tag{2.6}
$$

For *n* sufficiently large in such a way that $C_0 - \omega(\delta_n + \varepsilon_n) \geq \frac{C_0}{2}$ and $2 \frac{\delta_n + \varepsilon_n}{C_0} \leq \eta_0$, Fr. Figure is sure the summate inposition 2.1, with o_n and
 d_1F , n_e d_2F , d_3F , d_4F , d_5F , d_6F , d_7F , n_e d_8F , d_9F d_1F , n_h d_2F d_3F d_4F d_5F d_6F , d_7F , n_h d_8F d_9F d Since $f(x) = 0$, if ω is a modulus of continuity of ∇f on Γ_{η_0} , then
 $|f(y)| \ge |(y - x) \cdot \nabla f(x)| - \omega(|y - x|)|y - x| \ge \eta(C_0 - \omega(\eta))$. (2.6)

For *n* sufficiently large in such a way that $C_0 - \omega(\delta_n + \epsilon_n) \ge \frac{C_0}{2}$ and $2 \$ $d_{\mathcal{H}}(\Gamma,\Gamma_n) \leq d_{\mathcal{H}}(\Gamma,\Gamma_n) \leq \eta$ and therefore (2.5), with $C = \frac{2}{C_0}$

6 F. Camilli

All the results of this section have an analogue in the case of sub- and superlevel sets of f_n and f .

3. The case $1 \leq p < \infty$

We first analyze the case of convergence in $L^p(\mathbb{R}^N)$. We prove that in this case an appropriate notion of set convergence is the convergence to 0 of the Lebesgue measure of $\Gamma \Delta \Gamma_n$. In the following, \mathcal{L}^N de appropriate notion of set convergence is the convergence to 0 of the Lebesgue measure of $\Gamma \Delta \Gamma_n$. In the following, \mathcal{L}^N denotes the Lebesgue measure on \mathbb{R}^N . $\leq p < \infty$

ne case of convergence in $L^p(\mathbb{R}^N)$. We prove that in this case an

of set convergence is the convergence to 0 of the Lebesgue measure

llowing, L^N denotes the Lebesgue measure on \mathbb{R}^N .

1.1. Let

Proposition 3.1. Let $f_n, f \in L^p(\mathbb{R}^N)$ $(1 \leq p < \infty; n \in \mathbb{N})$ such that

$$
||f - f_n||_{L^p(\mathbb{R}^N)} = \varepsilon_n \tag{3.1}
$$

where $\varepsilon_n \to 0$ for $n \to \infty$. Let $\{\delta_n\}_{n \in \mathbb{N}}$ be a sequence such that

$$
0 < \delta_n \quad (n \in \mathbb{N}) \qquad \text{and} \qquad \delta_n \to 0 \quad (n \to \infty). \tag{3.2}
$$

Define, for any $n \in \mathbb{N}$ *,*

$$
f_n, f \in L^p(\mathbb{R}^N) \quad (1 \le p < \infty; n \in \mathbb{N}) \text{ such that}
$$
\n
$$
||f - f_n||_{L^p(\mathbb{R}^N)} = \varepsilon_n \tag{3.1}
$$
\n
$$
\text{Let } \{\delta_n\}_{n \in \mathbb{N}} \text{ be a sequence such that}
$$
\n
$$
(n \in \mathbb{N}) \quad \text{and} \quad \delta_n \to 0 \quad (n \to \infty).
$$
\n
$$
\Gamma = \{x \in \mathbb{R}^N : f(x) = 0\}
$$
\n
$$
\Gamma_n = \{x \in \mathbb{R}^N : |f_n(x)| \le \delta_n\}.
$$
\n
$$
\text{we have}
$$
\n
$$
\lim_{n \to \infty} L^N(\Gamma \Delta \Gamma_n) = 0 \tag{3.4}
$$
\n
$$
L^N\left(\Gamma \Delta \limsup_{n \to \infty} \Gamma_n\right) = 0. \tag{3.5}
$$

Then:

(i) If $\lim_{n\to\infty} \frac{\epsilon_n}{\delta_n} = 0$, *we have*

$$
\lim_{n \to \infty} \mathcal{L}^N(\Gamma \Delta \Gamma_n) = 0 \tag{3.4}
$$

$$
\mathcal{L}^{N}\left(\Gamma\triangle\limsup_{n\to\infty}\Gamma_{n}\right)=0.\tag{3.5}
$$

(ii) If

$$
= \{x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \}.
$$
\nhave

\n
$$
\lim_{n \to \infty} \mathcal{L}^N(\Gamma \Delta \Gamma_n) = 0
$$
\n
$$
\mathcal{L}^N\left(\Gamma \Delta \limsup_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\sum_n \left(\frac{\epsilon_n}{\delta_n}\right)^p < \infty,
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\nand

\n
$$
\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0.
$$
\n

we also have

$$
\mathcal{L}^N\left(\Gamma\triangle\liminf_{n\to\infty}\Gamma_n\right)=0.\tag{3.7}
$$

 $\lim_{n \to \infty} \mathcal{L}^N(\Gamma \Delta \Gamma_n) = 0$
 C^{*N*} $\left(\Gamma \Delta \limsup_{n \to \infty} \Gamma_n\right) = 0$.

(ii) If
 $\sum_n \left(\frac{\varepsilon_n}{\delta_n}\right)^p < \infty$,
 we also have
 $\mathcal{L}^N\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0$.
 Therefore $\Gamma = \lim_{n \to \infty} \Gamma_n$ *up to a set of* 0*-Lebe* **Proof.** We first observe that, since we are considering only the measure of Γ and Γ_n , we can assume that these sets are defined by means of any element in the class of equivalence of f and f_n . We have

$$
\Gamma \Delta \Gamma_n = (\Gamma \setminus \Gamma_n) \cup (\Gamma_n \setminus \Gamma)
$$

and

$$
\Gamma \Delta \Gamma_n = (\Gamma \setminus \Gamma_n) \cup (\Gamma_n \setminus \Gamma)
$$

$$
\Gamma \setminus \Gamma_n = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } |f_n(x)| > \delta_n \right\}
$$

$$
\Gamma_n \setminus \Gamma = \left\{ x \in \mathbb{R}^N : f(x) \neq 0 \text{ and } |f_n(x)| \leq \delta_n \right\}
$$

(the previous and all the others inclusions in this proof are intended up to sets of null Lebesgue measure).

Since $\Gamma \subset \Gamma_n \subset \{x \in \mathbb{R}^N : |f(x) - f_n(x)| > \delta_n\}$, from the Cebycev inequality we get

Convergence of Level Sets 7
\nall the others inclusions in this proof are intended up to sets of null
\n
$$
\subset \{x \in \mathbb{R}^N : |f(x) - f_n(x)| > \delta_n\}, \text{ from the Cebycev inequality we}
$$
\n
$$
\mathcal{L}^N(\Gamma \setminus \Gamma_n) \leq \frac{1}{\delta_n^p} \int_{\mathbb{R}^N} |f(x) - f_n(x)|^p dx = \left(\frac{\varepsilon_n}{\delta_n}\right)^p
$$
\n
$$
\lim_{n \to \infty} \mathcal{L}^N(\Gamma \setminus \Gamma_n) = 0.
$$
\n(3.9)
\n
$$
\mathcal{L}^N\left(\limsup_{n \to \infty} (\Gamma_n \setminus \Gamma)\right) = 0.
$$
\n(3.10)
\n
$$
\int_{-\infty}^{\infty} (\Gamma_n \setminus \Gamma) \text{ and let } x \in \widetilde{\Gamma}. \text{ Then there exists a subsequence } \{n_k\}_{k \ge 1}
$$
\n
$$
\leq \delta_n, \text{ for any } k \in \mathbb{N}. \text{ It follows that, } \mathcal{L}^N \text{-a.e. on } \widetilde{\Gamma},
$$

and therefore

$$
\lim_{n \to \infty} \mathcal{L}^N(\Gamma \setminus \Gamma_n) = 0. \tag{3.9}
$$

Let us prove that

$$
\mathcal{L}^N\Big(\limsup_{n\to\infty}(\Gamma_n\setminus\Gamma)\Big)=0.\tag{3.10}
$$

Set $\tilde{\Gamma} = \limsup_{n \to \infty} (\Gamma_n \setminus \Gamma)$ and let $x \in \tilde{\Gamma}$. Then there exists a subsequence $\{n_k\}_{k \geq 1}$ $\mathcal{L}^N\left(\limsup_{n\to\infty}(\Gamma_n\setminus\Gamma)\right)=0.$
Set $\widetilde{\Gamma}=\limsup_{n\to\infty}(\Gamma_n\setminus\Gamma)$ and let $x\in\widetilde{\Gamma}$. Then there exists a s
such that $|f_{n_k}(x)|\leq \delta_{n_k}$ for any $k\in\mathbb{N}$. It follows that, \mathcal{L}^N -a.e. on Let $\mathcal{L}^N\Big(\limsup_{n\to\infty}(\Gamma_n\setminus\Gamma)\Big)=0.$
 $\sup_{n\to\infty}(\Gamma_n\setminus\Gamma)$ and let $x \in \widetilde{\Gamma}$. Then there exists a subsequenting $\liminf_{n,k}(x)| \leq \delta_{n_k}$ for any $k \in \mathbb{N}$. It follows that, \mathcal{L}^N -a.e. on $\widetilde{\Gamma}$,
 $\liminf_{n\to\infty$

$$
\liminf_{n\to\infty}f_n(x)=0\qquad\text{and}\qquad\liminf_{n\to\infty}|f_n(x)-f(x)|^p=|f(x)|^p.
$$

Applying the Fatou Lemma we get

$$
\int_{\widetilde{\Gamma}}|f(x)|^p dx \leq \lim_{n\to\infty}\int_{\mathbb{R}^N}|f(x)-f_n(x)|^p dx = 0.
$$

Since $|f(x)| > 0$ on $\tilde{\Gamma}$, we get (3.10).

Since for any sequence $\{A_n\}_{n\geq 1}$ of measurable sets we have

$$
\limsup_{n\to\infty} \mathcal{L}^N(A_n) \leq \mathcal{L}^N\Big(\limsup_{n\to\infty} A_n\Big)
$$

Applying the Fatou Lemma we get
 $\int_{\widetilde{\Gamma}} |f(x)|^p dx \le \lim_{n \to \infty} \int_{\mathbb{R}^N} |f(x) - f_n(x)|^p dx = 0.$

Since $|f(x)| > 0$ on $\widetilde{\Gamma}$, we get (3.10).

Since for any sequence $\{A_n\}_{n \ge 1}$ of measurable sets we have
 $\limsup_{n \to \infty} \mathcal$ it follows from (3.10) that $\lim_{n\to\infty} \mathcal{L}^N(\Gamma_n \setminus \Gamma) = 0$ and therefore, together with (3.9), also (3.4) holds. From (3.10) and

$$
\mathcal{L}^N\left(\Gamma\setminus\limsup_{n\to\infty}\Gamma_n\right)=\mathcal{L}^N\left(\liminf_{n\to\infty}(\Gamma\setminus\Gamma_n)\right)\leq \lim_{n\to\infty}\mathcal{L}^N(\Gamma\setminus\Gamma_n)=0
$$

we get (3.5).

Let us prove now statement (ii). Estimate (3.8) gives

$$
\mathcal{L}^N\bigg(\bigcup_{m=n}^{\infty}(\Gamma\setminus\Gamma_m)\bigg)\leq \sum_{m=n}^{\infty}\bigg(\frac{\varepsilon_m}{\delta_m}\bigg)^p,
$$

and therefore, for any $n \in \mathbb{N}$,

$$
\mathcal{L}^N\left(\Gamma\setminus\liminf_{n\to\infty}\Gamma_n\right)=\mathcal{L}^N\left(\limsup_{n\to\infty}(\Gamma\setminus\Gamma_n)\right)\leq\sum_{m=n}^{\infty}\left(\frac{\varepsilon_m}{\delta_m}\right)^p.
$$

For (3.6) we get $\mathcal{L}^N(\Gamma\lceil\liminf_{n\to\infty}\Gamma_n) = 0$. Since (3.10) yields $\mathcal{L}^N(\liminf_{n\to\infty}\Gamma_n\backslash\Gamma) =$ 0 we get (3.7)

Remark 3.1. Since we have

$$
|\mathcal{L}^N(\Gamma) - \mathcal{L}^N(\Gamma_n)| \leq \mathcal{L}^N(\Gamma \triangle \Gamma_n)
$$

then $\mathcal{L}^N(\Gamma \Delta \Gamma_n) \to 0$ implies that $\mathcal{L}^N(\Gamma_n) \to \mathcal{L}^N(\Gamma)$. The vice versa in general is not true. The result $\mathcal{L}^N(\Gamma \Delta \Gamma_n) \to 0$ gives a more complete information respect to the convergence of the measure of Γ_n to the measure of Γ . In fact, it shows that the measure of the part of Γ_n which does not approximate Γ tends to 0, while the measure of $\Gamma \setminus \Gamma_n$ can be estimated by means of (3.8).

If we know that $||f_n - f||_{W^1,P(\mathbb{R}^N)} = \varepsilon_n$, then we can prove a result similar to Proposition 2.2 for the convergence of regular and singular parts of Γ_n to Γ . In this case, a more accurate way of studying properties of sets defined through Sobolev functions is given by the notion of *capacity.* We will show that, in the case of convergence in *W*^{1,*p*}(\mathbb{R}^N) (1 $\leq p < N$) we get convergence of Γ_n to Γ up to sets of 0 capacity. Let us recall the definition and some basic properties of the capacity we will need in the following (see [2 - 4] for more us recall the definition and some basic properties of the capacity we will need in the following (see [2 - 4] for more details).

Definition 3.1. Let $1 \leq p \leq N$ and set

$$
K^{p} = \left\{ \varphi : \mathbb{R}^{N} \to \mathbb{R} \middle| 0 \leq \varphi \in L^{p^{*}}(\mathbb{R}^{N}) \text{ with } \nabla \varphi \in L^{p}(\mathbb{R}^{N}, \mathbb{R}^{N}) \right\}
$$

$$
\operatorname{Cap}_p(A)=\inf\bigg\{\int_{\mathbb{R}^N}|\nabla\varphi|\,dy\bigg|\,\varphi\in K^p\,\text{ with }A\subset\{\varphi\geq 1\}^\circ\bigg\}.
$$

It is possible to prove that Cap_p is an exterior measure on subsets of \mathbb{R}^N . For a function $\varphi \in L^1_{loc}(\mathbb{R}^N)$, the *precise representative* φ^* of φ is defined by

For
$$
A \\\subset \mathbb{R}^N \to \mathbb{R} \Big| 0 \leq \varphi \in L^{p^*}(\mathbb{R}^N)
$$
 with $\nabla \varphi \in L^p(\mathbb{R}^N)$
\nFor $A \\subset \mathbb{R}^N$, we define
\n
$$
\mathbb{R}^p \Big| \Big|_{\mathbb{R}^N} \Big| \nabla \varphi \Big| dy \Big| \varphi \in K^p
$$
 with $A \\subset \{ \varphi \geq 0 \}$
\nto prove that Cap_p is an exterior measure on su
\n (\mathbb{R}^N) , the precise representative φ^* of φ is defined
\n
$$
\varphi^*(x) = \begin{cases} \lim_{r \to 0^+} \int_{B(x,r)} \varphi(y) dy & \text{if the limit exists} \\ 0 & \text{otherwise} \end{cases}
$$

\n
$$
dy = \int_{B(x,r)} \varphi(y) dy / \mathcal{L}^N(B(x,r))
$$
. We have (see
\n1. Let $\varphi \in W^{1,p}(\mathbb{R}^N)$ $(1 \leq p < N)$. Then:
\na Borel set $E \\subset \mathbb{R}^N$ such that $\text{Cap}_p(E) = 0$ and
\n
$$
\lim_{r \to 0^+} \int_{B(x,r)} \varphi(y) dy = \varphi^*(x) \qquad (x \in \mathbb{R}^N \setminus E).
$$

\non,

where $f_{B(x,r)}\varphi(y) dy = \int_{B(x,r)}\varphi(y) dy/\mathcal{L}^N(B(x,r))$. We have (see [2: Theorem 4.8.1]) the following

Theorem 3.1. *Let* $\varphi \in W^{1,p}(\mathbb{R}^N)$ $(1 \leq p \leq N)$ *. Then:*

(i) There is a Borel set $E \subset \mathbb{R}^N$ such that $\text{Cap}_p(E) = 0$ and

$$
\lim_{r \to 0^+} \int_{B(x,r)} \varphi(y) \, dy = \varphi^*(x) \qquad (x \in \mathbb{R}^N \setminus E).
$$

(ii) In addition,

$$
\lim_{r \to 0^+} \int_{B(x,r)} \varphi(y) \, dy = \varphi^*(x) \qquad (x \in \mathbb{R}^N \setminus E).
$$
\n*ion,*\n
$$
\lim_{r \to 0^+} \int_{B(x,r)} |\varphi(y) - \varphi^*(x)|^{p^*} \, dy = 0 \qquad (x \in \mathbb{R}^N \setminus E).
$$

(iii) The precise representative φ^* is quasi-continuous.

Because of the previous theorem, any function in the space $W^{1,p}(\mathbb{R}^N)$ admits a quasi-continuous representative. We have the following convergence result for the perturbed level sets.

Proposition 3.2. Let $f, f_n \in W^{1,p}(\mathbb{R}^N)$ $(1 \leq p < N)$ be such that

 $||f - f_n||_{W^{1,p}(\mathbb{R}^N)} = \varepsilon_n$

where $\varepsilon_n \to 0$ for $n \to \infty$. Let δ_n and Γ, Γ_n be defined as in (3.2) - (3.3) by means of *the precise representatives of f and* f_n *. Then:* Proposition 3.2. Let f, f_n
 $e \varepsilon_n \to 0$ for $n \to \infty$. Let

recise representatives of f

(i) If $\lim_{n \to \infty} \frac{\varepsilon_n}{\delta_n} = 0$, then

Convergence of Level Sets 9
\n
$$
f_n \in W^{1,p}(\mathbb{R}^N) \quad (1 \le p < N) \text{ be such that}
$$
\n
$$
||f - f_n||_{W^{1,p}(\mathbb{R}^N)} = \varepsilon_n
$$
\nt δ_n and Γ, Γ_n be defined as in (3.2) – (3.3) by means of
\nf and f_n . Then:
\n
$$
\text{Cap}_p\left(\limsup_{n \to \infty} \Gamma_n \Delta \Gamma\right) = 0. \tag{3.11}
$$

(ii) If

Convergence of Level Sets
\n
$$
0 \in W^{1,p}(\mathbb{R}^N) \quad (1 \leq p < N) \text{ be such that}
$$
\n
$$
||f - f_n||_{W^{1,p}(\mathbb{R}^N)} = \varepsilon_n
$$
\n
$$
\delta_n \text{ and } \Gamma, \Gamma_n \text{ be defined as in (3.2) - (3.3) by means of}
$$
\n
$$
and \ f_n. \text{ Then:}
$$
\n
$$
\text{Cap}_p\left(\limsup_{n \to \infty} \Gamma_n \Delta \Gamma\right) = 0. \tag{3.11}
$$
\n
$$
\sum_n \left(\frac{\varepsilon_n}{\delta_n}\right)^p < \infty, \tag{3.12}
$$
\n
$$
\text{Cap}_p\left(\Gamma \Delta \liminf_{n \to \infty} \Gamma_n\right) = 0 \tag{3.13}
$$
\n
$$
\text{unpt to a set of zero capacity.}
$$
\n
$$
\text{ment (i). Since the sets } \Gamma \text{ and } \Gamma_n \text{ are defined by means}
$$

then we have also

$$
Cap_p\left(\Gamma\triangle\liminf_{n\to\infty}\Gamma_n\right)=0
$$
\n(3.13)

(ii) If
 $\text{Cap}_p\left(\limsup_{n\to\infty}\Gamma_n\Delta\Gamma\right)=0.$
 and therefore $\Gamma = \lim_{n\to\infty}\Gamma_n$ *up to a set of zero capacity.*
 Proof. Let us prove statement (i). Since the sets Γ and the precise representatives of f and f_n , then **Proof.** Let us prove statement (i). Since the sets Γ and Γ_n are defined by means of the precise representatives of f and f_n , then they are well defined, i.e. up to sets of zero capacity. In the following all the relations involving Γ and Γ_n are intended to be satisfied Cap_n -a.e. We have *B* $B_n = \lim_{n \to \infty} \frac{1}{n} a p$ for a set of years expense,
 B_n for the sets Γ and Γ_n are defined by representatives of f and f_n , then they are well defined, i.e. up to s

In the following all the relations invol

$$
\Gamma \setminus \Gamma_n = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } |f_n(x)| > \delta_n \right\}.
$$

Let us prove that, defining

In the following all the relations involving
$$
\Gamma
$$
 and Γ_n are intended to be
\na.e. We have
\n
$$
\Gamma \setminus \Gamma_n = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } |f_n(x)| > \delta_n \right\}.
$$
\nnat, defining
\n
$$
B_n = \left\{ x \in \mathbb{R}^N \middle| \int_{B(x,r)} |f_n - f| dy > \delta_n \text{ for some } r > 0 \right\}, \tag{3.14}
$$
\n
$$
\text{Cap}_p(\Gamma \setminus \Gamma_n) \leq \text{Cap}_p(B_n). \tag{3.15}
$$
\n
$$
\Gamma \setminus \Gamma_n, \text{ then, up to a set of zero capacity, we have}
$$

then

$$
\operatorname{Cap}_{p}(\Gamma \setminus \Gamma_n) \leq \operatorname{Cap}_{p}(B_n). \tag{3.15}
$$

In fact, if $x \in \Gamma \setminus \Gamma_n$, then, up to a set of zero capacity, we have

$$
Cap_p(\Gamma \setminus \Gamma_n) \le Cap_p(B_n).
$$

then, up to a set of zero capacity, we have

$$
\lim_{r \to 0} \int_{B(x,r)} |f_n - f| dy = |f(x) - f_n(x)| > \delta_n.
$$

Therefore there exists $r_0 > 0$ such that $\int_{B(x,r)} B(x,r_0) |f_n - f| dy > \delta_n$ and so (3.15) holds. only on *N* and *p*, such that for any $\eta > 0$ act, if $x \in \Gamma \setminus \Gamma_n$, then, u
 $\lim_{r \to 0} \int_{B(r)}$

erefore there exists $r_0 > 0$

call that (see [2: Lemma 4

y on N and p, such that f
 $\text{Cap}_p\left(\left\{x \in \mathbb{R}^N \middle| \int_{B(x,r)} \mathcal{G}(x,r)}\right\}\right)$

Recall that (see [2: Lemma 4.8.1]), if
$$
\varphi \in K^p
$$
, then there exists a constant C, depending only on N and p, such that for any $\eta > 0$
\n
$$
Cap_p\left(\left\{x \in \mathbb{R}^N \middle| \int_{B(x,r)} \varphi(y) dy > \eta \text{ for some } r > 0\right\}\right) \leq \frac{C}{\eta^p} \int_{\mathbb{R}^N} |D\varphi|^p dy. \tag{3.16}
$$

10 F. Camilli
10 F. Camilli

From (3.14) and (3.16) we get

10 F. Camilli
\nFrom (3.14) and (3.16) we get
\n
$$
Cap_p(\Gamma \setminus \Gamma_n) \leq \frac{C}{\delta_n^p} \int_{\mathbb{R}^N} |\nabla f - \nabla f_n|^p dy \leq C \left(\frac{\varepsilon_n}{\delta_n}\right)^p
$$
\n(3.17)
\nand therefore $\lim_{n \to \infty} Cap_p(\Gamma \setminus \Gamma_n) = 0$. From the previous equality and the properties
\nof the capacity, we get

of the capacity, we get and therefore $\lim_{n\to\infty} \text{Cap}_p(\Gamma\setminus\Gamma_n) = 0$. From the previous equality and the properties

10 F. Camilli
\nFrom (3.14) and (3.16) we get
\n
$$
Cap_p(\Gamma \setminus \Gamma_n) \leq \frac{C}{\delta_n^p} \int_{\mathbb{R}^N} |\nabla f - \nabla f_n|^p dy \leq C \left(\frac{\varepsilon_n}{\delta_n}\right)^p
$$
\n(3.17)
\nand therefore $\lim_{n \to \infty} Cap_p(\Gamma \setminus \Gamma_n) = 0$. From the previous equality and the properties
\nof the capacity, we get
\n
$$
Cap_p(\Gamma \setminus \limsup_{n \to \infty} \Gamma_n) = Cap_p\left(\liminf_{n \to \infty} (\Gamma \setminus \Gamma_n)\right) \leq \lim_{n \to \infty} Cap_p(\Gamma \setminus \Gamma_n) = 0.
$$
\n(3.18)
\nLet A be the set
\n
$$
A = \left\{ x \in \mathbb{R}^N \middle| \limsup_{r \to 0^+} \frac{1}{r^{n-p}} \int_{B(x,r)} |\nabla f(y)|^p dy > 0 \right\}.
$$

\nThen $Cap_p(A) = 0$ (see [2: Theorem 2.4.3]) and from the Poincaré inequality we have

Let *A* be the set

$$
A = \left\{ x \in \mathbb{R}^N \middle| \limsup_{r \to 0^+} \frac{1}{r^{n-p}} \int_{B(x,r)} |\nabla f(y)|^p dy > 0 \right\}.
$$

$$
A = \left\{ x \in \mathbb{R}^N \mid \limsup_{n \to \infty} \frac{1}{n!} \int_{B(x,r)} |\nabla f(y)|^p dy > 0 \right\}.
$$
\n
$$
A = \left\{ x \in \mathbb{R}^N \mid \limsup_{r \to 0^+} \frac{1}{r^{n-p}} \int_{B(x,r)} |\nabla f(y)|^p dy > 0 \right\}.
$$
\n
$$
B = \left\{ x \in \mathbb{R}^N \mid \limsup_{r \to 0^+} \frac{1}{r^{n-p}} \int_{B(x,r)} |\nabla f(y)|^p dy > 0 \right\}.
$$
\n
$$
= 0 \text{ (see [2: Theorem 2.4.3]) and from the Poincaré inequality we have}
$$
\n
$$
\lim_{r \to 0} \int_{B(x,r)} |f(y) - (f)_{x,r}|^{p^*} dy = 0 \qquad (x \in \mathbb{R}^N \setminus A) \tag{3.19}
$$
\n
$$
B(x,r) = 0 \text{ and}
$$
\n
$$
\lim_{r \to 0^+} \int_{B(x,r)} |f_n(y) - f_n(x)|^{p^*} dy = 0 \qquad (x \in \mathbb{R}^N \setminus E_n).
$$
\n
$$
B_n \cup A, \text{ where } B_n \text{ has been defined in (3.14). If } x \in \Gamma_n \setminus \Delta_n, \text{ then from}
$$

where $(f)_{x,r} = \int_{B(x,r)} f(y) dy$. From Theorem 3.1, for any $n \in \mathbb{N}$ there exists a Borel set E_n such that $Cap_p(E_n) = 0$ and

$$
\lim_{r \to 0^+} \int_{B(x,r)} |f_n(y) - f_n(x)|^{p^*} dy = 0 \qquad (x \in \mathbb{R}^N \setminus E_n). \tag{3.20}
$$

Set $\Delta_n = B_n \cup E_n \cup A$, where B_n has been defined in (3.14). If $x \in \Gamma_n \setminus \Delta_n$, then from Theorem 3.1, (3.14) and (3.19) - (3.20) we get

where (j) x, r – J_{B(x,r)} J(y) ay. From Theorem 3.1, for any n ∈ ℕ there exists a Borel set
\nE_n such that Cap_p(E_n) = 0 and
\n
$$
\lim_{r \to 0^+} \int_{B(x,r)} |f_n(y) - f_n(x)|^{p^*} dy = 0 \quad (x \in \mathbb{R}^N \setminus E_n).
$$
\n(3.20)
\nSet $\Delta_n = B_n \cup E_n \cup A$, where B_n has been defined in (3.14). If $x \in \Gamma_n \setminus \Delta_n$, then from
\nTheorem 3.1, (3.14) and (3.19) - (3.20) we get
\n
$$
\limsup_{r \to 0} |(f)_{x,r}| \leq \limsup_{r \to 0} |(f)_{x,r} - f_n(x)| + \delta_n
$$
\n
$$
\leq \limsup_{r \to 0} \left\{ \int_{B(x,r)} |f - (f)_{x,r}| dy \right\} + \delta_n
$$
\n
$$
\leq 2\delta_n.
$$
\nMoreover, inequality (3.16) gives
\nCap_p(Δ_n) ≤ Cap_p(B_n) + Cap_p(E_n) + Cap_p(A) ≤ C $\left(\frac{\epsilon_n}{\delta_n}\right)^p$. (3.22)
\nSet $\Delta = \liminf_{n \to \infty} \Delta_n$ and $\tilde{\Gamma} = \limsup_{n \to \infty} \left(\Gamma_n \setminus \Gamma\right)$. From (3.21) - (3.22) it follows
\nthat if $x \in \tilde{\Gamma} \setminus \Delta$, then $\lim_{r \to 0^+}(f)_{x,r} = 0$. Therefore from Theorem 3.1 we get $\tilde{\Gamma} \setminus \Delta \subset \Gamma$
\nand, since Cap_p(Δ) ≤ liminf_{n \to \infty} Cap_p(Δ_n) = 0, it follows also that
\nCap_p(limsup_n($\Gamma_n \setminus \Gamma$)) = 0.

Moreover, inequality (3.16) gives

$$
\operatorname{Cap}_p(\Delta_n) \le \operatorname{Cap}_p(B_n) + \operatorname{Cap}_p(E_n) + \operatorname{Cap}_p(A) \le C\left(\frac{\varepsilon_n}{\delta_n}\right)^p. \tag{3.22}
$$

Moreover, inequality (3.16) gives
 $\text{Cap}_p(\Delta_n) \leq \text{Cap}_p(B_n) + \text{Cap}_p(E_n) + \text{Cap}_p(A) \leq C\left(\frac{\varepsilon_n}{\delta_n}\right)^p.$ (3.22)

Set $\Delta = \liminf_{n \to \infty} \Delta_n$ and $\tilde{\Gamma} = \limsup_{n \to \infty} (\Gamma_n \setminus \Gamma)$. From (3.21) - (3.22) it follows

that if $x \in \tilde{\Gamma} \set$

$$
\operatorname{Cap}_p\left(\limsup_{n\to\infty}(\Gamma_n\setminus\Gamma)\right)=0.
$$

The previous equality and (3.18) imply (3.11).

Let us prove statement (ii). If $x \in \Gamma \setminus B_n$, then

Convergence of Level Sets 11
\n2 previous equality and (3.18) imply (3.11).
\nLet us prove statement (ii). If
$$
x \in \Gamma \setminus B_n
$$
, then
\n
$$
\limsup_{r \to 0^+} \int_{B(x,r)} |f_n| dy \le \limsup_{r \to 0^+} \left(\int_{B(x,r)} |f| dy + \int_{B(x,r)} |f - f_n| dy \right) \le \delta_n.
$$
 (3.23)
\nas (3.23) yields $\Gamma \setminus B_n \subset \Gamma_n$ for any *n* and therefore
\n
$$
\liminf_{n \to \infty} (\Gamma \setminus B_n) = \Gamma \setminus \limsup_{n \to \infty} B_n \subset \liminf_{n \to \infty} \Gamma_n.
$$

\n $B = \limsup_{n \to \infty} B_n$. Then, for any $n \in \mathbb{N}$,

Thus (3.23) yields $\Gamma \setminus B_n \subset \Gamma_n$ for any *n* and therefore

$$
\liminf_{n\to\infty}(\Gamma\setminus B_n)=\Gamma\setminus \limsup_{n\to\infty}B_n\subset \liminf_{n\to\infty}\Gamma_n.
$$

Set $B = \limsup_{n \to \infty} B_n$. Then, for any $n \in \mathbb{N}$,

$$
B_n \subset \Gamma_n \text{ for any } n \text{ and therefore}
$$
\n
$$
\liminf_{n \to \infty} (\Gamma \setminus B_n) = \Gamma \setminus \limsup_{n \to \infty} B_n \subset \liminf_{n \to \infty} \Gamma
$$
\n
$$
B_n. \text{ Then, for any } n \in \mathbb{N},
$$
\n
$$
\text{Cap}_p(B) \le \sum_{m=n}^{\infty} \text{Cap}_p(B_m) \le \sum_{m=n}^{\infty} \left(\frac{\varepsilon_m}{\delta_m}\right)^p
$$

and, for hypothesis (3.12), we get $Cap_n(B) = 0$ and $(\Gamma \setminus B) \subset \liminf_{n \to \infty} \Gamma_n$. From statement (i) we get (3.13)

Remark 3.2. For the capacity we do not have an analogy of property (3.4). While, as we have proved, $\lim_{n\to\infty} Cap_p(\Gamma \setminus \Gamma_n) = 0$ in general, it is *not* true that $\lim_{n\to\infty} \text{Cap}_p(\Gamma_n \setminus \Gamma) = 0$ as it can been easy seen taking $f_n \equiv f$. pacity we do not have an analogy of property (3.4).
 $n_{n\to\infty} \text{Cap}_p(\Gamma \setminus \Gamma_n) = 0$ in general, it is *not* true that

can been easy seen taking $f_n \equiv f$.

lation between capacity and Hausdorff measure (see [2,

ion we get

Taking into account the relation between capacity and Hausdorff measure (see [2, 3]), from the previous proposition we get the following result about convergence in the sense of the Hausdorff measure. lation between capacity and Hausdorff measure (see [2,
ion we get the following result about convergence in the
...
same hypothesis of Proposition 3.2, we have the follow-
 ι for any $\sigma > 0$
 $N-p+\sigma \left(\limsup_{n\to\infty} \Gamma_n \triangle \Gamma \$

Corollary 3.1. *Under the same hypothesis of Proposition* 3.2, *we have the following*

(i) If $\lim_{n\to\infty} \frac{\epsilon_n}{\delta_n} = 0$, then for any $\sigma > 0$

$$
\mathcal{H}^{N-p+\sigma}\Big(\limsup_{n\to\infty}\Gamma_n\Delta\Gamma\Big)=0.\tag{3.24}
$$

(ii) If $\sum_{n} \left(\frac{\varepsilon_n}{\delta_n}\right)^p < \infty$, then we also have, for any $\sigma > 0$,

$$
\mathcal{H}^{N-p+\sigma}\Big(\Gamma\triangle\liminf_{n\to\infty}\Gamma_n\Big)=0.\tag{3.25}
$$

If $p = 1$ *, then* $(3.24) - (3.25)$ *hold also for* $\sigma = 0$ *.*

If $p > N$, since $W^{1,p}(\mathbb{R}^N) \subset L^{\infty}(\mathbb{R}^N)$ with continuous immersion, we can apply the results of Section 2 to the continuous representatives of f and f_n . Therefore, from the convergence of f_n to f we get the convergence in the set theoretical sense of Γ_n to Γ .

• **Acknowledgement.** The author wishes to thank Prof. C.Baiocchi of the University of Roma "La Sapienza" for suggesting the problem.

References

- [1] Baiocchi, C. and C. A. Pozzi: *Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality.* RAIRO Anal. Numér. 11 $(1977), 315 - 353.$
- [2] Evans, L. C. and R. F. Gariepy: *Measure Theory and Fine p Properties of Functions.* Boca Raton: CRC Press 1992.
- *[3] Federer, H. and W. Ziemer: The Lebesgue set of a function whose distribution derivatives are p-th power surnrnable.* Indiana Univ. Math. J. 22 (1972), 139 - 158.
- *(4)* Ziemer, W.: *Weakly Differentiable Functions.* New York: Springer-Verlag 1989.

Received 22.03.1998

 \bar{z}