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A Note on Convergence of Level Sets

F. Camilli

Abstract. Given a sequence of functions f, converging in some topology to a function f, in
general the O-level set of f, does not give a good approximation of the one of f. In this paper
we show that, if we consider an appropriate perturbation of the 0-level set of f,, we get a
sequence of sets converging to the 0-level set of f, where the type of set convergence depends
on the type of convergence of f, to f.
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1. Introduction

In several fields (phase transition, free boundary problems, front propagation, etc.), a
set of interest for the solution of the problem is represented by a level or a sublevel .
set of a function f. Let us suppose that by means of some approximation technique
(f.e. discretization, regularization, rescaling of an order parameter) we get a sequence
of functions converging in some topology to f. In general, no matter how strong is the
convergence of f, to f, the level sets of f, do not give a good approximation of the
ones of f.

Pursuing an idea used in Baiocchi and Pozzi [1], we show that appropriately per-
turbing the level sets of f, (the same can be done for the sublevels or the superlevels),
we get a sequence of sets defined by means of f, converging to the level set of f. The
type of set convergence is the convergence to zero of the measure of the symmetric
difference between the level set of f, and the correpsonding one of f, and the measure
depends on the type of convergence of the sequence f,.

We analyze the case of convergence in LP and in W', but this technique could be
useful in other situations.

The paper is organized as follows. In Section 2, we analyze the case of convergence in
L™ and W1 and the associated convergence of perturbed level sets in set-theoretical
sense. In Section 3 we first consider the case of convergence in LP, which gives the
convergence in the sense of Lebesgue measure. Then we analyze the case of convergence
in WP and the corresponding set convergence in the sense of capacity and Hausdorf
measure.
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2. The case p = o© P

In this section we will study (extending the result given in (1]) the case of the convergence
in L. We will see that the natural set convergence associated to the L™ convergence
is the convergence in set-theoretical sense.

Definition 2.1. Given a sequence of sets {4, },en, we set

limsupAn = (| |J Am  and  liminf4, G

n— n—oo
0 n=1m=n

HDS

We say that {A,}nen converges to A in set-theoretical sense and write A = limp oo An
if
A = limsup A,, = liminf A4,.

n—oo n—oo

We have the following result.

Proposition 2.1. Let f, and f be continuous functions on RY such that

If = fallLeo(mny = €n (2.1)
where €, — 0 for n — oco. Let {6,}nen be a sequence such that

bn >0 (neN)

on — 0 (n — o) (2.2)
;—: —0 (n — o0).

Selt, for any n €N,
I'={zeR": f(z) =0}

In={zeRY:|fa(z) < bn}-
Then T' C Ty, for n sufficiently large, and .

(2.3)

I'= lim T,. (2.4)

Proof. Let @ € N be such that §, > e, for any n > 7 (recall that o — 0). If
z €T, then, for n > 7, we have from (2.1)

[fa (@) S 1f(@)] 4+ 1 = fllomny = €n < bn,

hence £ € . Hence T C T, for n > % and therefore I' C liminf,, .o, I',,. Let us prove
yet that limsup, . T'n C T. If z € limsup,_ ., s, then by definition there exists a
subsequence {I's, }x>1 such that z € T, for any k € N. It follows that |f,,(z)| < 6n,
for any k € N and therefore f(z) = limy—oo fn,(z) = 0 which yields z € T I

Remark 2.1 Observe that if I",, and I are contained in a compact set K, then the

previous proposition gives the convergence to zero of the Hausdorff distance between
', and T.

In the next proposition we show that improving the convergence of f, to f, we get
some additional information on the type of convergence of ', to I
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Proposition 2.2. Let f, f, € CY(RV) (n € N) be such that

lf = fallwromny = €n
where en — 0 for n — co. Let 6, and T and T, be defined as in (2.2) — (2.3). Set

s = {3: € RY: f(z) =0 and Vf(z) # 0}
reing = {x €RV: f(z) =0 and Vf(z) = o}

and
[res = {1 € R‘N 2 fa(z)] € 6n and |V fo(z)] > 6,,}
peing {x € RN : [fu(2)| € 6n and |V fu(z)| < 5,,}.
Then : . )
I = lim I  and D" = lim 379,

Pr_oof. Let @ € N be such that §, > ¢, for n > 7. Then, for n > 7, I’ C ', and, if

z € I'"*"9 we have
Vi@ S IVA@)] +1IVfn = VliLo@y) = €n < bn.
Therefore [*'™"¢ C I'%"9 for n > @. If z € limsup,_ . I'3"9, then z € I:n9 for a
subsequence 'y, . It follows that |f,, (z)] < é,, and |V fy,(z)| < 8p, for any k € N and
therefore
f(z) = klim fa(z)=0 and Vi(z)= klim Vfa(z)=0.
—o00 — 00

Therefore z € T'*'"9 and I'*'™™9 = lim,_.o ['}'"9. Since (2.4) holds, we get also ['"¢9 =
limu oo 79

We conclude this section giving an estimate of the Hausdorff distance betwcen T’
and I'y, in the case that I is regular.

Proposition 2.3. Assume the sume hypothesis as in Proposition 2.1, with 6, and
I, Tn defined as in (2.2) — (2.3). Morcover, assume that I' is compact and that f is
differentiable with Vf # 0 on . Then there ezists a constant C > 0 such that

dy(T,Th) < C(en + 6,) (2.5)
for n sufficiently large, where dy denotes the Hausdorff distance.

Proof. By the assumptions on f and I, there exist o > 0 and Cy > 0 such that
|IVf(z)] = Co on Ty, = {z : d(z,T) < no}. For n < no, consider y € 8([,) = 8{z :
d(z,T') < n} and let z € T be such that d(y,T) = |y — z| = . Then

(y — ) - V()] =0V f(z)| = Con.
Since f(z) =0, if w is a modulus of continuity of V f on T, then
W 21y = 2)- VA=)l = wlly — z|)ly ~ 2| 2 1(Co — w(n)). (2.6)
For n sufficiently large in such a way that Cy — w(é, + €,) > %‘l and 29116-%11 < 7o,
from (2.6) with n = 2éﬂgoin we get |f(y)| 2 én + €n and therefore |fa(y)| > 6n on

dr'y,. It follows that I'y C T'y. Since I' C Ty for n sufficiently large, we finally get

dn(T,Tp) £ dn(T,T;) < 17 and therefore (2.5), with C = Clo [ |
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All the results of this section have an analogue in the case of sub- and superlevel

sets of f,, and f.

3. The case 1 < p < oo

We first analyze the case of convergencé in LP(RN). We prove that in this case an
appropriate notion of set convergence is the convergence to 0 of the Lebesgue measure
of 'AT,. In the following, LV denotes the Lebesgue measure on RV.

Proposition 3.1. Let f,, f € LP(RN) (1 < p < oo; n € N) such that
If = fallLr vy = €n (3.1)
where en, — 0 for n — co. Let {6,}neN be o sequence such that
0<6, (n€N) and 6n = 0 (n > o). (3.2)

Define, for any n € N,
I'={zeR": f(z) =0}

3.3
Tn={zeR":|fu(z)| <6} (33)
Then:
(i) Iflimp_oo §2 = 0, we have
lim £Y(CAT,) =0 (3.4)
c (m lim supr,.) = 0. (3.5)

(ii) If '
) (Z—)P < o0, (3.6)

we also have
£V (ratim infT, ) =0. (3.7)

Therefore I' = limp .o T'p up to a set of 0-Lebesgue measure.

Proof. We first observe that, since we are considering only the measure of I’ and
Iy, we can assume that these sets are defined by means of any element in the class of
equivalence of f and f,. We have

TAT, = (['\Ta)U (T, \T)

and

C\Tn={z € R : f(z) = 0 and |fu(z)| > 6a
La\T = {z € R : f(2) # 0 and |fu(2)| <6}
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(the previous and all the others inclusions in this proof are intended up to sets of null
Lebesgue measure).

Since T C T, C {z € R : |f(z) — fa(z)| > 6n}, from the Cebycev inequality we
get

N 1 _ Pgr — (€2}
YOAT) € g [ 1) - fule)Pae = (32) (38)
and therefore . :
lim LY(D\T,)=0. (3.9)
Let us prove that
' cN (lim sup(Tn \ r)) = 0. (3.10)

Set T' = limsup,, _.,(I'n \ [') and let z € T. Then there exists a subsequence {n}x>1
such that |fn,(z)| € és, for any k € N. It follows that, LN-ae. onT,

liminf fa(z) =0 and  liminf|fu(z) - ()P = f()P"

Applying the Fatou Lemma we get
fu@rds < tim [ 1) - fa()Pdz =0
r n=eo JRN

Since |f(z)| > 0 on T, we get (3.10).
Since for any sequence {An}nZI of measurable sets we have

limsup LV (4,) < [,N(lim supA,,)

n-—o0 n—oo

it follows from (3.10) that limp—oo LV(I'n \ T') = 0 and therefore, together with (3.9),
also (3.4) holds. From (3.10) and

cV (F\limsupF,,) = cN(liminf(r\r,,)) < lim L¥(T\T,) =0

n—+00

we get (3.5).
Let us prove now statement (ii). Estimate (3.8) gives

c(Uer) s Y (8),
and therefore, for any n € N,

LN(I‘\limian,.) =cN(1imsup(r\r,,)) < i (2—"‘-)"

n—0oo n—oo men m

For (3.6) we get £ (T\liminf—.co ['n) = 0. Since (3.10) yields £V (liminf—c0 ['n\T) =
0 we get (3.7) B
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Remark 3.1. Since we have
|CN(T) = £N(T,)| < LY (TAT,)

then LN(TAT,) — 0 implies that LN(T,) = LN(T). The vice versa in general is
not true. The result LN(T'AT,) — 0 gives a more complete information respect to the
convergence of the measure of I', to the measure of I'. In fact, it shows that the measure
of the part of T',, which does not approximate I' tends to 0, while the measure of T \Tn
can be estimated by means of (3.8).

If we know that ||fn — fllwr»rv) = €n, then we can prove a result similar to
Proposition 2.2 for the convergence of regular and singular parts of I',, to I'. In this case,
a more accurate way of studying properties of sets defined through Sobolev functions
is given by the notion of capacity. We will show that, in the case of convergence in
WhP(RN) (1 < p < N) we get convergence of I’y to I up to sets of 0 capacity. Let
us recall the definition and some basic properties of the capacity we will need in the
following (see [2 - 4] for more details).

Definition 3.1. Let 1 <p< N and set
KP = {¢ RN = IRIO <pe LP(RM) with Vy € L”(IRN,IRN)}

where p* = TN&' For A C RV, we define

Cap,(4) = inf{/ Vel dy| o € KP with A C {p > 1}°}.
RN
It is possible to prove that Cap, is an exterior measure on subsets of RV. For a
function ¢ € L}

loc

RY), the precise representative ©* of ¢ is defined by
p ¥
m fu(”) ©(y)dy if the limit exists

li
o"(z) = q ~—o*
0 otherwise
where fa(: r)g,o(y) dy = fB(x N6 dy/LN(B(z,r)). We have (see [2: Theorem 4.8.1])
the following ;
Theorem 3.1. Let o € WP(RY) (1< p< N). Then:
(i) There is a Borel set E C RN such that Cap,(E) = 0 and

lim ply)dy =¢*(z) (zeRV\E).

=0+ J/B(z,r)

(i1) In addition,

r—0+

Ly )lv(y)—w‘(r)l”'dy=0 (z e RV \ E).

(iii) The precise representative ©* s quasi-continuous.

Because of the previous theorem, any function in the space W' P(R") admits a
quasi-continuous representative. We have the following convergence result for the per-
turbed level sets.
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Proposition 3.2. Let f, f, € W'P(RN) (1 < p < N) be such that

If = fallwisyy =€n

where €, — 0 for n — o0o. Let 8, and I',T,, be defined as in (3.2) — (3.3) by means of
the precise representatives of f and f,. Then:

(i) Iflimu_co § = 0, then

Capp(lim sup F"AF) =0. (3.11)

(ii) If

D> (;_:), <oo, - . (3.12)

then we have also

Cap, (m lim inf[‘,.) =0 (3.13)

n—oo

and therefore ' = limp—.oo 'y up to a set of zero capacity.

Proof. Let us prove statement (i). Since the sets I and I'y, are defined by means
of the precise representatives of f and f,, then they are well defined, i.e. up to sets of
zero capacity. In the following all the relations involving I' and I';, are intended to be
satisfied Cap,-a.e. We have

~ T\T, = {ze RV : f(z) = 0 and |fa(2)| >5,,}.

Let us prove that, defining

B,,={ze]RN

][ |fn — fldy > 6, for somer>0}, (3.14)
B(z,r)
then

Cap,(I'\ ) < Cap,(Ba). (3.15)

In fact, if z € T'\ Ty, then, up to a set of zero capacity, we have

lim |fa = fldy = |f(z) = fa(2)] > én.

r=0JB(z,r)

Therefore there exists 7o > 0 such that fs(”) B(z,ro)| fn — fldy > 6, and so (3.15) holds.

Recall that (see [2: Lemma 4.8.1]), if ¢ € K, then there exists a constant C, depending
only on N and p, such that for any >0 ‘

Cap, ({x e RN

np

f w(y)dy > n for some r > 0}) < 2/ |De|Pdy. (3.16)
B(z,r) RN .
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From (3.14) and (3.16) we get
¢ n
Cap,(T\T) < g [ 197 = VP < c(zy (3.17)

and therefore limp_.oo Cap,(I'\T'x) = 0. From the prevxous equality and the properties
of the capacity, we get

Cap, (r \limsupT,) = Cap, ( lim. inf(C\Ta)) < lim Cap,(T\T.)=0. (3.18)

=00
Let A be the set
lim sup

1
=3 IVf(y)I”dy>0}.
r—0+ T B(z,r)

Then Cap,(A4) = 0 (see [2: Theorem 2.4.3]) and from the Poincaré inequality we have

A:{zelR

lim f@) = (NerlPdy=0  (z €R\ 4) (3.19)

r—0 (z,r)
where (f)z r = JCB(, " f(y) dy. From Theorem 3.1, for any n € N there exists a Borel set
En such that Cap,(E,) =0 and

lim ()lfn(y)—fn(x)i"‘dwo (z € RV \ Ey). (3.20)

r—ot+ B

Set A, = B, UE,, U A, where B, has been defined in (3.14). If z € T, \ Ay, then from
Theorem 3.1, (3.14) and (3.19) - (3.20) we get

lim sup I(f)z,r] < lim sup I(F)z.r = fal@)| + 6n

Slinisup{][[j( )’f”'(f)x,rldy

r—0

(3.21)
of sl f - f@la) e
B(z,r) B(z,r)
< 26,. :
Moreover, inequality (3.16) gives
En\?P
Cap,(An) < Cap,(Bn) + Cap,(Ea) + Cap,(4) < C(E—) . (3.22)

Set A = liminf,, .., A, and F = limsup, _(Tn \ T). From (3.21) - (3.22) it follows
thatifz € F\A then lim,_o+(f):,r = 0. Therefore from Theorem 3.1 we get F\A c’T
and, since Cap,(A) < liminf, .. Cap,(A,) = 0, it follows also that

Capp(limﬁsup(f‘n \ r)) =
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The previous equality and (3.18) imply (3.11).
Let us prove statement (ii). If z € T'\ By, then

imsup{ \pday <timsn (£ iflay e f 1f - la) <6 @29
r—o+ B(z,r) r—0+ B(z,r) B(z,r)

Thus (3.23) yields I'\ B, C ', for any n and therefore

llmmf(F \ B,) =T\limsupB, C llmmff

n—oo

Set B = limsup,,_ o, Bn. Then, for any n € N,

Cap,(B) < i Cap,(Bm) < i (%)p

m=n m=n

and, for hypothesis (3.12) , we get Cap,(B) = 0 and (I'\ B) C liminf, .o I'n. From
statement (i) we get (3.13) B

Remark 3.2. For the capacity we do not have an analogy of property (3.4).
While, as we have proved, lim,— Cap,(I' \ I'n) = 0 in general, it is not true that
limp—.oo Cap,(I'n \ T') = 0 as it can been easy seen taking f, = f.

Taking into account the relation between capacity and Hausdorff measure (see [2,
3]), from the previous proposition we get the following result about convergence in the
sense of the Hausdorff measure.

Corollary 3.1. Under the same hypothesis of Proposition 3.2, we have the follow-
ng:
(i) If limp—oo § = 0, then for any o >0

HN_P+"(limsup I’,.AF) =0. (3.24)

n—oo

(i) f S, (& ) < 00, then we also have, for any o > 0,

HN =P+ (T Alim inf'r,.) =0. (3.25)

n—oo

If p=1, then (3.24) — (3.25) hold also for o = 0.

If p> N, since WHP(RN) c L®(R") with continuous immersion, we can apply the
results of Section 2 to the continuous representatives of f and f,. Therefore, from the
convergence of f, to f we get the convergence in the set theoretical sense of 'y, to I'.
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