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A Note on Convergence of Level Sets 
F. Camilil 

Abstract. Given a sequence of functions I,, converging in some topology to a function 1, in 
general the 0-level set of f, does not give a good approximation of the one of 1 . In this paper 
we show that, if we consider an appropriate perturbation of the 0-level set of f,., we get a 
sequence of sets converging to the 0-level set of f, where the type of set convergence depends 
on the type of convergence of f, to f. 
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1. Introduction 
In several fields (phase transition, free boundary problems, front propagation, etc.), a 
set of interest for the solution of the problem is represented by a level or a sublevel 
set of a function f . Let us suppose that by means of some approximation technique 
(f.e. discretization, regularization, rescaling of an order parameter) we get a sequence 
of functions converging in some topology to f . In general, no matter how strong is the 
convergence of f to f, the level sets of f,, do not give a good approximation of the 
ones of f. 

Pursuing an idea used in Baiocchi and Pozzi [1], we show that appropriately per-
turbing the level sets of f,, (the same can be done for the sublevels or the superlevels), 
we get a sequence of sets defined by means of f, converging to the level set of f . The 
type of set convergence is the convergence to zero of the measure of the symmetric 
difference between the level set of f0 and the correpsonding one of f, and the measure 
depends on the type of convergence of the sequence f,. 

We analyze the case of convergence in L' and in W", but this technique could be 
useful in other situations. 

The paper is organized as follows. In Section 2, we analyze the case of convergence in 
L°° and W '°° and the associated convergence of perturbed level sets in set-theoretical 
sense. In Section 3 we first consider the case of convergence in L, which gives the 
convergence in the sense of Lebesgue measure. Then we analyze the case of convergence 
in W'P and the corresponding set convergence in the sense of capacity and Hausdorf 
measure. 
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2. The case p = 00 

In this section we will study (extending the result given in [1]) the case of the convergence 
in L. We will see that the natural set convergence associated to the L°° convergence 
is the convergence in set-theoretical sense. 

Definition 2.1. Given a sequence of sets { A fl}flEN, we set 
CO 00	 00 Ca 

lim sup A,, = P1 U Am	and	liminfA,, = U P A,,,. 
n1 m=n	 n=I m=n 

We say that {An} flE N converges to A in set-theoretical sense and write A lim,,_ An 
if

A = lim sup A,, = liminf An 

	

n—.	n—oo 
We have the following result. 
Proposition 2.1. Let f,, and I be continuous functions on R  such that 

	

Ill —	 ( 2.1) 

where e,, — 0 for n —p oo. Let { 6n}nEN be a sequence such that 

	

6,,>0	(nN) 

	

6,,-0	(n—*)	 (2.2)
En 
bn 

	

--* 0	(n—*). 

Set, for any n E N,
r={XERN:f(x)=o}	

23) 
rn =	e R  

If,,(x)I s,,}. 
Then r C r,,, for n sufficiently large, and 

F=iimr,,.	 (2.4) 

Proof. Let 31 E N be such that 6,, > En for any n > 31 (recall that "- —* 0). If 
x E r, then, for n 31, we have from (2.1) 

Ifn(x)I	If(x )I + 11f - fIIL o (RN ) = C. <6,,, 

hence x Er,,. Hence  Cr,, for n >31 and therefore r c	 —oo 	Let us prove 
yet that urn sup,,_ r,, C r. If x E urn sup,,.	r,,, then by definition there exists a
subsequence {F,,}k>l such that x E F k for any Ic E N. It follows that If,,(x)I 
for any k E N and therefore f(x) = lim k_,ffl ,.(x) = 0 which yields x E I' U 

Remark 2.1 Observe that if r,, and I' are contained in a compact set K, then the 
previous proposition gives the convergence to zero of the Hausdorif distance between 
r,, and r. 

In the next proposition we show that improving the convergence of f,, to f, we get 
some additional information on the type of convergence of I n to F.
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Proposition 2.2. Let f, fn E C 1 ( R N ) (n E N) be such that 

II! - In11 W l , 00 ( L N ) = E 

where en- 0 for n -	. Let t5, and F and rn be defined as in (2.2) - (2.3). Set 

= {x E RN f(x) = 0 and Vf(x) j4 o} 

r3 "	R1V 1(x) = 0 and Vf(x) = o} 

and
= {x E RN If,(x)l <S and lVfn (x)l > Sn} 

= {x e RN lfn( x )l <fin and IVf(x)I :5 
Then

	

= 
liM rr,g	and	f3fl9 = limF"9. n—oo	 n_00 

Proof. Let 7i E N be such that 5,, > c,, for n 2 7i. Then, for n > Ti, F C F,, and, if 
r-,ing , we have 

lVf,,(x)I	I Vf(x )I + II Vfn - VfIIL OO ( N ) = En 5 S. 
Therefore r,ing c for n	. If x E limsup,,.F"9 , then x E	for ank 
subsequence rflk . It follows that Ifn(x)l	and lVfnk (x)l S,, for any k E N and
therefore

	

f(x) = urn fflk(x ) = 0	and	Vf(x) = urn V f,,k( x ) = 0. 
k—.00	 k—.00 

Therefore x E ['SZ	and 5ZTIg = limn...., r'' n • Since (2.4) holds, we get also r leg =
limn....,,,., ['' I 

We conclude this section giving an estimate of the Hausdorif distance between F 
and F,, in the case that F is regular. 

Proposition 2.3. Assume the same hypothesis as in Proposition 2.1, with S, and 
r F,, defined as in (2.2) - (2.3). Moreover, assume that F is compact and that f is 
differentiable with Vf 34 0 on F. Then there exists a constant C > 0 such that 

d(r, r) < C(e,, + 5,,)	 (2.5)
for n sufficiently large, where d7j denotes the Hausdorff distance. 

Proof. By the assumptions on I and F, there exist Y70 > 0 and Co > 0 such that 
l Vf(x )l 2 Co on	= {x : d(x,F)	 7o 1. For 17 < 'io, consider y E 0(1',,)	49t  
d(x,[')<i7} and let xEI' be such that d( y , l' ) = I y_x I = 11 . Then 

(ui - x) . Vf(x )l = iI Vf(x )I 2 C071. 
Since f(x) = 0, if w is a modulus of continuity of VI on 1'170' then 

	

If (01 2 I(ui - x ) . Vf(x )I - c"( I y - x DI y - x! 2 11(C0 - w(ij)).	(2.6) 

For n sufficiently large in such a way that CO - .' (5,, + e,,)	 —C2and	110, 

from (2.6) with '1 = 2 1 " we get lf(ui)l 2 5,, + E. and therefore lfn( y ) l	Sn On CO 
OF,,. It follows that F,, C r,,. Since F C F,, for n sufficiently large, we finally get 
d(r,r,,) <d(F,r,,) 77 and therefore (2.5), with C = CO
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All the results of this section have an analogue in the case of sub and superlevel 
sets of f,, and f. 

3. The case 1 < p < oc 

We first analyze the case of convergence in LP(RN). We prove that in this case an 
appropriate notion of set convergence is the convergence to 0 of the Lebesgue measure 
of rLr. In the following, L" denotes the Lebesgue measure on 

Proposition 3.1. Let f,,f E LP(RN) (1 <p < ; n E N) such that 

	

Ill - fnILP(RN) = E	 (3.1) 

where E,1 - 0 for n -	. Let {6n}nEN be a sequence such that 

0 < 6,, (n E N)	and	ö - 0 (n - oc).	 (3.2) 

Define, for any n E N,
r = {x E R N : 1(x) = o} 

	

rn = { x E RN Ifn(x)j	
(3.3) 

Then:
(i) If lim...,,0	= 0, we have

	

iimi.N(rr) = 0	 (3.4) 

	

r"(riim sup r) = 0.	 (3.5) 

(ii) If

	

(En ) P
<oc,	 (3.6) 

we also have

	

£N(rlirninfr) = 0.	 (3.7) 

Therefore r =	rn up to a set of 0-Lebesgue measure. 

Proof. We first observe that, since we are considering only the measure of r and 
we can assume that these sets are defined by means of any element in the class of 

equivalence of f and f . We have 

rAr = (r\r)u(r\r) 

and
r\r =	

E RN : 1( x ) = 0 and If,,(x)I > 

r\r= {x e RN : 1(x ) 0 0and f(x)I <o}
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(the previous and all the others inclusions in this proof are intended up to sets of null 
Lebesgue measure). 

Since r C I', c {x E RN : 11( x ) - f(x)l > 5,}, from the Cebycev inequality we 
get

£N(I \	<	
JffN
 If (x) - f(x)I"dx = ( In )P	 (3.8)

bn

 and therefore
lim'(r \ ['a) = 0.	 (3.9) 

Let us prove that
L N (limsup(r \r)) = 0.	 (3.10) 

Set I' = Iimsup_(r \ I') and let x E I'. Then there exists a subsequence {nk}k>I 
such that Ifflk( x )I	bn, for any k E N. It follows that, £"-a.e. on 

liminff(x) = 0	and	IiminfIf(x) - f(x)I' = If(x)I'. 

Applying the Fatou Lemma we get 

f dx < lim J 11( x ) - f(x)Idx =0. 
 fl- co 

Since If(x )I > 0 on r, we get (3.10). 
Since for any sequence {A}> 1 of measurable sets we have 

limsupi"(A) 5 £'(li ri sup An 

it follows from (3.10) that	£'(r \ r) = 0 and therefore, together with (3.9), 
also (3.4) holds. From (3.10) and 

£N (r\limupr) £N(lininf(r\r)) 5jN(\f)....0 

we get (3.5). 
Let us prove now statement (ii). Estimate (3.8) gives 

r'(U(r\r)) 

and therefore, for any n E N, 

£ N (F \ lim inf r) £N(liup(r\r)) < ( Cm)P 

For (3.6) we getC (r\liminf_. r) = 0. Since (3. 10) yields £N(lim inL. r\r) = 
0 we get (3.7)1
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Remark 3.1. Since we have 
rN (r) - £ N (F)j <N(rLr) 

then £N(rLr ) - 0 implies that £N(F) £''(F). The vice versa in general is 
not true. The result £" ' (rr) - 0 gives a more complete information respect to the 
convergence of the measure of r to the measure of F. In fact, it shows that the measure 
of the part of r which does not approximate I' tends to 0, while the measure of r \ r, 
can be estimated by means of (3.8). 

If we know that IIf - fIIw 1. P( N ) = e,, then we can prove a result similar to 
Proposition 2.2 for the convergence of regular and singular parts of r to r. In this case, 
a more accurate way of studying properties of sets defined through Sobolev functions 
is given by the notion of capacity. We will show that, in the case of convergence in 
W"P (R") (1 p < N) we get convergence of r to IF up to sets of 0 capacity. Let 
us recall the definition and some basic properties of the capacity we will need in the 
following (see [2 - 4] for more details). 

Definition 3.1. Let 1 <p < N and set 

K 
= { : 

RN R0 < E LP(RN) with V E LP(RN, RN) } 

where p =	For A C R", we define 

Cap(A) = inf{ IRN I VIdy E KP with Ac { y ^ 1}0}. 

It is possible to prove that Cap is an exterior measure on subsets of RN. For a 
function V E LIOC (RN ), the precise representative ' of p is defined by I lim J ) p( y ) dy if the limit exists 

p(x) = , r-.O+ 

1 0	 otherwise 
where fço(y)dy = fB(z,r)o(Y)dY/L"(B(x,r)). We have (see [2: Theorem 4.8. 1]) 
the following 

Theorem 3.1. Let ç9 E W'P(Ri") (1 <p < N). Then: 
(i) There is a Borel set E c R" such that Cap(E) = 0 and 

urn	(y)dy = (x)	(x E RN \ E). 
r-.O+ fmz,r) 

(ii) In addition, 

u rn (y) - (x)[dy = 0	(x E RN \ E). 
r-.O+ JB(x,r) 

(iii) The precise representative p is quasi-continuous. 

Because of the previous theorem, any function in the space W' P(R') admits a 
quasi-continuous representative. We have the following convergence result for the per-
turbed level sets.
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Proposition 3.2. Let f, f,, E W I P(IR N ) (1 < p < N) be such that 

Ill - In11 W',P(E.M) = E 

where e, -i 0 for ri -	. Let bn and F,Fbe defined as in (3.2) - (3.3) by means of
the precise representatives of f and f,. Then: 

(i) If	= 0, then 

	

Capp (iimsupF n F) = 0.	 (3.11) 

(ii) If

	

-	
(j! <	,	-	 ( 3.12) 

then we have also
Capp (Fliminf	= 0	 (3.13) 

and therefore F =	rn up to a set of zero capacity. 

Proof. Let us prove statement (i). Since the sets F and F. are defined by means 
of the precise representatives of f and f,, then they are well defined, i.e. up to sets of 
zero capacity. In the following all the relations involving F and F, are intended to be 
satisfied Cap-a.e. We have 

r\r = { xE RN: f(x)=O and lfn (x)I >} 

Let us prove that, defining 

	

B={xERJ	Ifn_fIdY>6n for some r>0}	(3.14) 
B( zr) 

then

	

Cap([' \ f 1 ) Cap(B).	 (3.15)

In fact, if x E F \ r, then, up to a set of zero capacity, we have 

lim I	un -Il dy = 1(x) -f(x)I > n. 
r-.OB(z,r) 

Therefore there exists r0 > 0 such that 
TfB() B ( z,ro) Ifn - f I dy > bn and so (3.15) holds. 

Recall that (see [2: Lemma 4.8.1]), if ço E K, then there exists a constant C, depending 
only on N and p, such that for any 77 > 0 

Capp ({x E R N	 (y)d > 71 for some r > o}) :5
	J IDIdy. (3.16) 

lip RN fB(z,r)
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From (3.14) and (3.16) we get

Cf 

	

cap, (r \ r)	JN IVf - VfI'dy C()"	(3.17) 

and therefore	Cap(r \ r) = 0. From the previous equality and the properties 
of the capacity, we get 

cap(r\!imsuprn) = Cap(liminf(r\r)) 
n < urn Cap(r\r') = 0.	(3.18)co 

	

n—)	 n—co -. 

Let A be the set

A= { X E R N lim sup 
r— O+	

fB(zr) IVf(y)Idy > o}. 

Then Cap(A) = 0 (see [2: Theorem 2.4.3]) and from the Poincaré inequality we have 

timJ
B(z,r)

	

1(y ) - ( f)z,rI dy =0	(x E RN \ A)	 (3.19)r—.O 

where (f)x,r = .fB(,) f(y) dy. From Theorem 3. 1, for any n E N there exists a Bore! set 
E such that Cap(E) = 0 and 

	

tim	f(y) - f(x)I"dy = 0	(x E RN \ En ).	(3.20)r—.O+ B(xr) 

Set A,, = B U E, U A, where B has been defined in (3.14). If x E r \ &, then from 
Theorem 3.1, (3.14) and (3.19) - (3.20) we get 

tim sup I(f)z,rI < tim sup I(f)x,r - fn(X)I + Sfl r—O

	

"M SUP	 If (f)z,rdy 
r-.O	 (3.21) 

+ f — fP d +f	f_f(x)IdY}+5 

	

B(zr)	 B(z,r) 

Moreover, inequality (3.16) gives 

	

Cap() Capp(Bn) + Cap(E) + Cap(A) c()'.	(3.22) 

Set L = lim inf,,	and I' = timsup...,(r \ ['). From (3.21) - (3.22) it follows 
that if x E	then limr_o+(f)r,,. = 0. Therefore from Theorem 3.1 we get f \A C r 
and, since Cap(i)	 = 0, it follows also that 

Capp (uimsup(rn \ r)) = 0.
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The previous equality and (3.18) imply (3.11). 

Let us prove statement (ii). If x E F \ B,,, then 

iimsupf
B(z,r)

 IfnI dY him sup 
UB(z,r)
 IfId+fB(x,r) If_fnI d )	6,,.	(3.23) 

r—.O+ 	 r__.O+   

Thus (3.23) yields F \ B,, c F,, for any n and therefore 

liminf(F\B,,) = F\lim sup B,, C liminfF,,. n—co	 n—oo 

Set B = limsup,,B,,. Then, for any n EN, 

Cap(B) 
cc	 00 

 Capp(Bm) 
<(

) P 

and, for hypothesis (3.12) , we get Cap(B) = 0 and (I' \ B) C liminf,,_oc,F,,. From 
statement (i) we get (3.13) I 

Remark 3.2. For the capacity we do not have an analogy of property (3.4). 
While, as we have proved, lim,,_,,,, Cap(I' \ F,,) = 0 in general, it is not true that 
lim,,_ Cap(F,, \ F) = 0 as it can been easy seen taking f,, 1. 

Taking into account the relation between capacity and Hausdorif measure (see [2, 
3]), from the previous proposition we get the following result about convergence in the 
sense of the Hausdorif measure. 

Corollary 3.1. Under the same hypothesis of Proposition 3.2, we have the follow-
ing

(i) Iflimn—.00 - =0 then for any  >0 

N_P+7(limsuprn/r) = 0.	 (3.24) 
n-co 

(ii) 'f En' 
(

6 ,, 
1\P 

< 00, then we also have, for any a > 0, 

N_P+c7(f1imiflf r) = 0.	 (3.25) n—.00 

If p = 1, then (3.24) - (3.25) hold also for a = 0. 

If p> N, since W' P (R'') C L(R") with continuous immersion, we can apply the 
results of Section 2 to the continuous representatives of f and f,,. Therefore, from the 
convergence of f, to I we get the convergence in the set theoretical sense of F,, to F. 
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