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A Multi-Dimensional Hausdorif Moment Problem: 
Regularization by Finite Moments 
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Dedicated to Prof. Dr. C. Anger on occasion of his 70th birthday 

Abstract. We consider the multi-dimensional Ilausdorif moment problem over the unit cube: 
to reconstruct an unknown function from the (inaccurately) given values of the integrals of the 
unknown function multiplied by all power-products of the independent variables. We describe 
a regularization scheme using orthogonalization by the tensor product of (shifted) Legendre 
polynomials and "approximation" of the unknown function by a finite sum, the dimension of 
the space of approximation playing the role of the regularization parameter. For the case of 
square integrability of the unknown function we present an estimate of the regularization error 
that implies convergence if the data error tends to zero. 
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1. Introduction 

We propose to present a regularization of a Hausdorif moment problem, with error 
estimates given. The literature on the moment problem is impressive, we shall list 
only a few of them in the bibliography (cf. [2 - 8, 11, 13]). Of particular relevance to 
the present work are the papers by Ang, Vy and Gorenflo [3] and by Talenti [11] (see 
also Inglese [7]). In [11), the author considered the one-dimensional case and proved 
the stability of the finite moment approximation with stability estimates given. But 
the relationship of the finite moment approximation to the original moment problem 
was not exhibited as transparently as we feel desirable. In the present paper, we shall 
consider the multi-dimensional case, specifically the following problem. 

Problem (MP). Find a function u in L2 (I) satisfying the sequence of equations 

fu(xi... , xd)4 '
 . Xk  dx 1 . . dx = 14 1 •• ka	(ki e N0 ;i = 1,...,d)	(1) 

where d E N, I = 0, i]d c Rd and pi = (k,...kd) is a given bounded sequence of real 
numbers. 
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It can be proved that (MP) is an ill-posed problem. Note also that (MP) does not 
always have a solution for an arbitrary bounded sequence ( Ilk, ,a) in the right-hand 
side of (1). Hence it is realistic to deal also with cases where problem (MP) does not 
have a solution. We refer to the paper [ 3] of which the present work can be seen as a 
continuation. However while [3] deals with a general moment problem, the Hausdorif 
moment problem has it own peculiarities that we have taken into account, in departure 
from the general case, especially in the crucial choice of the function 1(t), [f (e 12. )J being the dimension of our finite approximation. 

In our construction of finite-dimensional approximations, we obtain an orthonor-
malization of the basis functions {x' . x k,} ( k i E No; i 1,... , d) not through the 
Gram-Schmidt process but by using the polynomials 

	

Lk, ,,k4( x l,. . . , Xd) = L k 1 ( x I) ... L k d ( xd),	 (2) 

where

Lm(X)=ECmjX	(mENo)	 (3) 

with
C j = (2m + i)(_i)	(m +i)!	

(j	0,1,... ,m).	 (4)(j!) 2 (rn - 

The sequence (Lk, . . .	( k1 E No; i = 1,. .. , d) forms a complete orthonormal 
set in L2 (I). In fact,

L. (x) = (2m + 1)Pm(1 - 2x),	 (5)
where Pm is the Legendre polynomial: 

Yn
(m+j)!	 2 

	

Pm(t)
(j!) 2 (m - )!2i (t - 1) 3 ,	lIPmIi(_l,I) = 2m + 1 j=o 

(cf. [10: page 227]). Thus (Lm) is a complete orthonormal basis in L2 (0, 1) and hence 
(Lk,	is a complete orthonormal set in L 2 (I). From (3), we have 

Pd L k, ... ka (XI ,... Xd) = 	Ck,, . . . Ckd pa x lP,	.	 (6) 
P1 =O	Pd0 

	

If fI = ( Iz kl ... k d ) is a real sequence, we define the sequence ..\ = .X(p)	(AkI ... kd ) as
follows:

k,	kd 

= :i:	Ci,p	. . Ckapa/Lpi...pa. 
P1 =O	Pd0 

Now put

= p(,) =	A, ...kd(Il) LkI k4.	 (7)
k, .... . k40
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2. Results 

We now give our results in form of three theorems that we shall prove in Section 3. 

Theorem 1. Let ji = (Il k, .- . k,) (k, E No;i = 1,... ,d) be a given sequence of real 
numbers. If u is the (unique) solution of (1) in L2 (I), then 

00

	(Pl'...'Pd^0

CkdPaIJPL...Pd 	< 00	 (8)
ki,...ka=O  

and

	

- u	in L2 (I) as n —i 00,	 (9) 

where C., is defined by (4) if j i and C, = 0 if j > i. Moreover, if the solution u is 
in H'(I), then

lIp'1(i) - u II	—J--.(F(u))4	(n E N)	 (10) 

where	is the L2 (I)-norm and 

F(u) =
	

11
Xj(I —x i )	dx ...dxd. 

In Theorem 1 above, it is assumed that a solution exists. In the general case that 
a solution may not exist, Theorem 2 below will be useful. 

Theorem 2. Let u0 E L2 (I) be the unique solution of (1) corresponding to	=

(/4,.. .,,) (k, E N0 ; i = 1,. . . , d) in the right-hand side of (1). Let 

1(t) =
+ 2v)d1	 (11) 

and for 0 < c < 1, put
n(c) = [f(e )]	 (12) 

where [x] is the largest integer n	x. Then there exists a function (e) (0 < e < 1)
such that i(e) — 0 as C — 0 and that for all sequences /1 satisfying 

	

Il L - 0 II 00 :=	sup	I/.L ki ... ka - lLk. ... k 4	C
kaENo 

we have II p (l2 ) — u0II 5 j(e). Moreover, if uo € H'(I) and 0 < e < 
/ /I	2d then 3+2/ 

— u oM	 (13) 

	

+	IF(uo)I 2 

C1 + C2 In C10 , 

where
ln(/(3-2v))	 -	 1 

C1 =	 and	C2 =	 (14) 
ln(3 + 2/)	 2dln(3 + 2/)
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Remark. In the first version of this paper (see also [2]), we had derived (13) with 
C1 and C2 replaced by

1 

	

21n (27V2)	and	C2=  
2ln3+ ln2	 d(2ln3+1n2)' =  

respectively. 
Estimate (13) with C 1 and C2 given by (14) was derived using formula (31) as 

suggested by one of the referees. Clearly, the constants C 1 and C2 give a better ap-
proximation than do C 1 and C2 , respectively. While it is not known to us whether C1 
and C2 are the best constants, we shall show below that the estimate of the order of 
magnitude of the error for e - 0 as given by (13) is optimal in the sense of the following 
theorem. 

Theorem 3. Assume that there exist two functions m : (0, 1] - N and a (0, 1] —i 
(0, oo) such that lim j o m(E) = + 00 and lim jo a(e) = 0, and 

Ipm) (12) - uol < (1 + (F(uo)) 4 ) a(e)	 (15) 
for all u 0 E H'(I), I = [0, 1]d, and all it = (,uk,...ka) satisfying 

	

1112 - 1201100 =	SUP	/Ak, ... kd - I-1k,kd 
k,,.., kd>0 

where

12k1...kd = j uo(x 1 ,... ,xd)x'	•x	dx i .. dxd. 

Then we have
liminfa(c)ln	2ln(3+2v").	 (16) 

CIO 

3. Proofs 

For definiteness, we shall give the proofs of Theorems 1 - 3 in the case d = 3 only. 
The proofs carry almost verbatim to the general case. For d = 3, we put ( X I ,x2,x3) 
(x, y, z), (k 1 , k2 , k3 ) = (i,j, k), /k 1 k 2 k3 = 12ijk, A k,k 2 k3 = " tjk and Lk,k 2 k3 ( x , y, z) = 
L(x)Li(y)Lk(z) = Ljk(x, y, z). 

Proof of Theorem 1. We easily get the first result of Theorem 1 using the or-
thonormality property of the L1k1s. In fact, one has in view of (3) 

j	k 

f
uL dxdydz = I u(x, y, z) E E E Ct pCjqCkr 9y9z' 

I	 Ji p=O q=0 r0 

=	CipCjqCr (f u(x, y, z) xPyz dxdYdz) 
p Oq Or 0

	

ii	k 

= >	CipCjqCicr,2ijic
p=O q0 r=0 

=
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Hence, by completeness and the orthonormality property of the LIJk'S in L2 (I) one has 
00	 00 

U =	A1jk(/1)LJk	and	1u1 2 =	i	IAIjk ( i )I 2 <,	(17) 
i,j,k=O	 .,j,k=O 

i.e. (8) holds. To prove (9), we subtract the first equation in (17) from (7) to get 

- u = -
maz(i,j,k)>n 

Hence
hhp(,z) - u1I 2 =

	

	 hAk(Iz)I2.	 (18) 
max(i,j,k)>n 

Combining (8) and (18) gives (9). 
For the proof of (10) we rely, with ak = f0' v(x)Lk(x)dx, on the identity (cf. [11]) 

fx(1 - x )I v '(x )1 2 dx =	k(k + I)a2	V v E H'(O, 1).	(19) 

In view of (17) and (19), we have

au	12 
i zA j,	jx(1 —x)(x,y,z)dxdydz	 (20) 

cc
i,j,k=1 

jj2Ak < jv(1 - y)!(x , y , z)dxdydz	 (21) 

00	
A2 k2 ijk :5j z(1 - z)	( x ) y, z)dxdydz.	 (22) 

i,j,k=1 

Adding (20) - (22) together, we get 
CO 

>	(i 2 + j2 + k 2 ) k F(u),	 (23) 
i,j,k=I 

where, we recall, 

F(u)(	
2	 19U 2 

I 	 I 
=

	

	x(1 —x)I—(x,y,z)I +y(1 —y)—(x,y,z)

+ z(1 - z)(x,y,z))dxdydz. 

Note that

	

i2 +j2 +k 2 > (n+ 1)2	for max(i,j,k) > n.	 (24) 

	

We get in view of (18), (23) and (24) that	 - 

(ri + 1)2 p'( ii) - 
U 11 	(i2 +j 2 + k 2 ) A k (z) F(u), 

maz(i,j,k)>n 

which gives the desired inequality. The proof of Theorem 1 is completed U
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Proof of Theorem 2. We have 

- uojI	IIp() _pfl(z) 
+ p" (p° ) - uoI	(n E N).	(25)

We shall estimate the two terms in the right-hand side of (25). Using (18) gives 

( P,qmr=O 
- uoI 2 	 CiPCiCkr/4r).	(26) 

max(i,j,k)>n  

For the first term, we get in view of (7) 
n	c 

pfl() - p'(,,°) =	 CipCjgCkr(ipqr - /4 qr)Lijk	(27) 
s,jk=O p,q,r=O 

Hence
n /00 

- p (°)1 2 =	 > CipCjqCkr(pqr -Ppoqr)) 
i,j,k=O p,q,r=O	

(28 
fl / 00	 \2 

	

< 1111 - O2	

i	2 ICiCiCirI) 
i,j,k=O p,q,r=O 

Noting that C = 0 for j > rn, we have 

00	 i	j	 k 

iCip Cjq C icr l = >lCip I E ICjq l E lCkr l.	 (29) 
p,q,r=O	 P=O	q0	r=O 

Substituting (29) into (28) gives 

-	°)I 2 < 11A-	(	(	icp 
I	1)2)3.	

(30) 
\ i=O ,,	\P=o 

From (3) - (5), one gets

ICi I	L 1 (-1) = (2i + 1)P(3).	 (31) 

On the other hand, one has (cf. [9: page 48], or [1: Equation (22.10.10))) 

P(3)= i J(3+2cosd	(iEN0). 

We claim that

P,(3)<2  

FL3+:^2^^v:'2_

 

1 
-	 2i + 1 (3 + 2)'	(i E No)	(32)
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the proof of which will be given later. Using (31) and (32) one gets after some rear-
rangements	 _________ 

	

>IC I <2Y(3+2\/)'	(i EN0) 

and
2 

	

E (E c1i) 
<4(3+2 V2- )	(3 + 2v) 2l < (3 + 2v) 2 ' 2 7r V2 

E- 2 =	 i=0 

Substituting the latter inequality into (30) gives 

l p () - p (°)l	IIi - p°II	 (3+2 ,F2) 3n+3.	 (33) 

Put
At) =	==(3+2v)3t+3	and	n(E) = 

Then we have in view of (33)

	

<E2.	 (34) 

If we let

(p.q,r=O 
 +	

-	>i CiPCiCkr/4qr
maz(i,j,k)>n(e)  

then, in view of (25), (26) and (34), we have II p'(/ L ) - uolI <77(6). As e —i 0, we have 
and n(E) -4 oo. By (8)

\2 

CiP CiCkri gT) --+ 0	as n(e) - 0. 
max(i, j ,k)>n(e) (p,qmr=O 

Hence 77(6) - 0 as C -p 0. 
Now, let uo E H'(I). Then by Theorem 1 one has 

II p'( i°) - UOM (35) 

The definition of n(e) implies n(e) + 1 > f_1(e_), and f being a monotone increasing 
function, f(n(e) + 1) >	2 or, equivalently, 

+	
_12.  

It follows that (3+2,f2-) n (e) + 2 >
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i.e.,

n(e) + 2>	
1 

In (3+2/) 
Thus we get after some calculations 

In (/(3 - 2 ./))	1
In (- I n(E) + 1>	

in(3 + 2)	+ 61n(3 + 2) \eJ 

It can be checked directly that the right-hand side of the latter inequality is positive if 
and only if

	

/	\6 

'3+ 2/ 
Let satisfy this inequality. By the preceding arguments, (35) gives 

	

- uoIl	
(F(uo))4 

C1+C2ln()	
(36) 

with
In (/(3 - 2/))	 1 and	C2 = C1 

=	ln(3 + 2)	 6 ln(3 + 2) 
Combining (34) and (36) gives

(F(uo)) 

	

-	+ C i + C2 in () 
Now the proof of Theorem 2 will be completed once (32) is proved. In fact, one has 

P1 (3) =	 2v' cos 
7r 

10 

= (1^/2 1 r/2 
(3+2 cos d (37) 

J 

= ;J	((3+2cos+(3_2 	cos )')d.

From (37), with i = cos 0, it follows that 

ir/2	 I 

Pi (3)	J (3+2	cosd ^	
(3+2t)' 

di 
0

	1(3+2t)' 
di. 

	

ir	/1—t2 

	

0	 0 

Putting s = /f and ( = we get, after some computations, 

3+2v Pi (3)	(3 + 2)'	
2	f( i - (2)d(. 

0
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Letting ( = cos 9, we have

lr/2 

P1 (3) <(3 + 
2) /3+ 2 f:vF2	sin 2i+1 9d9.	 (38) 

V2J 
0 

Putting I, =	sin's 9 dO we have (cf. [12: P. 681]) 

1 . 3 ... (2k-1) IT	 2.4...(2k-2) 
'2k =	2 . 4 ... (2k)	.	and	'2k-I - l . 3 ... (2k—l) 

It follows that
ImIm_I =	(m E N).	 (39) 

2m 
But

lr/2	 ir/2 

'rnI = I sin` OdO> /5iflmOCiO=1m. 

Hence (39) gives
12 <II i = 

IT 

M	 2m

	

.	 (40)

Substituting (40) into (38), we get 

	

P(3)<(3+2 VE
2

2	 IT 

IT  	 2(2i+1 

This establishes (32) and completes the proof of Theorem 2 I 
Proof of Theorem 3. We choose

1 
uo(x, y, z) = Lm(e)+1(x) =	Lm(c)+1,O,O(X, y, 

m(e)	 M(E) 

/4qr = 
jUo(X,y,Z)XyZTdXdYdZ. 

Since j L(x)x' dx = 0 (0 < j <i) one has 

/4qr = 0	for p m(e),	 (41) 

i.e., uo is orthogonal for all the Lk's, 0	i	m(e). Put MO = (/qr) and ,u = ( upqr)
with

/lpqr = E(_1)+T + 11°pqr .	 ( 42) 

It is clear that 11Y -	= supp , q ,,. I/pqr - lLpqr l = e. Hence, from assumption (15) of 
Theorem 3, one has

Ipm	- oII	(e)(i + (F(uo)) 4 ).	 (43)
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We estimate the left-hand side of (43). The orthonormality of the sequence (Lk) 
implies

11P, 111 (j, ) - tt 0 II 2 = Ipm ( e)lI 2 + 11 u 011 2 =	 +	
1 

	

 m2(e)	(44) 

On the other hand, one has in view of (42), (29) and (31) 

/ 

i=0 p=0	

/	 3 Im(e) / t	\ \	jm(e) 
IIpm i II 2	c2 ( >	(, ii ici) ) = e (

	(2i + ')1P1(3)12 ) .	(45) 
\	 /	\i=0  

From (37) we conclude
ir/2 

P1 (3) ^! - f ( 3 + 2V')'d.	 (46) 
0 

We shall make use of the inequality 

(2i + 1)IP(3)I2(3+ 2)21 
2ir2 

the proof of which will be given later. Combining (47) with (45) gives 

/m(e) 3 

pm ( e)()II 2	E2	
(3+

27r2 

E 2 ((3 + 2/)2(m(e)+1) 1 =	
(3+ 2)2 —,1 - )	

(48) 

> .3 + 2v''. - 64ir6 

From (43), (45) and (48) we get

1 (1 + (F(uo)))2a2()>_ (3+ 2  )6m + m2 (e) - 1>0 

	

> ming(t),	(49) - 64ir6 

where

g(t) = —(3 + 2V' )61 + 

It is clear that g attains its minimum at t > 0 satisfying 

g'(t) = 
3e2
—(3 + 2v)6 1. ln(3 + 2V') -	= 0.	 (50) 

327r6	 P 

From (49) one has
(1 + (F(uo))4)22(e) ^ g(t) ^ ç2,
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which implies
/1'	1	ln() 

(e)ln(—1 >	 (51) 

	

1+(F(uo))	le 

From (50) one has

t(3 + 2v)Gt.	
647r6 =

3c21n(3+2v) 

Hence
3lnte +6tln(3+2v) = In	 +21n647r 6 

(31 (3	'/))	
(). 

Multiplying this equality by i;', letting c - 0 and noting that t - +oo as c —i 0, we 
get	

1	- 11n(;) 
= 3ln(3+2v).	 (52) 

CIO	t' 

On the other hand, in view of (19) and the definitions of F(uo) and u0 we have 

F(uo)= [x(1-x 
l 
---o U0	2 

ii	)(x,y,z) dxdydz ax 

+ y(l—	
2
dxdydz 

OUO	
2	

(53) 

+ z(1 - z) 1 —(x, y, z) dxdydz 

= 1  
m2

 (c) (m(c) + 1)(m(c) + 2). 

Hence, in view of (52) and (53), inequality (51) implies the desired inequality (16). 
To complete the proof of Theorem 3, we shall prove inequality (47). Putting t = 

cosq and s = /ii, and then letting ( = we get the inequality 

P(3)> (3 +
	F3+^2v'	 (54) 

where 

We shall estimate J. One has
J = I2t-f1 - K1, 

where
ir/2 

12i+1=f sin 2 '9dO	and	K=f(1_(2Yd(.
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Using (39) one has '21+1'2j+2 = 2(2i+2) Hence 

12	>	
IT 

2i-f i - '21+1'2i+2 = (55) 2(2i + 2) 

On the other hand,

K=f (1—c 

1'3+2V' 

	

2/ JiL	-	 (56) 

	

1 13+2V'	3 

	

= 2( i + l ) V 2	(3+2)'• 

From (55) and (56) we deduce 

/ IT	 1	 3 V1 
- \12(2i+2) - 2( i + 1)V 2/	3+2V) 

- 1 (F	1	/3+2(	i+1 

2/ 

	

(1/3+2v	3 
v'TV42V 2'/	3+2v' 

>2 

In view of the latter inequality, (54) gives 

	

(2i + 1)1P1(3)1
22i+ 1

(3 + 2v')2'	
(3+2/)2 

	

4(i + 1)72/	 27r2

This establishes (47) and completes the proof of Theorem 31 
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