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On Restriction Properties of

Multiplication Operators 
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Abstract. A multiplication operator A acting in a rearrangement-invariant function space 
E is considered. Infinite dimensionalsubspaces X of E for which the restriction A I X is an 
isomorphism are described. Applications to multiplied trigonometric sequences in Banach 
function spaces are given. 

Keywords: Multiplication operators, rearrangement-invariant functions spaces 

AMS subject classification: 46 B, 47 B 

1. Introduction 
Let (T, E, p) be a finite measure space and let E be a rearrangement-invariant function 
space defined on T (see E4: p. 118]). We consider the multiplication operator by a 
bounded measurable function a = a(t) (t E T) given by 

Ax = ax (x E E),	(Ax)(t) = a(t)x(t) (t e T). 

Obviously, A is a bounded linear operator acting in E. In general A is not invertible 
and not compact. In order to investigate properties of the operator A we restrict it 
to some infinite dimensional subspaces of E, where A has a more simple nature. We 
consider the following two kinds of such subspaces: 

1. Infinite dimensional subspaces X C E such that the restriction A I X is an iso-
morphism, i.e. inf{IIAxII : x E X with II x II = 1) > 0. 

2. Infinite dimensional subspaces X C E such that the restriction A I X is compact. 

We give a description of subspaces of both kinds. Clearly, properties of such restrictions 
are helpful to understand mapping properties of A at all. 

In addition, let us make the following observation: 
Suppose X C E is an infinite dimensional subspace of E such that A I X is an 

isomorphism. If a sequence {x} is a basis or unconditional basis of X, then the sequence 
( ax,, I  is a basic sequence or unconditional basic sequence in E, respectively. We will 
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show that this observation is useful in order to describe properties of the sequences 
{a(t) cos rzi} and {a(t) sin nt} in some Banach function spaces. 

The paper is organized as follows. 
In Section 2 we explain some notations and formulate a simple statement on general 

properties of a multiplication operator A by a bounded measurable function. In Section 
3 we study subspaces X of E such that A I X is an isomorphism (in the sense explained 
above). Subspaces of even and of odd functions on a compact symmetric domain T c R' 
are of special interest. We find conditions on the function a under which A I X are iso-
morphisms (Proposition 3.4 is the main result here). In Section 4 we consider multiplied 
trigonometric sequences, i.e. sequences of the form {a(t) cos nt} and {a(t) sin nt} where 
a is a continuous function. Using results of Section 3 we answer questions on basic 
properties of such sequences in spaces Lp (—ir, +ir) (1 < p < +). A similar problem 
is investigated in the multidimensional case. Namely, we find conditions under which a 
multiplied n-dimensional trigonometric sequence on the cube K = —ir, +ir]' is an un-
conditional basic sequence in L2 (K). We also study multiplied lacunary trigonometric 
sequences. Under some assumptions on a we show that such sequences are unconditonal 
basic sequences in L,(-7r, +ir) (1 p < +co). The investigation is based on study-
ing normed sequences {x} C E such that II Ax II - 0 as n - +. Finally, Section 
5 is devoted to the study of subspaces X of E such that A I X is compact. The case 
E = L2 (0, 1) and a(t) = t is considered separately. The question whether AJX is strictly 
singular is discussed. We give an example of a subspace X C L(0, 1) (1 <p < 2) such 
that AIX, where Af(t) = tf(t), is strictly singular but non-compact. We also discuss 
spectral properties of a compact selfadjoint operator that corresponds to a compact 
restriction of a multiplication operator in L2 (0, 1). 

In the case when E = L2 (0, 1) and a is a continuous function, some of the results 
of this paper were announced in [5]. 

Acknowlegement. The second named author has been supported by DFG, grant 
Nr. Tr 374/2. 

2. Notation. Simplest properties of multiplication operators 

We use the notation suppa = {t E T : a(t) 54 01 and -y(a) = {t E T : a(t) = 01 
T \ suppa. By xg we denote the characteristic function of a set c E E. For 8 > 0 let 
ab = {t Ia(t)I 2 6} and X6 x• If X is a Banach space, then S(X) denotes the 
unit sphere of X. By "subspace" we mean a closed infinite dimensional subspace. 

Let X, Y be Banach spaces and T: X - Y a linear bounded operator. Recall that 
T is called strictly singular if, for any subspace Z C X, TIZ is not an isomorphism, i.e. 
inf {II Tx II : x E S(X)} = 0. 

Proposition 2.1. The following statements are obvious: 
1. A is injectivc on E if and only if j4y(a)) = 0. If a(-y(a)) 0 0, then dim (KerA) 

2. A maps E isomorhically onto E if and only if there exists 6 > 0 such that 
4T\ a) = 0.
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3. A is compact if and only if A is strictly singular, and A is strictly singular if 
and only if A is the zero operator, i.e. i(suppa) = 0. 

4. A has closed range if and only if there exists 6 >0 such that ji(suppa\a5 ) = 0. 
If in this case 1i(T \ suppa) 54 0, then dim (ImA) = 00. 

3. Restrictions of A being isomorphisms 

In this section we consider subspaces X of E for which AIX is an isomorphic map. We 
will use the following lemma. 

Lemma 3.1. Let { xk} C S(E) and I jAx k jI - 0 as k - +00. Then, for every 
6>0,

	

IIX6xkII - 0	(k - +00).	 (3.1) 

Proof. Indeed, IIx6 x kII	III ax6xk II	III axk II = II AxkII - 0 as k -* +00, and 
the proof is complete I 

Proposition 3.2. Let X C E be a subspace: The following conditions are equiva-
lent:

1. AIX is an isomorphism. 

2. There exist 8,e > 0 such that lixo x Il	for every x E S(X). 
3. There exists 6> 0 such that P0IX is an isomorphism where P6 x = xox. 

Proof. 2 3 follows from the definitions and 2 = 1 follows from Lemma 3.1. To 
show 1 = 2 let A IX be an isomorphism. Then there exists 8 > 0 such that II Ax II = 
Il ax il > 28 for every x e S(X). Put c = sup { I a ( t )I t E T}. Then 

28< II ax II	II axxoII + II axXT\5II 5 C II X X6 11 + 6 11 XXT\g 611 <c II xxoII +8. 

Hence II x xoII ^: = e, and the proof is complete I 

Proposition 3.3. Let T be a closed domain in R" with Lebesgue measure p and 
X a subspace of a rearrangement-invariant space E defined on T. Suppose a : T -. IR 
is a continuous function. Then the following conditions are equivalent: 

1. AIX is an isomorphism. 

2. There exist a closed set a C suppa and e > 0 such that IIxa x II	e for every 
x E S(X). 

3. There exists a closed set or C suppa such that Pg X = X ,x is an isomorphism in 
X.

Proof. It is sufficient to change slightly the proof of Proposition 3.2. Namely, in 
the proof of 1	2 we note that the set 06 is closed and in the proof of 2 = 1 in view

of the compactness of T we have for the closed subset a C supp a that 6 = inf{ Ia(t) I 
t E a} > 0 1



30	A. Plichko and V. Shevchik, 

Proposition 3.4. Let T be a compact symmetric domain in Rn with Lebesgue 
measure p and a : T - R a continuous function. Suppose that X C E is a subspace 
consisting of even or odd functions. The restriction A I X is an isomorphism if and only 
if

	

a(t) = 0 =' a(—t) 0.	 (3.2) 
Remark that condition (3.2) implies a(0) 0 0 where & = (0, ..., 0) E 1W'. 

Proof of Proposition 3.4. Suppose that condition (3.2) holds. First we show 
that there exists 6 > 0 such that, for the set 01 {t E T : Ia(t)I < ö}, 06 D a = —at. 
Indeed, suppose the contrary. Then there exists a sequence {tk} E T such that a(t k ) - 0 
and a( —tk) — 0 as k —p oo. Using the compactness of  and the continuity of a we find 
a point to E T such that a(to) = a(—to) = 0. This contradicts (3.2). For every function 
I from the rearrangement-invariant space E we have I lf11 = Ill — Il where f is defined 
by f(t) = f(—t). Thus for even functions x we have 

II xxII = II x xII = II xxlI = IIxx, 

Similarly, for odd functions x we have 

II X XaII = II -	= II x xaII = II x x, II. 

In view II x II	II x xoII + II xx, II	2 II xx6II we have in both cases 

II Ax II = lI ax Il ^! II axxoII ^! ö II xxsII >	IIxII.


Therefore AX is an isomorphism. 
To prove the "only if" part suppose that (3.2) fails, that is there exists to E T such 

that a(to) = a(—to). We consider two cases: 
a) to 54 0. We denote by Qk E 1' the cube with center to and side length I. Put 

Or k = Qk fl T. It is obvious that p(ak) 54 0. Denote Xk := x and Put xk = Xk + x 
and Yk = Xk — x The function xk is even and the function Yk is odd. In view of the 
coninuity of the function a,

	

Xk A (__) II	sup Ia(t)I XkII + sup Ia(t)I La — 0	(k —+ oo).	(3.3) \. II x II	II	tEOk	IIxk II	tE-ok	lIxkII 

Since 0 k fl —o = 0 for every k > k0 , we have Il ykIl ^! IIxkII > 0 for k > k0 . Therefore 
the proof of

Yk 
A ( ----) - 0	(k —* +)	 (3.4)


\IIYk Ii 
is similar to that of (3.3). 

b) to = 0. Let ak be the cube centered at (, ..., ) with side length . In this case 
the proof of (3.3) - (3.4) is the same as that in the case a). It follows from (3.3) - (3.4) 
that A IX is not an isomorphism. This completes the proof U
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4. Multiplied trigonometric sequences 

Recall that a sequence {x} C X in a Banach space X is said to be a basic sequence if 
it is a basis of its closed linear span (see [3: p. 1]). 

Proposition 4.1. Let a be a continuous function on [—ir, +ir] such that condition 
(3.2) is fulfilled. Then {a(t) cos rit} and {a(t) sin nt} are basic sequences in the space 
L(—ir, +ir) (1 < p < +oo) and unconditional basic sequences in the space L 2 (-7r, +ir). 

Proof. It follows immediately from Proposition 3.4 and the well known property 
that the trigonometric sequence is a basis in the space L(—ir, +ir) (1 <p < +,p 0 2) 
and an unconditonal basis in the space L 2 (-7r, +7r). We also use the simple statement 
that each isomorphism maps a basic sequence into a basic sequence and an unconditional 
basic sequence into an unconditional basic sequence I 

Remark 4.2. It follows from known results of the theory of rearrangement-invari-
ant spaces that Proposition 4.1 is also valid for rearrangement-invariant spaces on 
[—ir, +ir] with non-trivial Boyd indices (see [4: p. 130]). 

Remark 4.3. Proposition 3.4 implies that {tcosnt} flEN and {tsinnt},, EN are basic 
sequences in L(0,27r) (1 < p < +00,p 5b 2) and unconditonal basic sequences in 
L2 (0,27r). This contrasts to properties of the sequence {ten(t)}n^i, where e l (t) = 1, 
e2 (t) = cost, e 3 (t) = sint, ... - the trigonometric sequence. It is easy to show that 
{te n (t)}> i is not deficiently minimal in L2 (0,27r), i.e. it is not minimal after a deletion 
of a finite number of elements (see [6: p. 121]). 

Let T K = [—ir, +7r]'. Then the set of all possible different ri-products 

sin(k 1 t 11 ) ... sin(k t )cos(k+it	)..	 (4.1) 

where 0 < k 1 ... < +00, 1 < j 1 ,...,j < n, 0 < s n and t, , E 1-7r, +7r] forms an 
orthogonal basis of the space L2 (K). Elements (4.1) with even s generate a subspace 
of even functions, elements (4.1) with odd s generate a subspace of odd functions. 

The proof of the following assertion is similar to that of Proposition 4.1. 

Proposition 4.4. Let a be a continuous function on the cube K such that condition 
(3.2) is fulfilled. Then the products of the function a by functions (4.1) in the case of 
even or odd s form unconditional basic sequences in the space L2(K). 

Let us recall some definitions. A sequence {x k } of elements of a rearrangement-
invariant space E is said to be 

disjoint if p ft : X k( t ) X 1( t ) 0 01 = 0 (k 0 I) 

almost disjoint if, for a disjoint (corresponding) sequence { yk} C E,	-+ 0 as

k - +oo. 
A rearrangement-invariant space E is said to have an absolutely continuous norm if, 
for every decreasing sequence of measurable sets { Uk } such that flak = 0 and for every 
x e E, IIXakXII -* 0 as k - +00.
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Lemma 4.5. Let E be a rearrangement-invariant space with absolutely continu-
ous norm and /z(7(a)) = 0. Assume that a sequence {x k } C S(E) satisfies (3.1) for 
some S > 0. Then {xk} contains an almost disjoint subsequence { xk,} such that for a 
corresponding disjoint sequence {yt} 

sup {I a ( t )I : t E suppy,} -+ 0	(i	+oo).	 (4.2) 

Proof. First we show that for every E,S > 0 and every k there exist 0 < 8' < 
and k' > k such that for the characteristic function X6 , ,6 of the set 9 6 U (T \ o) 

IIxo',o x k'II < C.	 (4.3) 

Indeed, using (3.1) we choose k' > k such that IIx xk'II < . Since the norm is 
absolutely continuous we can choose 0 < 8' < such that IIxr\a' x k'II < . Now we 
have

IIxo',o Z k' II 5 IIX6 X k' II + IIXT\5' X k' II 

We construct a required almost disjoint sequence using an inductive process. In the 
first step we put Ic = 1 and, using the absolute continuity of the norm, choose Si such 
that IIXT\a 6 x i 11 < 1. Suppose that the (i - 1)st step is done. Using (4.3) we choose 
k 1 > k_ 1 and 0 < 8 <	such that IIx61,6,_, xk1II < -. As a correspondent disjoint 
sequence {y1 } we take Yi = X { 9:5 <I a ( t )I:5 6 ,_1} X k,. By construction, {y} is disjoint and, 
since 8 - 0 if i -	, condition (4.2) holds. Futhermore, 

Ixk. - I/ill 1 
IIXki II	

= II X k	X{ t: 6 <I ci( t )I< 6 ,_ } Xk II	IIxa.,._, Xk, II <	-+ 0 

as i - +, and the proof is complete I 

The following proposition is a simple corollary of Lemmas 3.1 and 4.5. 

Proposition 4.6. Let E be a rearrangement-invariant space with absolutely con-
tinuous norm and p(-y(a)) = 0. Suppose also that II AxkII - 0 (k -* +) for some 
{ x} C S(E). Then {x k } contains an almost disjoint subsequence such that a corre-
sponding disjoint sequence satisfies condition (4.2). 

Corollary 4.7. Let E be a rearrangement-invariant space with absolutely continu-
ous norm and (-y(a)) = 0. Suppose also that a subspace X C E does not contain any 
almost disjoint sequence. Then AIX is an isomorphism. 

Corollary 4.8. Let X be a subspace included into all spaces Lp (u) (1 < p < +oo). 
Suppose that the LP -norms are equivalent on X and p(y(a)) = 0. Then the restriction 
A I X is an isomorphism in every space L(i) (1 p < + 00). 

Proof. Assume the contrary. Proposition 4.6 yields that X contains an almost 
disjoint sequence {xk}. By virtue of well known stability properties of basic sequences, 
{xk} contains a subsequense {xk.} such that it is equivalent to the standard basis of 
1,, in the space L and to the standard basis of 1q in the space L q . But it is a classical 
result that the standard bases of 1,, and 1q are not equivalent I
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Let us remind that a sequence {nk} of positive integers is said to be lacunary if 
-_	=i\ > 1. infk 
nk 

Corollary 4.9. Suppose T = [-7r, +7r], 1 < p < +00, i(-y(a)) = 0 and that the 
sequence {nk} is lacunary. Then Jaen} with {e} being the trigonometric sequence is 
an unconditional basic sequence in L p (—ir, +ir). 

Proof. It follows immediately from a known property of lacunary sequences in 
L (1 < p < +oo): the L,-norms on the linear span of a lacunary sequence are 
equivalent I 

5. Restrictions of A with the compact mapping property 

In this section we study subspaces X of a rearrangement-invariant space E such that 
AIX are compact mappings. The symbol x-4x means weak convergence. 

Proposition 5.1. Let X be a subspace of a reflexive rearrangement-invariant space 
E and ji(y(a)) = 0. The following conditions are equivalent: 

1. A I X is compact. 

2. For every { x k} E 5(X) such that x k —*O and for every 5> 0 we have IIx6 X kII —i 0 
as k —i +00. 

3. Every weakly zero sequence {xk} C 5(X) contains an almost disjoint subsequence 
such that for a corresponding disjoint sequence {yj} condition (4.2) holds. 

Proof. Since in a reflexive Banach space a compact operator maps weakly zero 
convergent sequences to sequences converging strongly to zero, 1 2 follows from 
Lemma 3.1. The proof of 2 = 3 follows from Lemma 4.5. 3 = 1: Let {xk} C 5(X) 
and xk-40 as k —* +00. Choose an almost disjoint subsequence {xk } of the sequence 
{ xk} such that for a correspondent disjoint sequence {yj} (4.2) holds. Then IIAyII —* 0. 
Therefore IIAxk,II —* 0 as i ^ +00. This means that AIX is compact U 

Let us formulate an alternative version of Proposition 5.1 adapted to the Hilbert 
space L2 (0, 1) and the multiplication by the independent variable t. 

Proposition 5.2. Let E = L2 (0, 1) and a(t) = t. Suppose X is a subspace of 
L2 (0, 1). The following conditions are equivalent: 

1. AIX is compact. 

2. For every othonorrnal sequence {x} C X and for every S E (0, 1), f6' Ixt(t)1 2 dt 
—* 0 as k —, +00. 

3. Every orthonormal sequence {xk} C X contains an almost disjoint subsequence 
{x k ,} such that, for a corresponding disjoint sequence {y 1 }, suppyt c where 
{Si} is a decreasing sequence of real numbers with 8, —* 0 as i —* +00. 

Remark 5.3. Proposition 5.2 fails if its conditions are only fulfilled for some or-
thonormal sequences. Namely, it follows from the results of [2] that there exists an 
orthonormal basis {xk} of L 2 (0,1) such that IItxk(t)II —* 0 as k — +00. But the 
multiplication operator by the independent variable t is non-compact in L 2 (0, 1).
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It is well known that every strictly singular operator in a Hubert space is compact 
(see [1]). We have noted (Proposition 2.1) that a strictly singular multiplication op-
erator in a rearrangement-invariant space E is compact. What about restrictions of a 
multiplication operator A acting in a rearrangement-invariant space E? Is every strictly 
singular restriction compact? In general the answer is "no". 

Example 5.4. Put E = L(—1, +1) (1 <p < 2). By {r} we denote the sequence 
of Rademacher functions defined on [0,1) and extended by zero on [-1,0). Let Xn 
be the characteristic function of the interval (—-, —	r) and	the corresponding 
normalized function. We consider the sequence {x} given by x, r + . It is easy 
to show that {x} in the space L(-1, +1) (1 < p < 2) is equivalent to the standard 
basis of 1,,. Let X be the subspace of L(-1,+1) spanned by {x, 1. Now we consider 
the multiplication operator by the function a(t) t acting in L9 (-1, +1) (1 <p < 2). 
It is also easy to see that the sequence {Ax} is equivalent to the standard basis of the 
space 12. But it is well known that the natural imbedding of l, into 12 is strictly singular 
and non-compact. 

To close this section, we consider spectral properties of some compact operator 
connected with a multiplication operator in L2 (0, 1). 

Let a be a continuous function such that a(to) = 0 for some t 0 E [0, 1]. Given a 
subspace X C L 2 (0, 1), we denote by Px the orthogonal projection onto X. Suppose 
that AIX is compact. We denote by Bx = PxAPx the compact selfadjoint operator 
acting in L2 (0, 1). 

Proposition 5.5. Let {.\,,} be a sequence of real numbers such that 

max a(t)>.\ j >A 2 >...	and	lim ),,=0. 
iE[O,1] 

Then there exists a subspace X C L2 [0, 1] such that A,, (n E N) are eigenvalues of the 
compact selfajoint operator Bx. 

Proof. It is obvious that for the characteristic function xa of a E E and for the 
orthogonal projection Pa corresponding to the one-dimensional subspace generated by 
Xa

(a(t),a(t)) 
P	 = (t)dt//7 

	

aAPaXa =	 a 
IIxaII	Ia 

Using this observation, the continuity of the function a and an induction process it is 
easy to construct a sequence of disjoint sets or,, such that, for the orthogonal projection 
PX onto the subspace X = clspan{x g }, PAP(Xan ) = A nXan . This means that 
B (Xa) = An,,, I
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