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On Restriction Properties of
Multiplication Operators

A. Plichko and V. Shevchik

Abstract. A multiplication operator A acting in a rearrangement-invariant function space
E is considered. Infinite dimensional subspaces X of E for which the restriction A|X is an
isomorphism are described. Applications to multiplied trigonometric sequences in Banach
function spaces are given.
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1. Introduétion

Let (T, %, 1) be a finite measure space and let E be a rearrangement-invariant function
space defined on T (see [4: p. 118])). We consider the multiplication operator by a
bounded measurable function a = a(t) (t € T') given by

Az = az (z € E), (Az)(t) = a(t)z(t) (teT).

- Obviously, A is a bounded linear operator acting in E. In general A is not invertible
and not compact. In order to investigate properties of the operator A we restrict it
to some infinite dimensional subspaces of E, where A has a more simple nature. We
consider the following two kinds of such subspaces:

1. Infinite dimensional subspaces X C E such that the restriction A|X is an iso-
morphism, i.e. inf{||4z| : z € X with |z|| =1} > 0.

2. Infinite dimensional subspaces X C E such that the restriction A|X is compact.
We give a description of subspaces of both kinds. Clearly, properties of such restrictions
are helpful to understand mapping properties of A at all.

In addition, let us make the following observation:

Suppose X C E is an infinite dimensional subspace of E such that A|X is an
isomorphism. If a sequence {z,} is a basis or unconditional basis of X, then the sequence
{az,} is a basic sequence or unconditional basic sequence in E, respectively. We will
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show that this observation is useful in order to describe properties of the sequences
{a(t) cosnt} and {a(t)sinnt} in some Banach function spaces.

The paper is organized as follows.

In Section 2 we explain some notations and formulate a simple statement on general
properties of a multiplication operator A by a bounded measurable function. In Section
3 we study subspaces X of E such that A|X is an isomorphism (in the sense explained
above). Subspaces of even and of odd functions on a compact symmetric domain T c R"
are of special interest. We find conditions on the function a under which A|X are iso-
morphisms (Proposition 3.4 is the main result here). In Section 4 we consider multiplied
trigonometric sequences, i.e. sequences of the form {a(t) cosnt} and {a(t)sinnt} where
a is a continuous function. Using results of Section 3 we answer questions on basic
properties of such sequences in spaces Ly(—#,+7) (1 < p < 400). A similar problem
is investigated in the multidimensional case. Namely, we find conditions under which a
multiplied n-dimensional trigonometric sequence on the cube K = [—, +7|" is an un-
conditional basic sequence in La(K). We also study multiplied lacunary trigonometric
sequences. Under some assumptions on a we show that such sequences are unconditonal
basic sequences in Ly(—7,4+7) (1 < p < +00). The investigation is based on study-
ing normed sequences {z,} C E such that |[Aza]| — 0 as n — +o0. Finally, Section
5 is devoted to the study of subspaces X of E such that A|X is compact. The case
E = L2(0,1) and a(t) = t is considered separately. The question whether A|X is strictly
singular is discussed. We give an example of a subspace X C L,(0,1) (1 <p < 2) such
that A|X, where Af(t) = tf(t), is strictly singular but non-compact. We also discuss
spectral properties of a compact selfadjoint operator that corresponds to a compact
restriction of a multiplication operator in L,(0,1).

In the case when E = L,(0,1) and a is a continuous function, some of the results
of this paper were announced in [5).

Acknowlegement. The second named author has been supported by DFG, grant
Nr. Tr 374/2.

2. Notation. Simplest properties of multiplication operators

We use the notation suppa = {t € T : a(t) # 0} and v(a) = {t € T : a(t) = 0} =
T \ suppa. By x, we denote the characteristic function of a set 0 € £. For § > 0 let
os = {t: |a(t)| 2 6} and x5 := xo,. If X is a Banach space, then S(X) denotes the
unit sphere of X. By "subspace” we mean a closed infinite dimensional subspace.

Let X,Y be Banach spaces and T: X — Y a linear bounded operator. Recall that
T is called strictly singular if, for any subspace Z C X, T|Z is not an isomorphism, i.e.

inf{||Tz| : z € S(X)} =0.

Proposition 2.1. The following statements are obvious:

1. A s injective on E if and only if u(v(a)) = 0. If u(y(a)) # 0, then dim (Ker A) =
0. ‘

2. A maps E isomorhically onto E if and only if there exists § > 0 such that
(T \os) = 0.
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3. A is compact if and only if A is strictly singular, and A is strictly singular if
and only if A is the zero operator, i.e. u(suppa) =

4. A has closed range if and only if there ezists § > 0 such that p(suppalos) = 0.
If in this case u(T \ suppa) # 0, then dim(ImA) =

3. Restrictions of A being isomorphisms

In this section we consider subspaces X of E for which A4|X is an isomorphic map. We
will use the following lemma.

Lemma 3.1. Let {zx} C S(E) and ||Azk|| — 0 as k — +oo. Then, for every
6>0,

Ixszel — 0 (k — +oo). 3.1)

Proof. Indeed, ||xszk| < l|3axszkll < ||3azk]l = }l|Azk]l — 0 as k — +oo0, and
the proof is complete 8

Proposition 3.2. Let X C E be a subspace. The following conditions are equive-
lent:

1. A|X is an isomorphism.
2. There ezist §,& > 0 such that ||xsz| > € for every z € S(X).
3. There exists § > 0 such that Ps|X is an isomorphism where Psz = xsz.

Proof. 2 & 3 follows from the definitions and 2 = 1 follows from Lemma 3.1. To
show 1 = 2 let A|X be an isomorphism. Then there exists § > 0 such that ||A:1:|| =
laz|| > 26 for every z € S(X). Put ¢ = sup{|a(t)|: t € T}. Then

26 < |laz|l < llazxsll + lazxT\osll < cllzxsll + bllzx\o,lt < cllzxsll + &

Hence ||zxs|| > & = ¢, and the proof is complete
[4

Proposition 3.3. Let T be a closed domasn sn R™ with Lebesgue measure p and
X a subspace of a rearrangement-invariant space E defined on T. Suppose a : T — R
135 a continuous function. Then the following conditions are equivalent:

1. A|X is an isomorphism.

2. There ezist a closed set o C suppa and € > 0 such that ||x,z| > € for every
T € S(X).

3. There exzists a closed set o C Suppa such that P,z = x,z 13 an isomorphism in

X.

Proof. It is sufficient to change slightly the proof of Proposition 3.2. Namely, in
the proof of 1 = 2 we note that the set o5 is closed and in the proof of 2 = 1 in view
of the compactness of T we have for the closed subset o C suppa that § = mf{|a(t)|
teo}>01
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Proposition 3.4. Let T be a compact symmetric domain in R"™ with Lebesgue
measure p and @ : T — R o continuous function. Suppose that X C E is a subspace
consisting of even or odd functions. The resiriction A|X is an isomorphism if and only
if

a(t)=0 = a(-t)#0. (3.2)

Remark that condition (3.2) implies a(8) # 0 where 8 = (0,...,0) € R™.

Proof of Proposition 3.4. Suppose that condition (3.2) holds. First we show
that there exists 6 > 0 such that, for the set o) = {t € T : |a(t)| < 6}, 05 D o = —0;.
Indeed, suppose the contrary. Then there exists a sequence {tx} € T such that a(tx) — 0
and a(~tx) — 0 as k — oo. Using the compactness of T and the continuity of a we find
a point tg € T such that a(to) = a(—to) = 0. This contradicts (3.2). For every function

f from the rearrangement-invariant space E we have | f|| = ||f~|| where f~ is defined
by f~(t) = f(—t). Thus for even functions z we have

lzxoll = llz"xo |l = llzxz = llexo, II-

Similarly, for odd functions z we have

lzxsll = Il = 7 Xoll = lz7x0ll = llzx0, |I-

In view [|z|| < ||lzxs]l + llzxo. || < 2||lzxs|| we have in both cases
5
lAzll = llazll 2 llazxs|l 2 éllzxsl| > Sli=.

Therefore A]X is an isomorphism.

To prove the "only if” part suppose that (3.2) fails, that is there exists tq € T such
that a(to) = a(—#9). We consider two cases:

a) to # 0. We denote by Qx € R™ the cube with center ¢y and side length 1. Put
ok = Qk NT. It is obvious that u(ox) # 0. Denote xx := xo, and Put zx = xx + X
and yx = xx — x; - The function zj is even and the function yx is odd. In view of the
coninuity of the function a,

‘P(il)HSNpMMHMW+wph@ﬂnnao (k — o). (3.3)
llzll teos lzkll * te-on flzxll

Since ok N —ox = O for every k > ko, we have ||yx|| = ||x|| > O for k > ko. Therefore
the proof of
Y

A(Mﬁ)ao (k — +o0) , (3.4)

is similar to that of (3.3).

b) to = 0. Let o4 be the cube centered at (},..., §) with side length 1. In this case
the proof of (3.3) - (3.4) is the same as that in the case a). It follows from (3.3) - (3.4)
that A]X is not an isomorphism. This completes the proof B
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4. Multiplied trigonometric sequences

Recall that a sequence {z,} C X in a Banach space X is said to be a basic sequence if
it is a basis of its closed linear span (see [3: p. 1]).

Proposition 4.1. Let a be a continuous function on [—m,+n] such that condition
(3.2) is fulfilled. Then {a(t)cosnt} and {a(t)sinnt} are basic sequences in the space
Ly(—m,4+7) (1 < p < +00) and unconditional basic sequences in the space Lo(—m, +m).

Proof. It follows immediately from Proposition 3.4 and the well known property
that the trigonometric sequence is a basis in the space Lp(—7,+7) (1 < p < +00,p # 2)
and an unconditonal basis in the space Ly(—m,+m). We also use the simple statement
that each isomorphism maps a basic sequence into a basic sequence and an unconditional
basic sequence into an unconditional basic sequence

Remark 4.2. It follows from known results of the theory of rearrangement-invari-
ant spaces that Proposition 4.1 is also valid for rearrangement-invariant spaces on
(-, +7] with non-trivial Boyd indices (see [4: p. 130]).

Remark 4.3. Proposition 3.4 implies that {t cosnt}.en and {tsinnt},en are basic
sequences in Ly(0,27) (1 < p < +o00,p # 2) and unconditonal basic sequences in
L,(0,27). This contrasts to properties of the sequence {ten(t)}n>1, where e;(t) = 1,
e2(t) = cost, e3(t) = sint, ... - the trigonometric sequence. It is easy to show that
{ten(t)}n>1 is not deficiently minimal in L(0,27), i.e. it is not minimal after a deletion
of a finite number of elements (see [6: p. 121]).

Let T = K = [—m, +7]". Then the set of all possible different n-products
sin(kyti,)--- sin(kyt;, ) cos(kyqats,,,) - - - cos(knti,) (4.1)

where 0 < kj... < 400, 1 < 4,...,in < 7,0 < s < nandty; €[, +n] forms an
orthogonal basis of the space L2(K). Elements (4.1) with even s generate a subspace
of even functions, elements (4.1) with odd s generate a subspace of odd functions. -

The proof of the following assertion is similar to that of Proposition 4.1.

Proposition 4.4. Let a be a continuous function on the cube K such that condition
(3.2) is fulfilled. Then the products of the function a by functions (4.1) in the case of
even or odd s form unconditional basic sequences in the space Lo(K).

Let us recall some definitions. A sequence {zx} of elements of a rearrangement-
invariant space E is said to be '

disjoint if p{t: zx(t)zi(t) #0} =0 (k£ 1)
almost disjoint if, for a disjoint (corresponding) sequence {yx} C E, I“;‘I’f I 0as
k — +o0.

A rearrangement-invariant space E is said to have an absolutely continuous norm if,
for every decreasing sequence of measurable sets {0k} such that Nox = 0 and for every
z € E, ||xo.zll = 0as k — +o0.
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Lemma 4.5. Let E be a rearrangement-invariant space with absolutely continu-
ous norm and p(y(a)) = 0. Assume that o sequence {zx} C S(E) satisfies (3.1) for
some § > 0. Then {zi} contains an almost disjoint subsequence {zy,} such that for a
corresponding disjoint sequence {y;}

sup{la(t)|: t € suppy;} = 0 (7 = +o0). (4.2)

Proof. First we show that for every €,6 > 0 and every k there exist 0 < §' < g—
and k' > k such that for the characteristic function xs s of the set a5 U (T \ 05')

flxs 6 zu| < €. (4.3)

Indeed, using (3.1) we choose k' > k such that |[xszx|| < %. Since the norm is
absolutely continuous we can choose 0 < §' < % such that ||x7\s z#|| < £. Now we

3
have
lxs s zue |l < llxs zo |l + lixTver zae || < €.

We construct a required almost disjoint sequence using an inductive process. In the
first step we put k = 1 and, using the absolute continuity of the norm, choose §, such
that ||x7\o,, Z1]| < 1. Suppose that the (i — 1)st step is done. Using (4.3) we choose
ki>kicyand 0 < §; < 6"2—“ such that |[xs;,6_, xx|l < }. As a correspondent disjoint
sequence {y;} we take yi = X{v:5,<|a(t)|<6;_1} Th;- By construction, {y;} is disjoint and,
since 6; — 0 if ¢ — oo, condition (4.2) holds. Futhermore,

llze: = ill

: 1
||$k; “ = ”:L'k_. —Ax{tzé.'Sla(t)|<5.'-1) Ik-’” = ”X5-',6:’—1 Tk; ” < ; —0

as ¢ = +00, and the proof is complete B
The following proposition is a simple corollary of Lemmas 3.1 and 4.5.

Proposition 4.6. Let E be a rearrangement-invariant space with absolutely con-
tinuous norm and u(y(a)) = 0. Suppose also that ||Azi|| —» 0 (k — +o00) for some
{zx} C S(E). Then {zi} contains an almost disjoint subsequence such that a corre-
sponding disjoint sequence satisfies condition (4.2).

Corollary 4.7. Let E be a rearrangement-invariant space with absolutely continu-
ous norm and p(y(a)) = 0. Suppose also that a subspace X C E does not contain any
almost disjosnt sequence. Then A|X is an isomorphtsm.

Corollary 4.8. Let X be a subspace included into all spaces Lpy(u) (1 < p < +00).
Suppose that the Ly-norms are equivalent on X and p(y(a)) = 0. Then the restriction
A|X is an isomorphism in every space Ly(u) (1 < p < 400).

Proof. Assume the contrary. Proposition 4.6 yields that X contains an almost
disjoint sequence {zx}. By virtue of well known stability properties of basic sequences,
{z&} contains a subsequense {z4,} such that it is equivalent to the standard basis of
lp in the space L, and to the standard basis of I, in the space L,. But it is a classical
result that the standard bases of I, and {; are not equivalent il
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Let us remind that a sequence {ni} of positive integers is said to be lacunary if
infg n—;—;u =A>1.

Corollary 4.9. Suppose T = [—7,+7], 1 < p < +o00, pu(y(a)) = 0 and that the
sequence {nx} is lacunary. Then {ae,,} with {e,} being the trigonometric sequence is
an unconditional basic sequence in Ly(—m,+n).

Proof. It follows immediately from a known property of lacunary sequences in

L, (1 £ p < +oo): the Ly-norms on the linear span of a lacunary sequence are
equivalent B

5. Restrictions of A with the compact mapping property

In this section we study subspaces X of a rearrangement-invariant space E such that
A|X are compact mappings. The symbol z, >z means weak convergence.

Proposition 5.1. Let X be a subspace of a reflezive rearrangement-invariant space
E and p(v(a)) = 0. The following conditions are equivalent:

1. A|X 33 compact.

2. For every {zx} € S(X) such that 0 and for every § > 0 we have lIxszkl| — O
as k — +oo.

3. Every weakly zero sequence {zx} C S(X) contains an almost disjoint subsequence
such that for a corresponding disjoint sequence {yi} condition (4.2) holds.

Proof. Since in a reflexive Banach space a compact operator maps weakly zero
convergent sequences to sequences converging strongly to zero, 1 = 2 follows from
Lemma 3.1. The proof of 2 = 3 follows from Lemma 4.5. 3 = 1: Let {zx} C S(X)
and x50 as k — 4+00. Choose an almost disjoint subsequence {z,} of the sequence
{zx} such that for a correspondent disjoint sequence {y;} (4.2) holds. Then ||Ay;|| — 0.
Therefore ||Azg,|| — 0 as i — +00. This means that A}X is compact

Let us formulate an alternative version of Proposition 5.1 adapted to the Hilbert
space L;(0,1) and the multiplication by the independent variable ¢.

Proposition 5.2. Let E = L;(0,1) and a(t) = t. Suppose X is a subspace of
L;(0,1). The followsng condstions are equivalent:

1. A|X 13 compact.

2. For every othonormal sequence {z,} C X and for every § € (0,1), f; |z (t)]* dt
— 0 as k — +o0.

3. Every orthonormal sequence {zx} C X contains an almost disjoint subsequence
{zx;} such that, for a corresponding disjoint sequence {y;}, suppy; C [6;,8i_] where
{6:} is a decreasing sequence of real numbers with §; — 0 as i — +o0.

Remark 5.3. Proposition 5.2 fails if its conditions are only fulfilled for some or-
thonormal sequences. Namely, it follows from the results of (2] that there exists an
orthonormal basis {zx} of L3(0,1) such that [[tzx(t)]] = 0 as k — +oo. But the
multiplication operator by the independent variable t is non-compact in L2(0,1).
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It is well known that every strictly singular operator in a Hilbert space is compact
(see [1]). We have noted (Proposition 2.1) that a strictly singular multiplication op-
erator in a rearrangement-invariant space E is compact. What about restrictions of a
multiplication operator A acting in a rearrangement-invariant space E? Is every strictly
singular restriction compact? In general the answer is "no

Example 5.4. Put E = L,(~1,4+1) (1 < p < 2). By {r.} we denote the sequence
of Rademacher functions defined on [0,1]) and extended by zero on [-1,0). Let xn
be the characteristic function of the interval (—,‘,1—,,, —za3r) and X, the corresponding
normalized function. We consider the sequence {zn} given by z, = r, 4+ ¥,. It is easy
to show that {z,} in the space L,(—1,+1) (1 < p < 2) is equivalent to thc standard
basis of {,. Let X be the subspace of Lp(—1,+1) spanned by {z,}. Now we consider
the multiplication operator by the function a(t) = t acting in Ly(-1,+1) (1 <p < 2).
It is also easy to see that the sequence {Az,} is equivalent to the standard basis of the
space l;. But it is well known that the natural imbedding of {, into I, is strictly singular
and non-compact.

To close this section, we consider spectral properties of some compact operator
connected with a multiplication operator in L,(0, 1).

Let a be a continuous function such that a(to) = 0 for some ¢ € [0,1). Given a
subspace X C L;(0,1), we denote by Px the orthogonal projection onto X. Suppose
that A|X is compact. We denote by Bx = Px APx the compact selfadjoint operator
acting in Ly(0,1).

Proposition 5.5. Let {A,} be a sequence of real numbers such that

max_a(t) > Ay > Ay > . and lim A, =0.
tefo,1] - k—o0

Then there exists a subspace X C L2[0,1] such that A, (n € N) are eigenvalues of the
compact selfajoint operator Bx.

Proof. It is obvious that for the characteristic function x, of ¢ € £ and for the
orthogonal projection P, corresponding to the one-dimensional subspace generated by

Xeo
{a(t), xo()) xa(t)) /
PyAP,x, = ~—2 20200 Tl / (t)dt/ dt

Using this observation, the continuity of the function a and an induction process it is
easy to construct a sequence of disjoint sets g, such that, for the orthogonal projection
Px onto the subspace X = clspan{xs,}, PxAPx(Xs,) = AnXo.- This means that
Bx(Xo.) = Anxo, B
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