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The Canonical Endomorphism for 

Infinite Index Inclusions 

F. Fidaleo and T. Isola 

Abstract. We give purely algebraic characterisations of the canonical endomorphism in in-
teresting infinite index cases, continuing previous works of Longo and the authors. We apply 
these results when compact and discrete (but not necessarily finite-dimensional) Woronowicz 
algebras act alternately on the factors in the various levels of Jones' tower. We characterise 
when the acting algebra is a Kac algebra. 
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1. Introduction 
The purpose of this work is to extend some results of [19] beyond the finite index 
case, namely to find necessary and sufficient algebraic conditions on an endomorphism 
-y of a von Neumann algebra M which guarantee the existence of a subalgebra N C 
M for which -y is the associated canonical endomorphism. We solve this problem in 
the cases (dual to each other) when there is a normal faithful conditional expectation 
either from M to N or from N' to We use Pimsner-Popa basis (relative to an 
inclusion possessing a faithful conditional expectation) made of elements of the bigger 
algebra (and not merely affiliated to it), whose existence we show in case the algebras 
involved are properly infinite. Finally, we apply our results to the context of Longo's 
Q-systems (19] and give a different characterisation of (semicompact or semidiscrete) 
depth 2 inclusions, which have been recently proved in [2, 3] to be generated as crossed 
products by Woronowicz algebras [22]. In addition we characterise when the Woronowicz 
algebra is indeed a Kac algebra, using the formalism of Q-systems. 

Our main motivation for studying, here and in [5], the canonical endomorphism -y 
of an inclusion N C M of von Neumann algebras is that the latter can be interpreted 
as being generated by means of a crossed product by the action on N of an implicitly 
defined "quantum object", and y should be regarded in some sense as the "regular 
representation" of the quantum object. This is to be interpreted by analogy with the 
case of inclusions N C N x 0 G coming from outer actions of finite groups, where the 
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irreducible decomposition of A is A gEG a 9 , while AIN EDEG d,rp,r, where the P,r 
are (irreducible) endomorphisms of N in one-to-one correspondence with the irreducible 
representations it of G (see [14], for example). 

This paper is organised as follows. 
After the preliminary Section 2, Section 3 is devoted to Pimsner-Popa bases. Namely, 
given an inclusion N c M of properly infinite von Neumann algebras with a faithful 
normal conditional expectation E: M -* N, we construct a Pirrisner-Popa basis for the 
left N-module NM, completely made of elements of M (not just affiliated to M, as it 
happens in the type II I case considered by Popa [27]). Using this basis, we characterise 
in a purely algebraic way when an endomorphism A E End(M) is a canonical one. 
This is done in Section 4 in two cases (dual to each other): first when there exists 
a faithful conditional expectation E : N - A(M), which we call semidiscreie, and 
secondly when there exists a faithful conditional expectation E: M - N, which we call 
.9emicompact. Section 5 concerns the extension of the notion of Longo's Q-system [19] to 
the semicompact and sernidiscrete cases, and the proof of a duality theory between them. 
If one implements a Q-system concretely as an inclusion of von Neumann algebras, the 
dual Q-system appears, using the canonical endomorphism, in a natural way in the 
Jones tunnel

•"C7(N)C7(M)CNCM. 

We conclude with Section 6 where we prove an extension of a Frobenius reciprocity 
result of [19] and apply it to (semidiscrete and semicompact) Q-systems based on a 
factor- subfactor inclusion of depth 2, which, as we prove, are characterised as those 
for which the canonical endomorphism has the "absorbing" property A2 dA, already 
known in the case of compact groups [9], and of finite- dimensionalKac algebras [19]. 
Therefore, using recent results in [2, 3] we can show that an irreducible semicompact 
Q-system based on a factor-subfactor inclusion of depth 2 will appear as the crossed 
product of an irreducible semidiscrete (hence automatically discrete according to the 
terminology in [111) Q-system by an outer action of a discrete Woronowicz algebra, so 
that the Jones tunnel is obtained via (alternate) crossed product procedures. The dual 
case, corresponding to prime actions of compact Woronowicz algebras, leads to a more 
complicated situation, already well known in case of compact group actions (see [23, 
28]). Finally we characterise the case when a Kac algebra appears, improving on [3], 
namely a discrete Kac algebra, together with its compact dual algebra, appears if and 
only if the canonical endomorphism -y E Sect(M) decomposes as 

= ED1d(p1)p,, 

where {Pi}IEJ C Sect(M) is a basis of finite index irreducible sectors for the *semirjng 
generated by { p' } themselves. The above condition is well known for compact (or 
discrete) groups and finite-dimensional Hopf *algebras [19]. 

The cases of arbitrary Woronowicz algebras or more complicated quantum symme-
tries such as weak and quasi-weak Hopf algebras seem to be very difficult; we hope to 
return to these open problems in the future.
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2. Notation and preliminaries 

We consider in the following, for simplicity, only inclusions of von Neumann algebras 
with separable predual. For the reader's convenience we recall some notation, used 
throughout the paper. 

Let M C 8(?1) be a von Neumann algebra. Then .sM(e) is the support in M of the 
projection e E B(fl), and Proj(M) is the set of projections in M. If N is a von Neumann 
subalgebra of M, then QM, N) and E(M, N) are the set of normal and normal faithful, 
respectively, conditional expectations from M onto N, whereas P(M, N) is the set of 
normal semifinite faithful N-valued weights on M. If T E P(M, N), then 

91T:={xEM:T(xx)EN} 

and
:= span{x E M : T(x) E N) E 91TMT 

is the domain of T. Further, 

(N'AM)T:={XEN'AM:a"(x)=x ( tER} 

is the centralizer of T. End(M) is the set of normal faithful unital -endomorphisms 
of M, and [p] E Sect(M) is the sector determined by p in End(M) modulo inner auto-
morphisms. For p, a E End(M), (a, p) is the vector space of intertwiners between p and 
a:

(a,p):={vEM:va(x)=p(x)v (xEM)}. 

Let N C M be an inclusion of properly infinite von Neumann algebras, take a cyclic and 
separating vector I for both N and M and set I' := where Al denotes Tomita's 
modular conjugation with respect to (M, Q), then -y := adl'I M E End(M) is a canonical 
endomorphi3rn for the inclusion N C M, and its sector is uniquely determined. Using 
7, a conjugate endomorphism of p E End(M) is given by p = p_I o y. For the general 
theory of von Neumann algebras we refer the reader to [12, 28 - 30]. 

Let us now recall the definition of H. Kosaki's index [13] based on A. Connes' 
spatial theory and U. Haagerup's operator-valued weights (see [28]). If N C M are von 
Neumann algebras, associated to every E E E(M, N) there is an M'-valued operator 
weight E' on N' uniquely determined by the relation 

d( o E)/d = dp/d(t,b o E') 

for all normal semifinite faithful weights W on N and b on M'. Observe that the index of 
E, Ind(E) : E'(1) E Z(M) + , the extended positive part of Z(M), does not depend 
on the representation of M (as the same proof of [13: Theorem 2.2] works). 

Let p be a normal faithful state on N, and set 0 := V o E. Let 'P E 7i 
be cyclic and separating for M and such that 0 = ( . 'P,'P), and set e := [N'I'] E N', 
the Jones projection of the inclusion. The following propositions summarise standard 
results on index theory for inclusions.
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Proposition 2.1 (see [13]). 
(i) E 1 (e) = 1. 

(ii) M1 := (M, e)	J.N'J, where J	J. This algebra is called the extension of 
M by' N.

(iii) If J is a modular conjugatzon for M, and j := adJ, then E 1 := j o E' o j E 
P(M1 , M). E1 is called the dual (operator-valued) weight of E. 

Proposition 2.2 [5: Theorem 2.11. Let N C M C L be von Neumann algebras, 
E E E(M, N) and I E Proj(L) such that 

(1) fxf = E(x)f (x E M) 
(ii) L = (M, 1) 

(iii) SZ(L)(f) = 1 and s N(f) = 1. 

Then there is an isomorphism 0 : L - M1 such that Olm idM and cb(f) = e. 
Proposition 2.3. Let N C M be properly infinite von Neumann algebras. Then 

for any E E E(M, N) there is an isometry v E N such that E(x) = v' 7(x)v (x E M), 
V E (zdI N ,yI N ) and y(vv) is Jones' projection for the inclusion N C M. 

Proof. See 116: Proposition 5.11 or also [5: Lemma 3.3] U 
For the reader's convenience we report some results in [5] the first of them being 

based on an argument in [17: Theorem 4.1]. 
Proposition 2.4. Let N C M be properly infinite von Neumann algebras, A E 

End(M), and assume one of the following 
(i) there is an isometry v E M such that vx = A(x)v (x e N) and .\(M) C N C 

(N, vv) M is the extension of N by A(M) 
(ii) there is an isometry v E N such that vx = A(x)v (x e .\(M)) and A(N) C 

A(M) C (A(M), vv*) N is the extension of A(M) by A(N). 
Then A is a canonical endomorphism for N C M. 
Proof. We just prove (i), as the proof of (ii) is similar. Let Q be a cyclic and 

separating vector for A(M) and N, and set J := J O and Jo := M)- Set vo : JvJ E 
J(N,vv)J = A(M)'. Let be cyclic and separating for N such that vv = [A(M)J. 
The canonical implementation of y E A(M) - yvv E A(M)vv with respect to 1 and 

is given by w0 = v0 z, where z E A(M)' is unitary. Then by [16: Proposition 3.1] 

r := J0 J = wJw0 J = zvJvoJJzJ


so that, to compute the sector of y := adrl N , we can assume w0 = V0. Then, for all 
x E N,

rxr = vJvoJxJvJv0 

= JvJvxvJvJ 

= JvJA(x)vvJvJ 

= A(x)JvJvvJvJ 
= A(x)Jv*vv*vJ 

=A(x)
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where we used JvvJ = vv, as vv is Jones' projection for A(M) C N. Therefore AIN 
is a canonical endomorphism for A(M) C N, so that A is a canonical endomorphism for 
NcMU 

Proposition 2.5. Let N C M be properly infinite von Neumann algebras, p € 
End(M) and v E (id, p) be such that 

(i) p(M) C N C (N, vv') =: L is the extension of N by p(M) 

(ii) sz(L ) (vv) = 1. 
Then M = (N, vv*). 

Proof. Set f := vv, and observe that 

f(N, 1)1 = fp(M)f = {p(x)f : x E M} = {vxv : x E M} = fMf, 

that is (N,vv) j = M1 . Therefore Lf = (N,f), =	and, as SZ(L)(f) = 1, the map 
L' -* L f is an isomorphism which restricts to the isomorphism M' -* M	L, so that


= M', that is L=M I 

3. On the Pimsner-Popa basis 

Let N C M be an inclusion of von Neumann algebras and T E P(M, N). A Pimsner-
Popa basis is a basis for the self-dual completion Xi' of the left N-module N(T) 
relative to the N-valued inner product (x,y)T := T(xy) as in (25]. It is a well-known 
result that, if E(M, N) 0 0, there exists a Pimsner-Popa basis consisting of elements 
affiliated to M, in the sense explained in [27]. In this section we strengthen this result 
by showing that, if N C M are properly infinite von Neumann algebras, a Pimsner-Popa 
basis consisting of elements in M can be chosen. The proof also shows how such a basis 
can be constructed. 

We need some preliminary lemmas. 

Lemma 3.1. Let N C M be an inclusion of properly infinite von Neumann alge-
bras, with E(M,N) 0. Then: 

(i) Jones' projection e € M1 is properly infinite. 

(ii) If 4 € Pioj(Mi ) is rnajorized by e, then there exists q € Proj(N) such that 
qe =

Proof. (i): We have isometrics v, w E N with orthogonal ranges satisfying vv + 
ww = 1. We can define i) := ye and ti) := we and obtain two partial isometrics with 
ortogonal ranges that satisfy i' = e = zi)th and ii + tZ'th = e. The assertion follows 
by [29: Section 4.12]. 

(ii): As eM1 e Ne (see [26]), there exists q E N such that qe =	eje. Moreover,

E 93tE, and q = E1 () where E1 € P(M1 ,M) is the dual weight of E € E(M,N). 

Finally, q E Proj(N) as qq = E i (qqe) = Ei (eqqe) = E1 () = E1 () = q I 

The proof of the following lemma is heavily based on [8: Lemma 2.2].
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Lemma 3.2. Let N C M be an inclusion of von Neumann algebras and T a normal 
N-valued weight on M. The following statements are equivalent: 

(i) T is semifinite. 
(ii) There is x E (911T)+ such that s M(x) = 1; 

(iii) There is a sequence {p,} of orthogonal projections in 9JT such that > p , = 1. 

Proof. (i) = (ii): As the unit ball of M is metrizable in the strong topology [30: 
Proposition 2.7], there is a strongly dense sequence {x,} in the unit ball of (9YIT)+. 
Then

2-n	Xn 
Ill +T(x)II 

converges in norm to some x E M+. As T is normal, x E (931T)+. In fact, 

T(x) =	
T(x)	

e N. 
T(Xn)ll 

Finally, if p E Proj(M) is such that xp = 0, then 

o - >: 2"	Xn 

n=I	Ill	 T(Xn) ll 

which implies PX nP = 0 for all n, that is px a = 0, which implies p = 0, due to the 
density of {x}. 

(ii) = (iii): Set p,, := X[	1.) (x). Then p,, are mutually orthogonal projections in 
M and EnPn = s M(x ) = I. Finally, T(p) <(n + 1)T(xp) < T(x) E N+. 

(iii) = (i) is obvious I 

The following lemma is essentially, (11: Lemma 2.2] (which is only proved in the 
case N C M are factors). 

Lemma 3.3 (Push-down Lemma). Let N C M be an inclusion of von Neumann 
algebras and E E E(M, N). Then, for all x E 91j, we have eEi (ex) = ex. 

Proof. The same proof of [11: Lemma 2.2] works. Just observe that A = MeM is 
still weakly dense in M1 . Indeed, as A is a weakly-closed two-sided ideal in M1 , there 
is a central projection z E M1 such that zM1 = .4. Then z = 1 as (1 - z)e = 0, so that 
Z > sz(M 1 )(e) = 1 I 

We can now prove the main result of this section, namely that a basis {m}1j for 
NM made of elements in M can be chosen. 

Remark 3.4. Recall [27] that the following equivalent properties characterise a 
Pimsner-Popa basis: 

(i) E(mm,) = Sijqj E Proj(N) \ {0} and IiEI mem = 1. 
(ii) m!em i are mutually ortogonal projections in M1 , and (> meN)	R.
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In general, the sequence {rn 1 } is made of elements affiliated to M, as it is explained in 
127).

Theorem 3.5. Let N c M be an inclusion of properly infinite von Neumann 
algebras, and E E E(M, N). Then there exists a Pimsner-Popa basis for the left module 
NM made of elements of M. 

Proof. Let { p };E! be a family of orthogonal projections of M1 such that pi E 931E, 
and >iEJPi = 1, as in Lemma 3.2. Thanks to S Z(M,)(pi) sz( , ) (e) 1 and c being 
properly infinite, we can find a collection {vz}z E j C M1 of partial isometries such that 

= p,	and	, := v 1 v' <e, i E I. 

Hence v 1	evzpi E 9R E 1 and we take rn	Ei(v1) as a Pimsner-Popa basis. Indeed, 

m i is the push-down of v 1 , as v, = ev1 eEi (ev 1 ) = eEi (v) = em s . Furthermore, 

Pi = v i v = v i ev = mem 

and summing up we obtain E i rnern = 1. Moreover, we get 

E(rn 1 rn) = Ei(eE(mrn)) 

= Ei(ernrne) 

= Ei(ev1ve) 

= 6jEi(ej) 

= bij 

= 

and the theorem is proved I 
Proposition 3.6. Let N C M be an inclusion of von Neumann algebras. If 

{ m 1 }j C M is a Pimsner-Popa basis for N C M, then every x E M has the ex-
pansion

x = >E(xm)rnj	 (1) 
xEI 

where the last sum converges unconditionally relative to the topology generated by the 
separating family of seminorms {s, : p e (N.)+}, with s,(x) = o E(xx)'/2. 

Proof. Observe that rn	q1 m 1 . In fact, 

E((rn, - q j mj )(mj - q1m1)) 

= E(mm) - E(q 1 m 1 m) - E(mm,q,) + E(q1rn1rn,q,) 

=0 

and the claim follows by faithfulness of E. 
We now prove the convergence of (1) in the topology generated by the above semi-

norms. As pn := >IEA rnern / 1 in the strong operator topology when the finite 
subset A C I tends to the whole index set I, for x E M we have 

1(1 - pA)Ac(x e)II - 0,	that is	(ex(1 - pA)xe) -* 0
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for every normal semifinite faithful weight ;3 on M1 given by ç := oEoE1 ( E (N)+). 
Finally, we get 

(ex(1 — pn)xc)= oE(xx) - >çooE(E(xrri)E(mx)) 
EA 

= o E(xx) -	o E(E(xm)m1mE(mjx)) 
!,JEA 

o E((x X A)( X - x)) 

where XA := IIEA E(xm!)m i and we have applied m = qj rn j and E(mm) t5ijqj I 

Remark 3.7. Note that

IndE = > mmi E Z(M) 
IEI 

and the index is finite if and only if EiEI m,m, E Z(M). 

As a direct consequence of Theorem 3.5 we have the following 
Corollary 3.8. The self-dual completion NX of the left N-module NM is isomor-

phic to the ultraweak direct sum

N 	Nq3.

jEJ 

Proof. It follows by the above considerations and 125: Theorem 3.1211 

4. The canonical endomorphism in the semidiscrete and 
semicompact cases 

In this section we provide the announced conditions which are equivalent to the fact 
that an endomorphism is canonical. We treat only the semidiscrete and semicompact 
cases, that is the cases when the canonical endomorphism A is associated to an inclusion 
N C M such that E(N, A(M)) 54 0 or E(M, N) 54 0. These conditions allow us to extend 
the definition of a Q-system given in [19] to non-trivial examples of infinite index. 

Theorem 4.1 (Semidiscrete case). Let M be a properly infinite von Neumann 
algebra and A E End(M). Then the following statements are equivalent: 

(i) There is a von Neumann subalgebra N of M, with E(N, A(M)) 54 0, such that 
A is a canonical endomorphism for N C M. 

(ii) There are an isometry v E (id, A) and {m} C M such that ,rnvvrn 1 = 1 
and, setting N := (A(M), {rn 1 }), one has that xv = 0 for x € N implies x = 0. 

Moreover, if vmmv = 6 j q 1 with q, € Ptoj(A(M))\{O}, then {m,} is a Pimsner-
Popa basis for the inclusion )(M) C N. 

Proof. (i)	(ii): Let E E E(N, A(M)). Then from Proposition 2.3 it follows 
that there is an isometry v E M such that A(x)v = vx (x € M), A(v . v) = E and,
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finally, vv is Jones' projection for the inclusion A(M) C N. By Theorem 3.5 there are 
{rn,}IEJ C N such that 

	

>rnvvrni = 1	and	N = (A(M), {m}) 
iE I 

which can be shown as in the proof of 16: Proposition 6]. Finally, if x € N is such that 
xv = 0, then 0 = A(v*x*xv) = E(xx), which implies x = 0, as E is faithful. 

(ii) = (i): Let us set E := A(v v) € C(N, A(M)). Then E is faithful as E(p) = 0 
for some p € Proj(N) implies pv = 0, and therefore p = 0. We want to prove that 
A(M) C N C (N,vv) is the extension of N by A(M). Indeed, setting f := vv, we 
observe that E(x)f = fxf (x € N) so that s A(M)(f) = 1, from 5: Lemma 3.21(u)]. 
Finally,

SZ((N0.))(f) > sN'AM(f) = 1 

because, if p E Proj(N' A M) is such that pvv = 0, then 

P = p>mvVTn; = >rnpVVmi = 0. 

From Proposition 2.2 we conclude. 
Therefore, by Proposition 2.5, (N, vv * ) M and, by Proposition 2.4, A is a canon-

ical endomorphism for N C MI 

Theorem 4.2 (Semicompact case). Let M be a properly infinite von Neumann 
algebra and A € End(M). Then the following statements are equivalent: 

(1) There is a von Neumann subalgebra N of M with E(M, N) 54 0 such that A is 
a canonical endomorphism for N C M. 

(ii) There are an isometry v € (A, A 2 ) and {m 1 } C A(M) such that	m , vv*m j =


1, A(v)v = v2 and A(v)*v = vv, and such that A(x)v = 0 for x E M implies x = 0. 

Moreover, if vm Rmv = b ii qi for qj € Proj(N)\ {0}, then {m 1 } is a Pzmsner-Popa 
basis for the inclusion N C M. 

Proof. (i) (ii): Let E € E(M, N). Then from Proposition 2.3 it follows that 
thereis an isometry v € N such that A(x)v = vx (x € N), vA( . )v = E and, finally, vv 
is Jones' projection for the inclusion A(N) C A(M). Therefore A(A(x))v = vA(x) (x € 
M), that is  € (A, A 2 ). Further, A(v)v = v2 and A(v)v = vv are immediate. Besides, if 

	

x € M and A(x)v = 0, then A(x)vv	0 so that A(x) = 0 and x = 0 as vv is separating

for A(M). Finally, by Theorem 3.5 there are {m} C A(M) such that >1rri,vvm = 1. 

(ii) = (i): Let us set E := vA()v. Then, as in [19: Proposition 5.2], E € C(M,N) 
where N := E(M) is a von Neumann subalgebra of M. We want to show that E is 
faithful. So let x € M be such that E(xx) = 0. Then vA(x'x)v = 0, that is A(x)v = 0 
and x = 0, from the hypothesis. 

Let us observe that f := vv € N, as 

E(vv) = vA(v)A(v)'v = vvvv = vv.
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We want to prove that
A(N) C A(M) C (A(M),f) 

is the extension of A(M) by A(N), by using Proposition 2.2. At first, .S A(M)(f) = 1 
because, if A(p) E Proj(A(M)) is such that A(p)vv = 0, then p = 0. Besides 

SZ(((M),f))(f) 2 S(),,(f) = 1 

because if p E ProjA(M)' A N) is such that pvv = 0, then 

P pm1 vvm 1 =	mpvvm, = 0. 

Finally, observing that

F := A o E  A' E E(A(M), A(N)) 

is such that F(x)f = fxf (x E A(M)), we get the claim. Therefore, by Proposition 2.5, 
(A(M), f) N and, by Proposition 2.4, A is a canonical endomorphism for N C MI 

Remark 4.3. The above properties are also equivalent to the following one: 
(iii) There exists an isometry V E (A, A2 ) such that A(v)v = 0, A(v)'v = vv and 

S A(M)'AM(VV ) = SA(A(M)AM)( vv ) = 1 

as follows from [5: Proposition 6.1]. 

In the following sections we extend the notion of Q-system to semidiscrete and 
semicompact inclusions and analyse the Takesaki duality which naturally appears con-
sidering the Jones tunnel, and the canonical mirroring on it. As an application we have 
conditions on the canonical endomorphisrn which are equivalent to the fact that an inclu-
sion arises as a crossed product by a compact or discrete Woronowicz (or Kac) algebra. 
In the discrete case these conditions can be stated directly in terms of Q-systems. 

5. Duality for Q-systems 
Q-systems in the finite index case were introduced in [19] to consider the canonical en-
domorphism as a relevant mean to handle the problem of the actions of "quantum sym-
metries" on von Neumann algebras. This situation typically appears in low-dimensional 
Quantum Field Theory. Indeed, in the physical Minkowski space, an ordinary compact 
group acts on the algebra of fields, but, for low-dimensional theories, a braid group 
statistics appears, so a quantum symmetry is expected to act on the field algebra [20, 
21].

We analyse Q-systems in the (semidiscrete and semicompact) infinite index case 
and apply the results to depth 2 factor- subfactorinclusions, that is when compact or 
discrete Woronowicz algebras naturally appear [2]. This section extends [19: Section 61. 

Although some of the properties required in the following definition are unnecessary 
to characterise a canonical endomorphism A we prefer to define a Q-system such that 
the sequence {m} directly provides a Pimsner-Popa basis for the relevant inclusions.
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Definition 5.1. 
(i) A Q-system of semidiscrete type (semidiscrete Q-system for short) is a couple 

(M,A) where M is a properly infinite von Neumann algebra and A (A,v,{rn}lEJ) 
satisfies the properties given in Theorem 4.1. Namely, v e (id, A) is an isometry and 
{rn 1 } C M are such that 

> mvvm s = 1	and	vm1rnv &jqj 

with q1 E Proj(A(M)) \ {O}, and, setting N := (A(M), {m}), one has that xv 0 for 
x E N implies x = 0. 

(ii) A Q-system of .semicompact type (semicompact Q-system for short) is a couple 
(M, A) where M is a properly infinite von Neumann algebra and A := (A,v,{mg}j) 
satisfies the properties given in Theorem 4.2. Namely, v E (A, A') is an isometry such 
that A(v)v = v2 , A(v)v = vv, and {m 1 } C A(M) are such that 

m'vvim = 1	and	v*mirnv = 5ijq; 

with q1 E Proj(N) \ {O}, and A(x)v = 0 for x E M implies x = 0. 
As we have proved, A is the canonical endomorphism for an inclusion of von Neu-

mann algebras N C M. Contrary to what we did in (5], but in accordance with (11) we 
say that a properly infinite subalgebra N of a von Neumann algebra M is 

sernicompact if E(M, N) $ 0 
sernidiscrete if E(N', M') $ 0 

the last being equivalent to E(M1 ,M) $0 and to E(N,y(M)) $ 0, with -y a canonical 
endomorphism for N C M. Therefore, if we say that an inclusion N C M is a concrete 
Q-system, the two previous definitions coincide. 

We now deal with the irreducibility property of an inclusion N C M, which seems to 
be related to the structure of (idN , 7 1 N ), where -y is the canonical endomorphism of the 
inclusion (see [5, 161). The following result partially confirms the above considerations. 

Theorem 5.2. Let A C B be a semicompact inclusion of properly infinite von 
Neumann algebras. The following statements are equivalent: 

(i) A C B is irreducible, that is A' A B = Z(A). 
(ii) E(B, A) is a singleton. 

(iii) The Z(A)-module (idA ,yl A ) is cyclic. 

Proof. (i)	(ii) is a well-known result by Combes and Delaroche [1]. 
(iii) = (ii): Let v0 be a generator of the Z(A)-module (idA ,y1 A ), which must be a 

(multiple of an) isometry as follows from Proposition 2.3. Therefore, again by the same 
Proposition 2.3, E(B, A) must be a singleton. 

(ii) = (iii): Let s E (idA , Y I A ). Then ss E (idA,idA) Z(A) and we can restrict 
ourselves to the case when s = v = vp, where v E (zdA ,yI A ) is a partial isometry with 
P E Z(A) as domain projection and a subprojection of p as range projection. As by 
Proposition 2.3 there is an isometry vo E (zdA ,yI A ), we can construct w vp+ vop' 
which is an isometry. By the following Lemma 5.3 there is a z E Z(A) such that w = zv0, 
so that s = v = vp = zpvo, that is v0 is a generator I
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Lemma 5.3. Let A C B be properly infinite von Neumann algebras and assume 
that E(B, A) is a singleton. If V, w E (idA , -yIA) are isometries, then there is a unitary 
z E Z(A) such that v = zw. 

Proof. As v7(.)v,w7(.)w E C(B,A) E(B,A), because of the hypothesis, we 
get E := v*7(.)v = w*y(.)w . Let us prove that e := vv and f := ww are Jones' 
projections for the inclusion 'y(A) C -y(B). Indeed, setting 

E E(7(B),y(A)) 

we have F(x)e = exe (x E 7(B)) so that s(A)(e) = 1, and 

1z((_1(B),))(e) ? s(B)'AA(e) = S Z(A)( C ) = 1 

because, if p E Proj(Z(A)) is such that pe = 0, then p = 0, therefore from Proposition 
2.2 we conclude. Then (y(B), e) = A as follows from Proposition 2.5. Analogously, I is 
Jones' projections for the inclusion 7(A) C "y(B) and (y(B), f) = A. Therefore, by [14: 
Appendix A], I = e. Let us now consider 

vw = evw t e E eAe = 

that is, there exists z E A such that 

vw* = y(z)e = y(z)ww 

which implies v = y(z)w = wz and w*v = z. But we have also wv E Z(A), so that 
1 = vwz z t z, and z is a unitary operator in Z(A) I 

The above theorem suggests the following 

Definition 5.4. 

(i) A Q-system of semidiscrete type (M, A) is called irreducible if there is a unique 
• E (id, .X), up to multiplication by a unitary operator in Z(M). 

(ii) A Q-system of semicompact type (M, A) is called irreducible if there is a unique 
• E (idN, .XIN), up to multiplication by a unitary operator in Z(N). 

Hence in both cases the irreducibility condition on the Q-system means that a 
suitable inclusion in the Jones tower 

C y(M) C N C MC M 1 C M2 C . 

is irreducible. 
There is a natural notion of isomorphism between Q-systems, namely (M1 , A 1 ) and 

(M2 , A 2 ) are isomorphic if there is an isomorphism p : M1 - M2 such that .X 2 = 
oA 1 op', v2 = p(v i ) and m2 = (m 1 ). It is easy to see that a Q-system isomorphic 

to a semidiscrete one, is itself semidiscrete. Analogously for the semicompact case.
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Definition 5.5. 

(i) Q-systems of discrete type (M, A,) and (M, A 2 ) are inner conjugate if there is 
a unitary operator u e M such that A 2 = uA i ( . )u, v2 = uv 1 and m 2 , = urn1. 

(ii) Q-systems of compact type (M,A 1 ) and (M,A 2 ) are inner conjugate if there 
is a unitary operator u € M such that A 2 = uA i. ( . )u', v2 = uA i (u)v j u and m21 = 
uA 1 (u)rni 1u. 

Finally, Q-systems are cocycle equivalent if the first is isomorphic to an inner con-
jugate copy of the second. 

Theorem 5.6 (cfr. (19: Theorem 6.1].) Let M be a properly infinite von Neumann 
algebra. Then there is a bijective correspondence between (irreducible) semidiscrete sub-
algebras N of M and (irreducible) semidiscrete Q systems based on M. Conjugate 
inclusions correspond to cocycle equivalent Q-systems. The same statement holds if we 
replace semidiscrete with semicompact everywhere. 

Proof. Bijective correspondence follows from Theorems 4.1 and 4.2. Irreducibility 
assumption for a Q-system corresponds to irreducibility of the subalgebra by Theo-
rem 5.2. Finally, cocycle equivalence follows from the Radon-Nikodym property of the 
canonical endomorphism [15]I 

Even though it is not needed in the sequel, we now describe, for the sake of com-
pleteness, Takesaki duality in the context of Q-systems. 

Let (M,A,v, {m}) be a semidiscrete Q-system and N C M the corresponding 
subalgebra. Then A is a canonical endomorphism for N C M, that is A = adr, with 
r = JNJM. 

Definition 5.7. (A, A, , {ñi}) is called the dual Q-system, where M := rr 
the crossed product of M by A, A := adI'I jç, i3 := v and th, := m. 

Let (M,A,v,{m,}) be a semicompact Q-system and N C M the corresponding 
subalgebra. Then A is a canonical endomorphism for N C M, that is A = adl', with 
r = JNJM. 

Definition 5.8. (M,A,i3,{th}) is called the dual Q-system, where M := rr is 
the crossed product of M by A, A := adl'1 1ç1, := r* v r and th 1 := rmr. 

It is easy to see that the dual of a semidiscrete Q-system is semicompact and vicev-
ersa. 

In this context Takesaki duality holds, too. The bidual Q-system, that is the double 
crossed product, is obtained by shifting all the structure two steps upwards in Jones' 
tower.
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6. Actions of Woronowicz and Kac algebras 

The problem of understanding the structure of depth 2 irreducible inclusions of infinite 
factors has been recently considered by some authors [2,3,19]. In [19] only finite index 
inclusions are dealt with, whereas in [2,3] the general case is studied, and depth 2 
inclusions are characterised as being generated by a crossed product by means of a 
Woronowicz algebra. Some concrete computations in the semicompact case are also 
contained in [24] in view of possible applications in Physics. In this section we give a 
different characterisation of depth 2 irreducible (semicompact or semidiscrete) inclusions 
of infinite factors, and determine when the acting Woronowicz algebra is a Kac algebra. 

The following proposition, while being the crucial step in proving Theorem 6.2, 
could be considered as a version of Frobenius reciprocity in its own right. 

Proposition 6.1. Let p(M) C M be an irreducible endomorphic inclusion of infi-
nite factors and a E End(M). 

(i) Suppose that up >- id. Then a >.- . 
(ii) Suppose that pa >.- id. Then a >.- 5. 

Proof. (i): Let v E (id, up), and let u e M be an isometry such that 

UU = P := S (M)'AM(VV) < 1 

(as p is an infinite projection), so that uu*v = v, and set r	ua( . )u. Then r E

End(M), as it is easily shown. Set z := u'v, which is an isometry and satisfies 

Tp(x)z = u*ap(x)uu*v = uap(x)v = uvx = zx


so that z E (id, rp), that is rp >.- id. Besides s Tp(M)' AT ( M )(zz) = 1, as p(M)' A M = C. 
If we could prove that sT(M).AM(zz) = 1, by Proposition 7.1 we would have a >-

. So all that is left to prove is S T(M)AM(Zf ) = 1. 
First let us prove that (7,T) = u*(a , a)u. Indeed, a E (r, r) is equivalent to 

aua(x)u = u*a(x)ua (x E M), which implies 

uau t a(x)uu = uua(x)uau,	that is uaua(x) = a(x)uau 

as uu E (a, a). Setting b	uau, we get a = u*bu , with b E (a, o, ). Conversely, if

b  (a, a), we get 

u*bur ( x ) = u*buu*a(x)u = ua(x)bu = ua(x)uu&u = r(x)u*bu. 

Besides, if q E (r, r) is a projection such that qzz = 0, then q = u t fu, with f E (a, a). 
As q = qq implies ufu = u*.f*uufu , we can, substituting fuuf for f, consider 
f positive. Then qzz = 0 if and only if qz = 0, that is if fuuv 0. This implies 
vuiffuu*v = vfv = 0, which is equivalent to fvv* = 0, that is .s(f)vv* = 0. Recalling 

= S(üa)(VV), this implies s(f)uu* = 0, that is fuu = 0, and finally q = 0. 
(ii): The proof is the same as above if one looks at v E (id, pa) and takes p 

p_l(sp((M),AM)(vv*)) which is an infinite projection. Hence there exists an isometry 
u such that uu* = P. In this case r	ua(.)u gives rise to a conjugate of p with the 

isometry p(u*)v which intertwines id and pr 
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We are now ready to extend Frobenius reciprocity (in Longo's setting [191) to the 
semidiscrete and semicompact cases. 

Theorem 6.2. Let M be an infinite factor and p,i E Sect(M) be irreducible sec-
tors.

(i) (Semidiscrete case): Suppose that p5 >- id, ip >- id and a E Sect(M) is a sum 
of finite index sectors. Then for every 9 E Sect(M) we have 

with equal multiplicities. 
(ii) (Semicompact case): Suppose that 5p >.- id, ii >- id and 0 E Sect(M) is a sum 

of finite index sectors. Then for every a E Sect(M) we have 

th/>- p 

with equal multiplicities. 

Proof. It . is the same as in [19], making repeated use of Proposition 6.1 I 

Now we can apply the previous results to the duality for semidiscrete (or equally well 
semicompact) factor- subfactorinclusions of depth 2, that is when discrete and compact 
dual Woronowicz algebras (see 122]) alternately act on Jones' tower [2,3]. Moreover, 
we provide a condition on the canonical endomorphism for the above inclusion to be 
generated by the crossed product by a (discrete or compact) Kac algebra. 

Theorem 6.3. Let N C M be an irreducible inclusion of infinite factors. 
(a) Suppose that -y contains the identity sector. Then the following statements are 

equivalent: 
(1) N C M is depth 2. 
(ii) 72 d y for some d E NU {oo}. 
(iii) M is the crossed product of N by an outer action of a compact Woronowicz 

algebra. 
(b) Suppose that TIN contains the identity sector. Then the following statements 

are equivalent: 
(i) N C M is depth 2. 

(ii) 72 d . y for some d E NU too). 
(iii) M is the crossed product of N by an outer action of a discrete Woronowicz 

algebra. 

Proof. (i)	(ii): It is a consequence of the following Proposition 6.4. 
(i)	(iii): It is contained in [2, 3] I 

Proposition 6.4. Let N C M be an inclusion of infinite factors and y M - N 
the canonical endomorphism. Suppose that 7 contains the identity sector and consider 
the following statements:	...............	.	 . . .. .. 

(i) N C M is depth 2.
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(ii) .2	d . -y for some d E NU fool. 
(iii) There exists a sequence of finite index irreducible sectors { p }j C Sect(M) 

which is a basis for the -semiring generated by the { p } themselves, such that	= 
1 d(p 1 )pg. 

Then (i)	(ii) = (iii). 

Proof. Up to tensoring with an absorbing factor [181, we may assume that N = 
p(M) for some irreducible endomorphism p E End(M). We have v E (id, p5) c (p, p,öp) 
and (v) E (,	hence the inclusion is regular according to 12: Section 51. 

By [2: Proposition 6.3], condition (i) means that p5p d . p, whereas condition (ii) 
translates into p5p5 d pp. 

(i) = (ii): This follows by multiplying the relation p j5p d - p on the right by 5. 
(ii) =- (i): Note that if d E N, the proof is contained in 119: Lemma 6.3]. In the 

general case we may proceed as follows. 
Let us set a := pOp. Then a dpo - d id >- id. Therefore, by a repeated 

application of Proposition 6.1, we obtain a kp r, where k E N U fool and T p. 
We want to prove that k = d and r = 0. 

Suppose that T 54 0. Then, as pip kp e r, we have dp3 p5p5 kpj5 r. 
Therefore r 15 >- p. Then rp >- id and, by Proposition 6.1 applied to fi, r >- p which is 
absurd. Then i- = 0, so that Ic = d. 

(iii) . ( ii): Due to completeness we have 


	

P i P) = 3kNgj Pk	with	 = dd, 

with finite sum, because of finite index condition. It follows from Frobenius reciprocity 
that

	

Nlkpk -< PiPj	NijPi -< Pkp. 
Again by completeness we get

PkPj = 
where j -, 1(j) is the permutation relative to the conjugation, hence we have N/ = 

Finally we have

	

72 =	d1dNpk 
tjk 

	

=	dIdjN,()pk 
ijk 

	

=	d1dN,p 

	

k	ij 

	

=	d,dkd,pk 

	

k	j 

=dk(>d)pk


	

k	j 
=d - 

where dw >d(p)2 I
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We apply this result to Q-systems of semidiscrete type. 

Corollary 6.5. Let (M, A) be an irreducible semidiscrete Q-system such that M is 
an infinite factor and d. A. Then the dual Q-system (M, A) is the crossed product 
of (M, A) by an outer action of a discrete Woronowicz algebra. 

Proof. The irreducibility condition means that N'AM = Z(M) = C. The assertion 
now follows by the above considerations I 

We cannot give the result involving semicompact Q-systems. Even for actions of 
compact groups on factors we need additional conditions to assure that a crossed product 
of a factor by a prime action of a compact group is itself a factor (see [28: Section 211 
and [23: Section IV.3]). This problem seems to be directly related to the fact that the 
irreducibility condition for both semidiscrete and semicompact Q-systems is equivalent 
to the irreducibility of the same kind of inclusion in Jones tower, namely the one with 
the conditional expectation (see (5.2)), hence we cannot apply the result by Combes 
and Delaroche [1] to prove the dual statement in Theorem 5.6. 

As we said previously, we now show that property (iii) in Proposition 6.4 charac-
terises when a depth 2 factor- subfactor inclusion arises as the crossed product by a Kac 
algebra. 

Theorem 6.6. Let N C M be an irreducible inclusion of infinite factors. 
(a) The following statements are equivalent: 
(1) M is the crossed product of N by an outer action of a compact Kac algebra. 
(ii) There exists a sequence of finite index irreducible sectors { p .}ieJ C Sect(M) 

which is a basis for the . scmzrng generated by the {p} themselves, such that 7 = 
,d(p1 )p. 

(b) The following statements are equivalent: 
(i) M is the crossed product of N by an outer action of a discrete Kac algebra. 

(ii) There exists a sequence of finite index irreducible sectors { p i}zEf C Sect(N) 
which is a basis for the -semiring generated by the {p} themselves, such that TIN 
G31d(pj)pg. 

Proof. We only prove part (a), part (b) being analogous. 
(i) = (ii): Assume M is the crossed product of N by an outer action of a compact 

Kac algebra, which is isomorphic to 7(N)' A N [3). Then 7(M)' A M is a discrete Kac 
algebra isomorphic to 8(1), and d1 := dim(H i ) < oo [4). Finally, if E E E(N, 7(M)) 
is given by E:= 7(v . v), and E1 := JN o E' °)N E P(M, N) with 3N := adJN is the 
dual weight, it follows from [4) that E 1 I ( M ) , AM = di Tr1 , where Tr 1 is the canonical 
(unnormalized) trace on f3(71). Set T : E o E1 E P(M, 7(M)), let p' be the minimal 
central projections in 7(M)' AM, and v1 E M be isometries such that p 1 = v i v!, so that, 
with o := vy( . )v1 E End(M), we have and o(M)' A M B(N,). Then, by 
[7: Theorem 6.6 and Corollary 6.10], Pi E (7(M)' AM)Tfl9JIT, so that, by the following 
Lemma 6.7, we have

Ind(T,) = (Tpi 	= T(T(p1)p1)p1.
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As T(p1 ) = d? and 3M oT °3M = y' oTo 7 , sO that T(p1 ) = d, we get Ind(a,) 
Ind(T i ) = d'. Decomposing each a, in irreducible equivalent sectors a1	d1 p 1 , we get 
d = d(a,) = d 1 d(p,), so that d(p 1 ) = d1 , and therefore y	,d(p)p1. 

Finally, as Proposition 6.41(u) is true, we obtain ED 1 d1 dp 1 p	dy	EDddipi,

that is the irreducibles contained in p,p 3 are a subset of {pk}. Moreover, EDd,1i 

Gd1 p 1 , so that ,ö	P) for some j(i). All this shows that {pk} is a basis for the

*seminng generated by {Pk)- 

(ii) = (i): By Theorem 6.3, M = N x 0 21 where 21. is a compact Woronowicz algebra, 
which appears as 2t = -y(N)' A N. The dual algebra 21, which is a discrete Woronowicz 
algebra, is given by -y(M)' A M and is isomorphic to El,B(,), dim1	d(pi ). Let 
E E E(N, 7(M)) be the unique expectation and E1 E P(M, N) the dual weight, and 
consider T := E o E1 E P(M, N). It is enough to prove that UT = id (see [3]). Let 
{p } be the minimal central projections of y(M)' A M. Then, using [11: Proposition 
2.81, we obtain that EII(M)'AM E P( 1(M)' AM) and p1 e 9J1 E 1 . Therefore, using 
the following lemma 6.7 we can define T, E E(M,a1 (M)) where a, = d(p 1 )p,, and 
obtain Ind(T , ) = d(p i )4 , which means that T, is the minimal expectation. Therefore 
Tp Ia . (M)AM is a trace. As T I .T(M)'AM = >, T(pj)Tpj O ( M ) AM , it is a trace. The claim 
follows from [7: Corollary 6.10] I 

Lemma 6.7. Let A C B be an inclusion of von Neumann algebras, C E P(B, A), 
P E (A' A B)G fl Y)lc a non-zero projection in B, and set G P := G(x)G(p)'p (x E 
(B)). Then C,, E E(B,,,A,,) and (G,,)'(x) = G(G(p)x)p (x E (A,)). 

Proof. The proof is the same as [10: Proposition 1.4], with obvious modifications I 

We remark that Corollary 6.5 can be stated also in the case of Kac algebras, with 
obvious minor modification. 

7. Appendix 

Although we have already given a characterisation of the conjugate endomorphism (in 
the semidiscrete and semicompact cases) in [5], we give here a different one based on 
the methods of this paper. 

Proposition 7.1. Let M be a properly infinite von Neumann algebra and p, a E 
End(M). Then the following statements are equivalent: 

(i) E(M,p(M)) 54 0 and a 5. 
(ii) ap .- id and there is an isometry v E (id, up) such that xv = 0 for x E M 

implies x = 0. 
(iii) ap >.- id, with v e (1d, up) an isometry such that Sa(M)'AM(VV) = 1 and 

S ap(M)A(M)(VV)	1. 

Proof. (i)	(iii) is [5: Theorem 3.4]. 
(i) Z (ii): Let E E E(M,p(M)), consider the inclusion j5p(M) C ,O(M) and set 

F := p o E o 3' e E((M),p(M)). From Proposition 2.3 it follows that there are 
an isometry V E 15p(M) and a choice of a canonical endomorphism ' for the inclusion 
p(M) C (M) such that -y'(x)V = Vx (x E p(M)) and V* 7 1 (.)V = F.
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Set V := 15p(v) (v E M). Then ,5p(x)v = vx (x E M). Indeed, as = adrI(M) 
PPI(M) [16: Proposition 2.41 we get, for all x E M, 

,5p(,5p(x)v) = ,5p( 15p(x))V = V,5p(x) = ,p(vx) 

and the claim follows from the injectivity of pp. 
Besides E(x) = p(v5(x)v) (x e M). Indeed, 

,5p(v*j(x)v) = V5p(,5(x))V = F( 15(x)) = (E(x)) 

and the claim follows from the injectivity of fi. 
Therefore, from Proposition 2.3 it follows that FVVJT = r* p ( vv )r = is 

Jones' projection for the inclusion ,óp(M) C ,(M). Hence, if x E M is such that xv 0, 
then xvv* = 0 so that x = 0, as vv is separating for M. 

(ii) = (i): Let us set F(x) := ap(v*xv) (x e a(M)). Then F E E(a(M),ap(M)) 
as, if x E a(M) is such that F(xx) = 0, then ap(vxxv) = 0, that is xv = 0 so that 
X =0. 

Settingnowf := vv andL := (a(M),f), we want to show that ap(M) C a(M) CL 
is Jones' basic construction for the inclusion ap(M) C a(M), by using Proposition 2.2. 
So we must prove s(M)(f) = 1, which follows from [5: Lemma 3.2] and SZ(L)(f) = 1. 
But we have .s Z(L)(f) ^! Sg(M)'AM(f) = 1 as follows from [5: Lemma 3.1]. Therefore, 
by Proposition 2.5, (a(M),f) = M. 

Finally, to show that or is conjugate to p, set A := ap and observe that Proposition 
2.4 applied to A gives that A is a canonical endomorphism for N C M, hence p and a 
are conjugate I 
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