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Hyperbolic Functional-Differential Equations 
with Unbounded Delay 

Z. Kamont 

Abstract. The phase space-for quasilinear equations with unbounded delay is constructed. 
Carathéodory solutions of initial problems are investigated. A theorem on the existence, 
uniqueness and continuous dependence upon initial data is given. The method of bichar-
acteristics and integral inequalities are used. 
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1. Introduction 

For any metric spaces U and V we denote by C(U, V) the class of all continuous func-
tions defined on U and taking values in V. We will use vectorial inequalities with the 
understanding that the same inequalities hold between their corresponding components. 

Let
E = f—ro,Oj x [—r, +r] C 

where r0 E	:= [O,+oo) and r = (r i ,. . ,r) E R. Assume that a > 0, (t, x) = 
(t, x i , 	,x) E [0,a] x R n and z: [—ro,a] x R n -* R. We define afunction Z(t ,1 ) : E -+
R n by

z(j,)(r, s) = z(t + r, x + s)	((r, s) E E). 

For each (t, x) E [0, a] x R n the function Z(t,z) is the restriction of z to the set [t - r0 , t] X 
[x - r, x + r] and this restriction is shifted to the set E. Suppose that 

F: [0,a] x R n x C(E,R) x R' - R 

is a given function. In this time numerous papers were published concerning various 
problems for the equation

Dz(t, x) = F(t, x, Z(tz), D. z(t, x))

where Dz = (D 1 z,... , Di ,, z) and for adequate weakly coupled hyperbolic systems. 
The following questions were considered: functional-differential inequalities, uniqueness 
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of initial or initial-boundary value problems, difference-functional inequalities, approx-
imate solutions of initial or initial-boundary value problems, existence of classical or 
generalized solutions (see [1 - 3, 5 - 8, 10 - 15]). All these problems have the property 
that the set E is bounded. 

In the paper we start the investigation of first order partial functional-differential 
equations with unbounded delay. We give sufficient conditions for the existence and 
uniqueness of Carathéodory solutions of initial problems for quasilinear equations with 
unbounded delay. We consider functional-differential equations in a Banach space. The 
theory of ordinary functional-differential equations with unbounded delay is given in 
monographs [4, 9]. 

We formulate the problem. Let B be a Banach space with norm and D = 
(—,0] x [—r, +r] C lR' ft E R). The norm in R' will also be denoted by II II . For 
a function z : (-, b) x R  -+ B (b > 0) and for a point (t, x) E [0, b] x R n we define a 
function Z(t,x) : D - B by 

z(t)(T, s) = z(t + r, x + s)	((T, s) E D). 
The phase space X for equations with unbounded delay is a linear space, with norm 
II lix and consisting of functions mapping the set D into B. Let a > 0 be fixed and 
suppose that

f: [0,a] x R'1 x X - B
(—oo,0] x R T' - B 

are given functions. We consider the quasilinear equation 

Djz(t, x) +	60i (t, x, z( t ))	z(t, x) = f(t, x, Z(j))	 (1)

with the intial condition
z(t,x) = (t, x)	on (-00,0] x R i'.	 (2) 

We will deal with Carathéodory solutions of problem (1) - (1.2). A function ü : (—oo, b] x 
- B where 0 < b a is a solution of the above problem provided: 
(i) it is continuous on [0, b] x R' and the derivatives D t ü(t, x) and D1 ü(t, x) exist 

for almost all (t, x) E [0,b] x R'3. 
(ii) ü satisfies equation (1.1) almost everywhere on [0, b] x R n and condition (1.2) 

holds. 
We adopt the following notations. If z : (—oo, b] x IR" - B (0 < b a) is a function 

such that z is continuous on [0, b] x IR", then we put for (t, x) E [0, b] x 

ikii[o,t;z] = max {iiz(r,$)ii: (r, s) E [0,t] x [x - r,x + r]} 

iI Z li[o,t;) = sup { li z ( T , s)ii: (r, s) E [0, t] x R"} 
and

LPZIiø	
z(r s) - z(r )Ii 

;l = sup	
ii -	

: (r,$),(i-,$) E [0,t]x [x - r,x + i-] 
I 

The fundamental axioms assumed on X are the followings.
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Assumption H[X]. Suppose the following: 

1) (X, ii lix) is a Bariach space. 
2) If z : (—oo,b] x R n — B (0 < b	a) is a function such that Z(ox) E X for

x E R n and z is continuous on [0,b] x R'1 , then Z(t,x) E X for (t, x) E (0, b] x R  and 

(i) for (t, x) E [0, b] x Rn we have ll Z(Lz)liX 15 K 1I Z 11[o,t;z] + L ii z (o1)llx where 
K, L E R+ are constant independent on z 

(ii) the function (t, x) —+ Z(t ,1 ) is continuous on [0, b] x RTh. 

3) The linear subspace Xj. C X is such that 

(i) XL endowed with the norm II IIXL is a Banach space 
(ii) if z : (—oo, b] x Rn — B (0 < b a) is a function such that Z(o,x) E XL 

for x E R', z is continuous on [0, b] x IR'1 and z(t,.) : R' — B satisfies the Lipschitz 
condition with a constant independent on t (i E [0, b]), then 

(a) Z(t,x) E XL for (t, x) E (0, b) X 

() for (t, x) E [0,b] x Rn we have 

ll z ( t,x)llxL	K (ll z lliotxi + Lip z 110,t;z1) + Lollz(o,z)llxL 

where K0 , L0 E IR+ are constants independent on z. 

Examples of phase spaces are given in Section 4. 

Let us denote by L([a,/3],R) ([a,13) C R) the class of functions 

= {,z: [a,$] —p R: y integrable on 

Further, we will use the symbol ® to denote the set of functions 

= {i : [0, a) x	.'	
-y(i,) is non-decreasing for a.a. t E [0, a) 

(.,r)EL([0,a],R) for all rER+	}. 

Further, write 

where PC E R+.

X[c] = {w E X: lI w lIx	PC} 

XL[ K] = { w E XL : IIWIIXL
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2. Bicharacteristics of functional-differential equations 

We start with assumptions on the initial function 'p. 

Assumption H 0 . Suppose that 'p: (—,O] x R -+ B and 
(i) (O,x) E XL for x E R' 

(ii) there are L,L E R. such that II 'p(O,x)JI < L for x E Rn and II(0r) — 'p(O ±)IIX 
L II x -	for x,± E R'. 

Assumption H[]. Suppose the following: 
1) The function (,x,w) : [0, a] ^ R n is measurable for (x, w) E RTI x X and 

R x 	-* R'2 is continuous for almost all t E [0, a]. 
2) There exist a, 0 E 0 such that II( t , x , w )II < a(t,,) for (x, w) e R" x X[K] 

almost everywhere on [0, a] and 

X , w) -	, toll	(t, ) [lix - : Il + [[w - 'lIx]	(3) 

for (x,w),(2,ü,) E R n x XL [r.] almost everywhere on (0, a]. 

Suppose that 'p : (-00,0] x R n - B and z) E Xi. for x E ll". Let c e [0,a], 
d = (do, d i ) E R . and w E L([0,a],R+). The symbol Y .[w , d] denotes the function 
class

Y ,[w , d] = 

z(t,x) = 'p(t,x) on (-00,0] x 

ll z ( t , x )Il < do on [0,c] x 

ll z ( t , x) - z@,±)Jl < f W(7) d7 + dill x - ±11 

for (t,x),(f,±) E [0,c] x R'. 

I z (-00,c] x	-* B

For the above 'p and for z E Y . [w , dI consider the Cauchy problem 

71( 7 ) = LO (T, 77 (7), Z(T,,())) 

I.
	

(4) 

where (t, x) E [0, c] x R'. We consider Carathéodory solutions of problem (4). Denote 
by g[z]( . , t, x) the solution of the above problem. The function g[z] is the bicharacteristic 
of equation (1) corresponding to z E 

Let L = [0, c) x [0,c] x [0,c]. For 'p satisfying Assumption H 0 define 

il'PII(X,00) = sup { iIY ( o,x ) lIx : x E R"}. 

Lemma 2.1. Suppose that Assumptions H[X] and H[] are satisfied and
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1) the functions	: (—oo,O] x R'1 —. B satisfy Assumption H0 

2) c 	[0, a], z E Yc.c,[w,d] and z E 

Thenthe solutions g[z](.,t,x) and g[z](.,t,x) are defined on [0, c] and they are unique. 
Moreover, we have the estimates on 

g[z](r, t, x) - g[z](r, , ) II 

[Ix _±II+Jk)d]cxp [I'°H]	
(5) 

and

II g [ z ]( T , t, x) - g[](7- , t, x) 
lr	 I	r

	 lfl(, ?Co) [KIIz - Z[oe;n] + M II — Il(X,)] d exp	no) d 
	

(6)

i 

where
d = 1 + Kd0 + ML 

= Kd0 + M IIII(x 
tco = Ko(do + d 1 ) + L 0 sup {Iko,Z)IIxL X  R"}. 

Proof. Suppose that (, q), (, i) E (0, c] x R" and a function i : (—oo, c] x	- B

is defined by
(7, S) = z(T,s + — i)	((T, s) E (—,0] x 

Then	= Z(). It follows from Assumptions HEX] and H 0 that 

	

II z(,,,) - Z(j)IIX = IK z - )()I(x	(Kdo + ML) IIi — 

The existence and uniqueness of the solutions of problem (4) follows from classical 
theorems. On this purpose, note that the right-hand side of the differential system 
satisfies the Carathéodory assumptions, and the Lipschitz condition 

110( l , 17,z(,,)) - (r, 77, Z(r , j)	d8(1, ko) IIi - II 

holds on [0,c] x R'1 . The function g[z](,t,x) satisfies the integral equation 

T 

g[z](r, t, x) = x + J (e, g[z](, t, x), Z(,g[z](e,i,z))) d 

For (r,t,x),(r,t,) E i we have

k(,9( z l( Ttz )) 'IX 7) 

	

Z(r,g(zl(r,j,z)) IIXL 	}	
(
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and

	

IIZ(r,g[zl(r,t,x)) - Z(r,g[z)(r,1,))	(Kd + ML)Jjg[z](r, t, x) - g[zJ(r, , ±).	(8) 
It follows from Assumption HEX] and from (7) - (8) that the integral inequality 

g[z](r, i, x) - g[z](r, 1,T)II 

fix - ii 
+	

+ a Jfl(eo) jg[z](e,i,x) - 

is sastisfied. Now we obtain (5) by the Gronwall inequality. 
For z E Y . ]w , dI and z E Y.w,d} we have the estimate 

I	 -	, g[)(,i,z)) II 

	

(Kdi + ML) g[z)(, t, x) - g[zJ(, t, x)	 (9) 
+ K IJ z - zII lo,;IR l + M II p - lI(x). 

It follows from Assumption H[X] and from (9) that the integral inequality 
g[--](r, t, x) - g[1](r, t, X) JI 

- Z II[o,;Rn ] + MII 

+	fl(, io)Jjg[z](, t, x) - g E1(e, t, x)IId 

is satisfied. Now we obtain (6) by the Gronwall inequality. This completes the proof of 
the lemma I 

3. Existence and uniqueness of solutions 
Now we construct an integral operator corresponding to problem (1) - (2). Suppose that 
the function p satisfies Assumption H 0 , c E (0,a], z E Y[w,d] and g[z](.,t,x) is the 
bicharacteristic corresponding to z. Let us define the operator Uç, for all z E d] 
be the formulas 

Uz(t, x) = (o, g[z](0, t, x)) + J f(r, g[z](r,i, x), Z(r,g[](,1))) dT	(10) 
0 

where (t, x) E (0,c] x R' and 

U,z(t,x) = ,(t, x)	on (—oo,0] x R'.	 (11) 
Remark 3.1. The operator U is obtained by integration of equation (1) along 

bicharacteristics. 
Now we give sufficient conditions for the solvability of the equation z = U,z on
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Assumption H[f]. Suppose the following: 
1) The function f( . ,x,w) : 10,01 - B is measurable for (x, w) E R' x X and 

f(t,.) :	x X - B is continuous for almost alit E [0,a]. 
2) For (x, w) e R n x XN and for almost all t E [0, a] we have 

Ilf( t , x, w) 11 < a(t, ic).	 (12) 

3) For (x,w),(±,t1) E R n x XL [n] and for almost all t E [0, a] we have 

lIf( t , x, w) - f(t, ±, t)ll <f3(t, c) [li x -	+ 11 w - wllx]. 

Remark 3.2. We prove a theorem on the existence and uniqueness of solutions of 
problem (1) - (2). For simplicity of notations, we have assumed the same estimation for 

and for f. We have assumed also the Lipschitz condition for these functions with the 
same coefficient. 

Lemma 3.3. Suppose that Assumptions H[X], H 0 , Hip] and H[f] are satisfied. 
Then there are (do, d i ) = d E R, C E (0,a] and w E L([0,cl,R+) such that U 
Y . [w , d] - Y.1w,di. 

Proof. Suppose that the constants (d0 , d 1 ) = d and c E (0,a] and the function 
E L([0,c],R+) satisfy the conditions 

do>L+j a(r,k)dr, 

d 1 > I' 

w(t) ^! (i +r)(t,) 

where

rc= [L+JJ(rK0)dr] exP[df(r no) dr]	 (13) 

Suppose that z E Yc ,fw, d]. Then we have 

Il Uz( t , x )ll	L + J a(T, )dr <d0	on 10, c] x R'.	(14) 

If (t,x),(l,±) e 10, c] x R", then using Lemma 2.1 and (10) we obtain 

U ,,z(t,x) - U,z(,)II	 - 

:5 11V (0 gIzJ(0, t, x)) - (0 , 9 z (0 1 i l )) 11+	a(r, ) dr
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+ fo("  K0) [llgzl(r, t, x ) — g[z](r, , 2)jJ +I I Z(r,g[z](r,t,z)) — Z(r,g[z](r,i,±)) lix] 

Fc	

+Ia(Tk)dTL 
Thus we see that

	

II Uz ( t , x ) — Uz()ll 5 d1 x — ill + f(r)dT.	 (15) 

It follows from (14) and (15) that U,z e Y.[i,d] which completes the proof of the 
lemma U 

Next we will show that there exists exactly one solution of problem (1) - (2). The 
solution is local with respect to t. 

Theorem 3.4. Suppose that Assumptions H IX I, H 0 , H[J and H[fJ are satisfied. 
Then there are (do,d 1 ) = d E R, c E (0, a] and w E L([O,c],R) such that problem 
(1) — (2) has exactly one solution u E 

If : (—,O] x R n —* B satisfies Assumption H 0 and ü E Y.[w,d] is a solution of 
equation (1) with the initial condition z = yo on (—oo,O] x R', then there is A c E 
such that

lu — Ü IlFo,i;Rn)	Ac [Ik — ll ( X,00 ) + sup lk( 0 , y)	(o, )ll]	(16)
y 

where t E [O,c]. 

Proof. Lemma 3.3 shows that there are (d0 , d 1 ) = d, c E (0, a) and w E L([0, c], R+) 
such that Uç, Y.[-,d] —* Y [w , d] . Write 

A c = K(1 

where 1' is given by (13). Let c E (0, a] be such a constant that A C. < 1. Now we prove 
that U is a contraction on	d]. If z, i E	d], then 

lUz(t,x) — Up(t,x)Il < L g[z](0,t,x) — 

+ f fl( r;o) {ilgz(T, t, x) — g[](r, t, x)l 

+ lk(r,g(z](r,t,r)) — Z(rg(:](rtr)) 
X] 

dT. 

The estimate 

I Z(r,g[zJ(r,t,x)) — Z(rg[zJ(rz)) lix 
(Kd 1 + ML) g[zJ(r, t, x) — g[](r, t, x )ll + K II z — ZII[O,r;Rn]
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and Lemma 2.1 imply 

PI Uz ( t , x ) - U(t, x)M <K(1 + r) / 0( 7- , K , o)ll z - zll[or;n)dT 

for all (t, x) € [O, c] x R", and consequently 
- Ull1o,c;n]	cIl z - ZIl[O,c;i!nl. 

By the Banach fixed point theorem there exists a unique solution u €	of the
equation z = Uz. 

Now we prove that u is a solution of (1). We have proved that 

u(t, x) = (O, g[u](0, t, x)) + / f(r, g[u)(r, t, x), U(,2[U](T,i,)))dr	(17) 

on [0, c] x R'. For given x € R'3 let us put ij = g[u](0, t, x). It follows that g[uj(r, t, x) = 
g[u](r,0,ri) for T € [0,c] and that x = g[u[(t,0,). The relations i = g[u](O,t,x) and 
X = g[u](t,0,ii) are equivalent for x, T7 € IR". It follows from (17) that 

(t, g[u)(t, 0, )) = (0, ) + / f(T ) 9[u](-, 0, ), U(r,g[u,O,)))dT	(18) 

where (t, 77) € [0,c] x R". By differentiating (18) with respect to t and by using the 
transformation i = g[u](0,i,x) which preserves sets of measure zero, we obtain that 
u satisfies equation (1) for almost all (t, x) E [0, c] x R'. It follows from (11) that u 
satisfies also condition (2). 

Now we prove relation (16). If u = Uu and ü = Uü, then 
u ( t , x) - u(t, x)M 

< sup I(0, y) - ç(0, y ) II + L g[u](0, t, x) - g[u](0, t, x) JI 
Y ER-

+ j fl(r, KO) [ g[uj(r, t, x) - g[ul(r, t, x) 

+ K 1ju	ÜlI[o,r;nl + M[[y - ll(X,00)}dT 

where (t, x) € [0,c] x R". Put 

A c = (1 + rc) M Js(rKo) dr	and	7(t) = K(1 + r)f3(t,co). 

Then we get the integral inequality 

ll -

sup	(0,y) - (0 , y ) M + A,: j1 - ll(X) + J(r )ll u - Üll[Or;RnldT 
yEI1" 

for all t€ [0,c]. It follows from the Gronwall inequality that we have estimate (16) for 
= exp[ f y(r) dT]. This completes the proof of the theorem I
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4. Phase spaces 
We give examples of spaces X satisfying Assumption H[X]. 

Example 4.1. Let X be the class of all function w (—, 0] x [—r, +r] —+ B which 
are uniformly continuous and bounded on (—,O] x [ — r, +r]. For w  X we write 

iwIix = sup {iI w (r , s i : ( 1 , S) E (—oo,0] x [_r,+r]}. 

Let XL C X denote the set of all w E X such that 

WIL = SUP I 1iW(7-) I	' s) : 
(r, s), (r, ) E (—oo, 0] x [ —r, +r)} <+.	( 19) 

Write iI W iiXL	iI w iix + iwiL where w E XL. Then Assumption HEX] is satisfied. 
Example 4.2. Let X be the class of all functions w: (—c,o, 01 x [ — r, +r] -4 B such 

that
(i) w is continuous and bounded on (—, 0] x [ — r, +r] 

(ii) the limit limj....._, w(t, x) exists uniformly with respect to x E [—r, +T.]. 
Let

iiwiix = sup {iiw(r,$)ii: ( T , s) E (—oc,0] x [_r,+r]}. 

Let XL C X denote the class of all w e X such that the Lipschitz condition (19) is 
satisfied. Write I1 W 11XL = ii w iix + I W IL where w E XL . Then Assumption HEX] is 
satisfied. 

Example 4.3. Let -y : (-00,0] — (O,+00) be a continuous function. Assume 
also that -y is non-increasing on (—co,0]. Let X be the space of continuous functions 
w : (—oo,0] x [—r,+r] — B for which 

iiw(r,x) lini	= 0	(x E [—r, +r]). T—oo 7(r) 

Put

iiwiix = sup ii w ( r , s)Ii . (7, S) E (—oo,0] x [—r, +r] { 7(T)	 I - 
Denote by XL C X the set of all w E X such that 

1 v47 L — SUP { ii w ( r , s) — w(r, )ii (r,$),(r,) E (-00,0] x [—r, +r] <+00. 7( T )ii S — . Ii 

For w E Xi.. put ii W ii X L = il w ilx + i wk,t . Then Assumption HEX] is satisfied. 
Example 4.4. Let S e 1R and p > 1 be fixed. Denote by X the class of all 

functions w (-00,0) x [—r, +r] — B such that 
(i) w is continuous on [-5,0] x [ — r, +r] 

(ii) for x E [—r, +r] we have f	ii w ( r, x ii dr, 	< +oo
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(iii) w(t, .) [—r, +rj - B is continuous for t E (—no, —6]. 
Write

Iwlix =Sup { II z (r , s )II : (r, s) E (-6,0) x (—r, +rJ } 

-  
+ sup I ( I II w (r	

I/p
xlIdr)	: x E [—r, +r)}. 

Let Xj. C X be the set of functions w E X such that the Lipschitz condition (19) is 
satisfied. Write I I W IIX L = lI w lix + IwIL where w E XL . Then Assumption H(X] is 
satisfied. 

Remark 4.5. Differential equations with a deviated argument and differential-
integral equations can be obtained from equation (1) by specializing operators o and 
1.

Remark 4.6. It is important in our considerations that we have assumed the Lip-
schitz condition for given functions on some special function spaces. More precisely, we 
have assumed that the functions (t,.) and f(t,.) satisfy the Lipschitz condition on the 
space R'x XL for almost all t E 10, a], and the condition is local with respect to the 
functional variable. 

Let us consider simplest assumption on o and f. Suppose that there is P E R+ such 
that for almost all t E [0,a] we have 

II( t , x, w) - (i, ±, th)I	P [1k -.ill + l lw - tiiIlx]	 (20) 
x, w) - f(i, ,	!^ P [II x - ill + llw - th llx]	 (21) 

where (x,w),(±,üi) E R n x X. Of course, our results are true if we assume (20), (21) 
instead of (3), (12). 

Now we show that formulations (3), (12) are important. We show that there is a 
class of quasilinear equations satisfying (3), (12) but not satisfying (20), (21). Let X 
and XL be the spaces given in Example 4.1. Consider the equation with a deviated 
argument 

Dz(t, x) +	j(i, x, z(o(i), (t, x)))D1 z(t, x)	j(t, x, z(o(t), (t, x)))	(22) 

where

f: [0,a] x	x B - B 

tbo : [0,a] - (—oo,a] 

We assume that (t)	t and —r	(t, x) - x	+r for (t, x) E 10, a] x R'. We get
(22) by putting in (1)

'0(t, X, w) = (t ' X, w(io(t) - t, (t, x) - 

f(t, x, w) = j(t, x, w(77o(t) - i, ('(t, x) .- x)).
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From now we consider the function p only. Suppose that there are C, C e R+ such that 

X , () - ( t, 5, Q1	[li z - 2 11 + J( - ll] 
( t , x) - 0( i , 2 )11 :5 0 11  - 

It is evident that for (x,w),(5,th) E R x XL[JC] and for almost all t e [0,a] we have 

llo(t, X , W ) —e(t,5,)ll	C[i + '( i + O)J li x - ± 11 + C 11 w - llx. 

Then condition (3) is satisfied. 
We see at once the the function g(t,.) does not satisfy the global Lipschitz condition 

(20) for (x,w),(±,th) E R x X. Similar consideration apply to f. 
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