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Hyperbolic Functional-Differential Equations
with Unbounded Delay

Z. Kamont

Abstract. The phase space.for quasilinear equations with unbounded delay is constructed.
Carathéodory solutions of initial problems are investigated. A theorem on the existence,
uniqueness and continuous dependence upon initial data is given. The method of bichar-
acteristics and integral inequalities are used. '
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1. Introduction

For any metric spaces U and V we denote by C(U, V) the class of all continuous func-
tions defined on U and taking values in V. We will use vectorial inequalities with the
understanding that the same inequalities hold between their corresponding components.
Let
E = [-79,0] x [-r, +7] C R!*"

where rg € R4 := [0,+00) and 7 = (r,.:.,rn) € R}. Assume that a > 0, (¢,z) =
(¢,Z1,--.,2Zn) € [0,a] x R™ and z : [-rg,a] x R® — R. We define a function 2z, ,y: E —
R" by

2(,0)(1,8) = z(t + 7,z +5) ((r,s) € E).

For each (t,z) € [0,a] x R™ the function z(, ;) is the restriction of z to the set [t —ro, ] x
[z — r,z + r] and this restriction is shifted to the set E. Suppose that

F:[0,a] x R® x C(E,R) x R” - R

is a given function. In this time numerous papers were published concerning various
problems for the equation

Dyz(t,z) = F(t,z,z(,,,), D, 2(t, :z:))

where D;z = (D;,2,...,D;,z) and for adequate weakly coupled hyperbolic systems.
The following questions were considered: functional-differential inequalities, uniqueness
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of initial or initial-boundary value problems, difference-functional inequalities, approx-
imate solutions of initial or initial-boundary value problems, existence of classical or
generalized solutions (see [1 - 3, 5 - 8, 10 - 15]). All these problems have the property
that the set E is bounded.

In the paper we start the investigation of first order partial functional-differential
equations with unbounded delay. We give sufficient conditions for the existence and
uniqueness of Carathéodory solutions of initial problems for quasilinear equations with
unbounded delay. We consider functional-differential equations in a Banach space. The
theory of ordinary functional-differential equations with unbounded delay is given in
monographs [4, 9].

We formulate the problem. Let B be a Banach space with norm || - || and D =
(—=00,0] x [=r,4+7r] CR'"*™ (r € R}). The norm in R" will also be denoted by || - ||. For
a function 2z : (—oo,b] x R* - B (b > 0) and for a point (¢,z) € [0,] x R™ we deﬁne a
function z(; ;) : D — B by

2,5y (Ty8) = z(t + T,z + s) ({(r,s) € D).

The phase space X for equations with unbounded delay is a linear space, with norm
|l - llx and consisting of functions mapping the set D into B. Let a > 0 be fixed and
suppose that

e=(o1,---,0n): [0,a] xR" x X - R"

f:00,a xR*x X - B
‘©w:(—00,0] x R" = B

are given functions. We consider the quasilinear equation

D.z(t,z) + Z 0i(t, 2, 2(4,5)) Dz, 2(8, 2) = f(t, 7, 2(4,2)) - (1)

with the intial condition
z(t,z) = p(t,z) on (—o00,0] x R™. (2)

We will deal with Carathéodory solutions of problem (1) - (1.2). A function @ : (—o0, 4] x
R"™ — B where 0 < b < a is a solution of the above problem provided:

(i) @ is continuous on (0,5} x R™ and the derivatives D,u(t,z) and D,u(t,z) exist
for almost all (¢,z) € [0,5] x R™.

(ii) @ satisfies equation (1.1) almost everywhere on [0,b] x R™ and condition (1.2)

holds.

We adopt the following notations. If z : (—o0o0,b] x R® = B (0 < b < a) is a function
such that 2 is continuous on [0, 5} x R", then we put for (¢,z) € [0,5] x R®

lzllo i) = max {llz(r, )l : (7,5) € [0,4] x [z =,z + 7]}
lzllo cn) = sup {llz(7, )l : (7,5) € [0,¢] x R"}
and .
L‘pzl[o 4o = SU p{ llz(, lT) zl(IT,S)“ (1) (1, 8) € [0,t] x [z 7z + r]} .

The fundamental axioms assumed on X are the followings.




Hyperbolic Functional-Differential Equations 99

Assumption H[X]. Suppose the following:
1) (X, - ||x) is a Banach space.

2) If z:(-00,b] x R® - B (0 < b < a) is a function such that zy ) € X for
z € R" and 2 is continuous on [0,b] x R™, then 2(; ;) € X for (t,z) € (0,5 x R™ and

(1) for (t,z) € [0,5 x R™ we have |lz(y,)llx < Kllzlljo,5;z) + Ll2(0,2)llx where
K,L € R; are constant independent on z

(ii) the function (t,z) — z(; ;) is continuous on [0, 8] x R".
3) The linear subspace X C X is such that
(i) X1 endowed with the norm | - || x, is 2 Banach space

(i) if 2 : (—00,8] x R® = B (0 < b < a) is a function such that z( ;) € XL
for £ € R™, 2z is continuous on [0,b] x R™ and 2(¢,-) : R® — B satisfies the Lipschitz
condition with a constant independent on t (¢ € [0, 8]), then

(a) z(1,2) € X for (t,z) € (0,5] x R™
(B) for (t,z) € [0,b] x R™ we have

Nzl x2 < Ko(llzlljo,e5z) + Lip 2ljo,e;21) + Lollz(o,)ll x.

where Ky, Lo € R, are constants independent on z.
Examples of phase spaces are given in Section 4.

Let us denote by L([a, 8],R) ([, 8] C R) the class of functions
L([a,B],R) = {p : [a, ) = R : p integrable on [a,ﬂ]}.

Further, we will use the symbol © to denote the set of functions

O={7:[0,a]xR+—»R+

7(t,-) is non-decreasing for a.a. t € [0, a]
(-, 7) € L([0,a],R4) for all T € Ry '

Further, write
X[x] = {we X : |lwlx < «}
Xolw] = {w e X1 : fwllx, < x}

where x € R4.
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2. Bicharacteristics of functional-differential equations

We start with assumptions on the initial function ¢.

Assumptioh Hj. Suppose that ¢ : (—00,0] x R — B and

(i) v(0,z) € X, for z € R™

(ii) there are L, L € Ry such that llo(0, z)|| < L for z € R™ and e.2) —wo.nllx <
L)z - z|| for z,z € R™.

Assumption H[g]. Suppose the following:

1) The function o(+,z,w) : [0,¢] — R" is measurable for (z,w) € R® x X and
o(t,-) : R® x X — R™ is continuous for almost all t € [0, a].

2) There exist a,8 € © such that [lo(t,z,w)|| < a(t, &) for (z,w) € R® x X[x]
almost everywhere on [0, a] and

llo(t,z,w) — olt, 2,)|| < B(t,x)[llz - Z|| + f|w — w]|x] (3)

for (z,w),(Z,w) € R™ x X[«] almost everywhere on [0; a].

Suppose that ¢ : (—00,0] x R™ — B and ¢ ;) € X for z € R™. Let ¢ € [0,a],
d = (do,d,) € R} and w € L([0,a],R4). The symbol Y, ,[w,d] denotes the function
class

YC.SD[“‘J’ d] =

v

2(t,z) = ¢(t,z) on (-o0,0] x R"

l2(t,z)|| < do on [0,c} x R™
{z:(—o00,c] x R" = B ;
l2(t,z) — 2(F, 2)]| < 1/{ w(r)dr’ +d||z -z

\ for (t,z),(f,z) € [0,c] x R™.

For the above ¢ and for 2 € Y ,[w, d] consider the Cauchy problem

(4)

7'(r) = o(r,1(7), 2(r,n(ryy) }
n(t)=z

where (t,z) € [0,c] x R". We consider Carathéodory solutions of problem (4). Denote
by g[2](-,t, z) the solution of the above problem. The function g[z] is the bicharacteristic
of equation (1) corresponding to z € Y. ,[w, d].

Let A, =[0,¢] x [0,¢] x [0,c]. For ¢ satisfying Assumption Hy define

lell(x.00) = sup {le(o,n)llx : = € R™}.

Lemma 2.1. Suppose that Assumptions H[{X| and H(g| are satisfied and
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1) the functions ¢, % : (~00,0] x R™ — B satisfy Assumption Hy
2) c€[0,q], z € Y plw,d] and 7z € Y, p|w,d].

Thensthe solutions g[2](-,t,z) and g[Z](-,t,z) are defined on (0,c] and they are unique.
Moreover, we have the estimates on A,

”g[Z](T’ t,z) — glef(r, {ri)“ <

[Hx—ill + /G(E,R)di } exp [J /ﬂ(f,no)df } ©

and
llglz)(r,t, 2) — gl2)(r, t,2)|| <

6
/ B(E, o) [z = o e + Ml - <P||(Xoo)]d§exp[ / ﬂ(émo)dé} ©

where

d=1+4+Kdo+ ML
& = Kdo+ M |l¢ll(x,00)
Ko = A’O(d() + d]) + Lo sup{”tp(o'z)”xL LT € Rn}

Proof. Suppose that (£,7),(€,7) € [0,¢] x R® and a function z : (—o0,¢] xR™ = B
is defined by
2(T75)=2(7)3+'_’—U) ((Tls)e (—00’0] X lR")

Then Z¢ ) = 2(¢,5)- It follows from Assumptions H[X] and Hj that

llz(e,m — 2e.mllx = I1(z = Z)emllx < (Kdo + ML) |ln —al|.

The existence and uniqueness of the solutions of problem (4) follows from classical
theorems. On this purpose, note that the right-hand side of the differential system
satisfies the Carathéodory assumptions, and the Lipschitz condition

||0(Ta 7, Z(T.n)) - Q(Tx 7, z(r,ﬁ)“ S Jﬁ(T, KO) ”7’ - 7_7"

holds on [0, ¢] x R™. The function g[z](-,t, z) satisfies the integral equation

T

g[Z](T,t,l‘) =z+ / g({,g[z]({,t,x), 2((.9[2]((,(.:))) d£

t
For (T,t,I),(T, {15) € Ac we have

Hz(r.g{:](r.t.z))ux <k }
"‘Z(r.g[z)(r,gz))I"\.L < Ko

()
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and
l2¢rgleirt,2) = Z(rglelrion |l < (Kdy + ML)||gl2)(7,t,z) - gl2](r, £, 2)|[.  (8)
It follows from Assumption H[X] and from (7) - (8) that the integral inequality
lglz)(7,t, 2) — gl2](7,E, 2)||
i

Sz -zl + /G(E,E)df +d /ﬂ(ﬁ,ﬂo)“g[Z](f,i,x) - gl2I(¢, 1, )||d€

is sastisfied. Now we obtain (5) by the Gronwall inequality.
For z € Y. p|w,d] and z € Y. y[w, d] we have the estimate

l2ce.sterce.e.n = Zeataienonllx
< (Kdy+ ML)|lg[2)(¢,t, 2) - g[2)(€, 8,0 (9)
+ Kz = 2|l0,ern) + M [l — ll(x 00)-
It follows from Assumption H[X] and from (9) that the integral inequality

”g[z](r, t,z) — 9[2](7’ t I)”

< / B, ko) 1z = o giam) + Ml = @llx,00)] €
t

+d

[ 8t mollotale, t.2) - e, £, )] de

is satisfied. Now we obtain (6) by the Gronwall inequality. This completes the proof of
the lemma B '

3. Existence and uniqueness of solutions

Now we construct an integral operator corresponding to problem (1) - (2). Suppose that
the function ¢ satisfies Assumption Ho, ¢ € (0,a], z € Ye y[w,d] and g[z](-,t,z) is the
bicharacteristic corresponding to z. Let us define the operator U, for all 2 € Y, ,[w,d]
be the formulas

U&pz(taz) = Lp(O,g[Z](O,t,I)) + /f(‘r, g[z](T’t’x)vz(f,g[zl(f."z))) dr (10)

where (t,z) € [0,c] x R™ and
Uyz(t,z) = p(t, z) on (—o00,0] x R™, (11)

Remark 3.1. The operator U, is obtained by integration of equation (1) along
bicharacteristics.

Now we give sufficient conditions for the solvability of the equation z = U,z on

Ye olw, d].
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Assumption H[f]. Suppose the following:

1) The function f(-,z,w) : [0,a)] — B is measurable for (z,w) € R® x X and
f(t,-) : R® x X — B is continuous for almost all ¢ € [0,a].

2) For (z,w) € R® x X|[«] and for almost all t € [0, a] we have
If(t, 2, wll < aft, ). | (12)
3) For (z,w),(Z,%) € R" x X, [x] and for almost all t € [0,a] we have
1£(t,2,w) = f(¢,3,0)|| < B2, ) [ll= = 2| + llw = Bllx].

Remark 3.2. We prove a theorem on the existence and uniqueness of solutions of
problem (1) - (2). For simplicity of notations, we have assumed the same estimation for
o and for f. We have assumed also the Lipschitz condition for these functions with the
same coefficient.

‘Lemma 3.3. Suppose that Assumptions H[X), Ho, Hlo] and H[f] are satisfied.
Then there are (do,d,) = d € R%, ¢ € (0,a] and w € L([0,c],R4) such that U, :
Ye plw,d] = Ye plw, d].

Proof. Suppose that the constants (do,d;) = d and ¢ € (0,a] and the function
w € L([0,c), Ry ) satisfy the conditions '

do > I~L+/ a(r,K)dr
0
dl Z Fc
w(t) > (1+To)a(t, )

.= |:L+J/ﬂ(r,no)dr:| exp[&/ﬂ(r,no)dri\ . (13)
0 0

Suppose that z € Y, ,[w,d]. Then we have

where

WU,z(t,z)|| < L+ /a(r,fc) dr < dy on '{O,C] x R"™. (14)
0

If (t,z),(£,%) € [0,c] x R", then using Lemma 2.1 and (10) we obtain

|Upz(t, z) = Upa(t, z)||

i

/ ofr, &) dr

t

< [0 (0, 9121(0,1,2)) — (0, 1210, E,2)) || +
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t
| +/ﬂ(r, Ko)[llg[ZI(T,t,r) = 9l LD + lzrstairneen = 2eataicrienllx | dr
0 .

} + ja(r,k)dr

t

/a(r, &) dr

<T. {llx - z|| +

¢

Thus we see that
{
Up2(t,2) - Upe(i, 2)|| < diflz — 2]| + /w(r)dr . (15)
H

It follows from (14) and (15) that U,z € Y, ,|w,d] which completes the proof of the
lemma B

Next we will show that there exists exactly one solution of problem (1) - (2). The
solution is local with respect to ¢.

Theorem 3.4. Suppose that Assumptions H[X), Ho, H]p] and H[f] are satisfied.
Then there are (do,d)) = d € R%, c € (0,a] and w € L([0,c],Ry) such that problem
(1) = (2) has ezactly one solution u € Y, ,|w,d].

If ¢ : (—00,0] x R™ — B satisfies Assumption Hy and @ € Y, ,|w,d] is a solution of
equation (1) with the initial condition z = @ on (—o0,0] x R™, then there is A, € R4+
such that

llu = @lljo,ekn) < Aclle = Bllcx,00) + sup (0, %) = (0, )l (16)
y n

where t € [0, c].

Proof. Lemma 3.3 shows that there are (do,d;) = d, c € (0,a] and w € L([0,c],Ry)
such that Uy, : Ye plw,d] = Y, 4[w,d]. Write

c
Ac=K(Q1+ Fc)/ﬂ(r, Ko)dr
0
where I is given by (13). Let c € (0, a] be such a constant that A, < 1. Now we prove
that U, is a contraction on Y, y[w,d]. If 2,7 € Y, ,[w,d], then
|Upz(t,2) — Upi(t, z)|| <L lglz)(0,t,z) — g[2](0,1, z)||
t
+/ ﬁ(r,“no)[||g[z](r,t,a:) —g[E](r,t,:z:)”
0
+ llztrgtelirten = Eetaicrenllx ] dr

The estimate

l2¢r.steicren = Zrgtatiron |l x

< (Kdy + ML) ||gl2)(r,t,2) ~ g[2)(r,t,2)|| + K[z — Zllj0 )
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and Lemma 2.1 imply
t
|Upz(t,z) — Upz(t, z)|| < K(1 +Tc) / B(r, ko)llz = Zllj0,rmmd7
0

for all (¢,z) € [0,¢] x R™, and consequently
lUpz — UsoE”[O.C;R"] <Az - 2"[0,c;Rﬂ]~
By the Banach fixed point theorem there exists a unique solution u € Y. ,[w,d] of the
equation z = U, z.
Now we prove that u is a solution of (1). We have proved that

u(tam) = np(O,g[u](O,t,:z:)) '*'/f(Trg[u](T’tv"l:)au(r,gﬁ[u](r,t,z)))d‘r (17)

on [0,¢] x R™. For given z € R" let us put n = ¢g[u)(0,t, z). It follows that g[u)(r,t,z) =
g[u](7,0,9) for 7 € [0,c] and that z = g[u](t,0,n). The relations = g[u)(0,¢,z) and
z = g[u](¢,0,7) are equivalent for z,7 € R". It follows from (17) that

u(t,g[u](t,O, 77)) = tp(O, 77) + /f(Tv g[u](r, 01 n):u(r,g[u](r,o,q)))dr (18)

where (t,n) € [0,¢] x R®. By differentiating (18) with respect to ¢ and by using the
transformation n = g¢[u](0,%,z) which preserves sets of measure zero, we obtain that
u satisfies equation (1) for almost all (¢,z) € [0,¢] x R™. It follows from (11) that u
satisfies also condition (2).

Now we prove relation (16). If u = Uyu and u = Uz, then
||u(t, ) — u(t, )|
< sup l|l#(0,4) = 30, v)|| + L||g[u](0,¢,z) — g[i)(0,, )|
JERD

+ [ (s [dllalul(rit,) - glal(r )]

+ K llu = @llg,rize) + Mllp = @ll(x 000 47
where (¢,z) € [0,c] x R*. Put

Ac=(1+T )M / B(7,k0)dr and ¥(t) = K(1+ T¢) B(¢, ko).
0

Then we get the integral inequality
llu — @lifo,mn)
' t
< sup [l(0,9) = (0, )| + Aclle — Bll(x,00) + /7(T)|Iu ~ llfo,rn)dT
y n
0

for all t'€ [0,c]. It follows from the Gronwall inequality that we have estimate (16) for
A= cxp[ foc 'y(r)dr]. This completes the proof of the theorem B
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4. Phase spaces

We give examples of spaces X satisfying Assumption H[X].

Example 4.1. Let X be the class of all function w : (—00,0] x [-r, +r] — B which
are uniformly continuous and bounded on (—00,0] x [~r,+7]. For w € X we write

lhollx = sup {lfw(r, )+ (7,5) € (=00,0] x [=r, +r]}.

Let X1 C X denote the set of all w € X such that

ol = sup { 1:5) = 0t )

T : (1,8),(7,5) € (—00,0] x [—r,+r]} < +oo. (19)

Write ||w||x, = Jlwl|x + |w|L where w € X;. Then Assumption H[X] is satisfied.
Example 4.2. Let X be the class of all functions w : (=00,0] x [~r,+7] = B such
that
(i) w is continuous and bounded on (—00,0] x [~r, +7]
(ii) the limit lim¢—_ o, w(t, z) exists uniformly with respect to z € [—r, +7].
Let ‘
lwllx = sup {lw(r, )l (7,5) € (~00,0) x [~r, +]}.
Let X1 C X denote the class of all w € X such that the Lipschitz condition (19) is

satisfied. Write |lw|x, = [lw|x + |w|, where w € X,. Then Assumption H[X] is
satisfied. ‘

Example 4.3. Let v : (—00,0] — (0,400) be a continuous function. Assume
also that v is non-increasing on (—00,0]. Let X be the space of continuous functions
w : (—00,0} X [~7r,+r] — B for which

b 2 _

R ) (z € [-r,+7]).

lw||x = sup{”—w‘% i (1, 8) € (—00,0] x [—r,+r]} .

Denote by X C X the set of all w € X such that

llw(r, s) — w(r, S|
7(Dlls = 3l

[wly.p = Sup{ : (7,8),(7,8) € (—00,0] x [-r, -}-rl} < 4o0.

For w € X, put ||w||x, = |lw|lx + |w|y... Then Assumption H[X] is satisfied.

Example 4.4. Let 6§ € R} and p > 1 be fixed. Denote by X the class of all
functions w : (00,0} x [—r,+7] = B such that

(i) w is continuous on [—6,0] x [—r, +r]

(ii) for z € [—r, +r] we have f__:o lw(r,z||P dr < 400
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(iii) w(¢,:) : [-r,+7r] — B is continuous for t € (—o0, —§].
Write
lwllx = sup {Jla(r, )l : (7,5) € [=5,0] x [, +r]}
-6

+ sup {(/_oo ]|w(r,z||"d‘r)1/p iz €[~-r, +r]}.

Let X, C X be the set of functions w € X such that the Lipschitz condition (19) is -
satisfied. Write |lw||x, = {lw||x + |w|. where w € X;. Then Assumption H{X] is
satisfied.

Remark 4.5. Differential equations with a deviated argument and differential-
integral equations can be obtained from equation (1) by specializing operators g and

f

Remark 4.6. It is important in our considerations that we have assumed the Lip-
schitz condition for given functions on some special function spaces. More precisely, we
have assumed that the functions o(t,-) and f(t,-) satisfy the Lipschitz condition on the
space R® x X for almost all ¢t € [0,a], and the condition is local with respect to the
functional variable. '

Let us consider simplest assumption on g and f. Suppose that there is P € R such
that for almost all t € [0,a] we have

£t z,w) = f(t,2,9)|| < P[llz - 2| + [lw ~ @i x] (21)
where (z,w),(z,w) € R™ x X. Of course, our results are true if we assume (20), (21)
instead of (3), (12).

Now we show that formulations (3), (12) are important. We show that there is a
class of quasilinear equations satisfying (3), (12) but not satisfying (20), (21). Let X
and X be the spaces given in Example 4.1. Consider the equation with a deviated
argument

Dyz(t,z) + Z é.-(t, z, z(o(t), ¥(t, x)))D,,. 2(t,z) = f(t, z, z(o(t), ¥(t, :z:))) (22)

where )
§=(§l""sén)3[0,al x R® x B — R"

f:[0,qd xR"x B—> B
%o : [0,0] — (—00,q
¥ :[0,a] x R® — R"™.
We assume that ¥(t) < t and —r < ¥(t,z) —z < +r for (¢t,z) € [0,q] x R". We get
(22) by putting in (1)
N - é(tvxaw) = é(-tywi(d’O(t)_tul/)(tax)__x))
flt,z,w) = f(t,:c,w(t/)o(t) —t,9(t,z) - z)).



108 Z. Kamont

From now we consider the function g only. Suppose that there are C,C € R4 such that

[l8(t, 2,¢) - &(t,2,0)|| < C[ll=z — 2l + JI¢ - €ll]
||1/)(t,l‘) - 1/’(&«"_7)" < Cm“”:l: - 1_:”

It is evident that for (z,w),(Z,@) € R™ x X [x] and for almost all ¢ € [0, a) we have
le(t, z,) = o(t,2,9)[| < C[1+ 51 + C)] 1z — 2 + C o — ]lx.

Then condition (3) is satisfied.

We see at once the the function g(t,-) does not satisfy the global Lipschitz condition
(20) for (z,w),(z,w) € R" x X. Similar consideration apply to f.
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