Hyperbolic Functional-Differential Equations with Unbounded Delay

Z. Kamont

Abstract. The phase space-for quasilinear equations with unbounded delay is constructed. Carathéodory solutions of initial problems are investigated. A theorem on the existence, uniqueness and continuous dependence upon initial data is given. The method of bicharacteristics and integral inequalities are used.

Keywords: *Unbounded delay, local existence, Carathéodory solutions*

AMS subject classification: $35 L 50$, $35 D 05$

1. Introduction

For any metric spaces U and V we denote by $C(U, V)$ the class of all continuous functions defined on *U* and taking values in *V.* We will use vectorial inequalities with the understanding that the same inequalities hold between their corresponding components. For any metric spaces U and V we denote by $C(U, V)$ the class of all continuous func-
tions defined on U and taking values in V. We will use vectorial inequalities with the
understanding that the same inequalities hold bet

Let

$$
E = [-r_0, 0] \times [-r, +r] \subset \mathbb{R}^{1+n}
$$

 \mathbb{R}^n by $E = [-r_0, 0] \times [-r, +r] \subset \mathbb{R}^{1+n}$
 $(1+\infty)$ and $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_+$. Assume
 $\times \mathbb{R}^n$ and $z : [-r_0, a] \times \mathbb{R}^n \to \mathbb{R}$. We define z
 $z_{(t,x)}(\tau, s) = z(t + \tau, x + s)$ $((\tau, s) \in E)$.
 $\times \mathbb{R}^n$ the function x_{t+1}

$$
z_{(t,x)}(\tau,s)=z(t+\tau,x+s)\qquad ((\tau,s)\in E).
$$

For each $(t, x) \in [0, a] \times \mathbb{R}^n$ the function $z_{(t, x)}$ is the restriction of z to the set $[t - r_0, t] \times$ $[x - r, x + r]$ and this restriction is shifted to the set *E*. Suppose that

 $F: [0, a] \times \mathbb{R}^n \times C(E, \mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}$

is a given function. In this time numerous papers were published concerning various problems for the equation

$$
D_t z(t,x) = F(t,x,z_{(t,x)},D_x z(t,x))
$$

where $D_z z = (D_{z_1} z, \ldots, D_{z_n} z)$ and for adequate weakly coupled hyperbolic systems. The following questions were considered: functional-differential inequalities, uniqueness

Z. Kamont: Univ. of Gdañsk, Inst. Math., ul. Wita Stwosza 57, 80 - 952 Gdarisk, Poland

ISSN 0232-2064 / 3 2.50 © Heldcrmann Verlag Berlin

of initial or initial-boundary value problems, difference-functional inequalities, approximate solutions of initial or initial-boundary value problems, existence of classical or generalized solutions (see $\left[1 - 3, 5 - 8, 10 - 15\right]$). All these problems have the property that the set *E* is bounded.

In the paper we start the investigation of first order partial functional-differential equations with unbounded delay. We give sufficient conditions for the existence and uniqueness of Carathéodory solutions of initial problems for quasilinear equations with unbounded delay. We consider functional-differential equations in a Banach space. The theory of ordinary functional-differential equations with unbounded delay is given in monographs [4, 9].

We formulate the problem. Let *B* be a Banach space with norm $\|\cdot\|$ and $D =$ $(-\infty, 0] \times [-r, +r] \subset \mathbb{R}^{1+n}$ ($r \in \mathbb{R}^{n}_{+}$). The norm in \mathbb{R}^{n} will also be denoted by $\|\cdot\|$. For a function $z : (-\infty, b] \times \mathbb{R}^n \to B$ $(b \ge 0)$ and for a point $(t, x) \in [0, b] \times \mathbb{R}^n$ we define a function $z(t,x): D \to B$ by problem. Let *B* be a Banach space with \mathbb{R}^{1+n} ($r \in \mathbb{R}_+^n$). The norm in \mathbb{R}^n will also b $\times \mathbb{R}^n \to B$ ($b \ge 0$) and for a point (t, x) \in *B* by
*z*_(t, x)(τ, s) = *z*($t + \tau, x + s$) ((τ, s) \in

$$
z_{(t,x)}(\tau,s) = z(t+\tau,x+s) \qquad ((\tau,s) \in D)
$$

The phase space X for equations with unbounded delay is a linear space, with norm $\|\cdot\|_X$ and consisting of functions mapping the set *D* into *B*. Let $a > 0$ be fixed and suppose that *D* \rightarrow *B* by
 $z(t, z)(\tau, s) = z(t + \tau, x + s)$ $((\tau, s) \in D)$.
 X for equations with unbounded delay is a linear space, with norm

sting of functions mapping the set *D* into *B*. Let *a* > 0 be fixed and
 $\rho = (\rho_1, ..., \rho_n) : [0, a]$ *z*(*r*, *s*) = *z*(*t* + *r*, *x* + *s*) ((*r*, *s*) \in *D*).

equations with unbounded delay is a linear space, with norm

functions mapping the set *D* into *B*. Let *a* > 0 be fixed and
 $2 = (e_1, ..., e_n) : [0, a] \times \mathbb{R}^n$

$$
\varrho = (\varrho_1, \dots, \varrho_n) : [0, a] \times \mathbb{R}^n \times X \to \mathbb{R}^n
$$

$$
f : [0, a] \times \mathbb{R}^n \times X \to B
$$

$$
\varphi : (-\infty, 0] \times \mathbb{R}^n \to B
$$

are given functions. We consider the quasilinear equation

$$
D_t z(t, x) + \sum_{i=1}^n \varrho_i(t, x, z_{(t, x)}) D_{x_i} z(t, x) = f(t, x, z_{(t, x)})
$$
 (1)

with the intial condition

$$
z(t,x) = \varphi(t,x) \qquad \text{on } \left(-\infty,0\right] \times \mathbb{R}^n. \tag{2}
$$

We will deal with Carathéodory solutions of problem (1) - (1.2). A function \bar{u} : $(-\infty, b] \times$ $\mathbb{R}^n \to B$ where $0 < b \le a$ is a *solution* of the above problem provided:

(i) \bar{u} is continuous on $[0, b] \times \mathbb{R}^n$ and the derivatives $D_t \bar{u}(t, x)$ and $D_x \bar{u}(t, x)$ exist for almost all $(t, x) \in [0, b] \times \mathbb{R}^n$.

(ii) \bar{u} satisfies equation (1.1) almost everywhere on $[0, b] \times \mathbb{R}^n$ and condition (1.2) holds.

such that *z* is continuous on $[0, b] \times \mathbb{R}^n$, then we put for $(t, x) \in [0, b] \times \mathbb{R}^n$

We adopt the following notations. If
$$
z : (-\infty, b] \times \mathbb{R}^n \to B
$$
 $(0 < b \leq a)$ is a function that z is continuous on $[0, b] \times \mathbb{R}^n$, then we put for $(t, x) \in [0, b] \times \mathbb{R}^n$ $||z||_{[0, t; x]} = \max \{ ||z(\tau, s)|| : (\tau, s) \in [0, t] \times [x - r, x + r] \}$ $||z||_{[0, t; \mathbb{R}^n]} = \sup \{ ||z(\tau, s)|| : (\tau, s) \in [0, t] \times \mathbb{R}^n \}$ $Lip \, z|_{[0, t; z]} = \sup \left\{ \frac{||z(\tau, s) - z(\tau, \bar{s})||}{||s - \bar{s}||} : (\tau, s), (\tau, \bar{s}) \in [0, t] \times [x - r, x + r] \right\}.$ fundamental axioms assumed on X are the following.

and

\n (a)
$$
u
$$
 is continuous on $[0, b] \times \mathbb{R}^n$ and the derivatives $D_t u(t, x)$ and $D_x u(t, x)$ and $D_x u(t, x)$.\n

\n\n (b) \bar{u} satisfies equation (1.1) almost everywhere on $[0, b] \times \mathbb{R}^n$ and condition (1.2) denotes the following notations. If $z : (-\infty, b] \times \mathbb{R}^n \to B$ and $(0 < b \leq a)$ is a function that z is continuous on $[0, b] \times \mathbb{R}^n$, then we put for $(t, x) \in [0, b] \times \mathbb{R}^n$ and $||z||_{[0, t; x]} = \max\left\{||z(\tau, s)|| : (\tau, s) \in [0, t] \times [x - r, x + r]\right\}$.\n

\n\n
$$
||z||_{[0, t; x]} = \sup\left\{||z(\tau, s)|| : (\tau, s) \in [0, t] \times \mathbb{R}^n\right\}
$$
\n

\n\n Lip $z|_{[0, t; x]} = \sup\left\{\frac{||z(\tau, s) - z(\tau, \bar{s})||}{||s - \bar{s}||} : (\tau, s), (\tau, \bar{s}) \in [0, t] \times [x - r, x + r]\right\}$.\n

\n\n undamental axioms assumed on X are the following.\n

The fundamental axioms assumed on X are the followings.

Assumption H[X]. Suppose the following:

1) $(X, \|\cdot\|_X)$ is a Banach space.

2) If $z : (-\infty, b] \times \mathbb{R}^n \to B$ $(0 < b \le a)$ is a function such that $z_{(0, z)} \in X$ for $x \in \mathbb{R}^n$ and *z* is continuous on $[0, b] \times \mathbb{R}^n$, then $z_{(t,x)} \in X$ for $(t, x) \in (0, b] \times \mathbb{R}^n$ and

(i) for $(t, x) \in [0, b] \times \mathbb{R}^n$ we have $||z_{(t, x)}||_X \leq K ||z||_{[0, t; x]} + L ||z_{(0, x)}||_X$ where $K, L \in R_+$ are constant independent on *z*

(ii) the function $(t, x) \rightarrow z_{(t, x)}$ is continuous on $[0, b] \times \mathbb{R}^n$.

3) The linear subspace $X_L \subset X$ is such that

(i) X_L endowed with the norm $\|\cdot\|_{X_L}$ is a Banach space

(ii) if $z : (-\infty, b] \times \mathbb{R}^n \to B$ $(0 < b \le a)$ is a function such that $z_{(0, z)} \in X_L$ for $x \in \mathbb{R}^n$, *z* is continuous on $[0, b] \times \mathbb{R}^n$ and $z(t, \cdot) : \mathbb{R}^n \to B$ satisfies the Lipschitz condition with a constant independent on t $(t \in [0, b])$, then

 (α) $z_{(t,x)} \in X_L$ for $(t,x) \in (0,b] \times \mathbb{R}^n$

 (β) for $(t, x) \in [0, b] \times \mathbb{R}^n$ we have

$$
X_L \text{ for } (t, x) \in (0, b] \times \mathbb{R}^n
$$

\n
$$
\in [0, b] \times \mathbb{R}^n \text{ we have}
$$

\n
$$
||z(t, x)||_{X_L} \le K_0(||z||_{[0, t; x]} + \text{Lip } z|_{[0, t; x]}) + L_0 ||z_{(0, x)}||_{X_L}
$$

where $K_0, L_0 \in \mathbb{R}_+$ are constants independent on z.

Examples *of* phase spaces are given in Section 4.

Let us denote by $L([\alpha, \beta], \mathbb{R})$ $([\alpha, \beta] \subset \mathbb{R})$ the class of functions

$$
L([\alpha, \beta], \mathbb{R}) = \left\{ \mu : [\alpha, \beta] \to \mathbb{R} : \mu \text{ integrable on } [\alpha, \beta] \right\}.
$$

Further, we will use the symbol Θ to denote the set of functions

$$
L([\alpha, \beta], \mathbb{R}) = \left\{ \mu : [\alpha, \beta] \to \mathbb{R} : \mu \text{ integrable on } [\alpha, \beta] \right\}.
$$

cr, we will use the symbol Θ to denote the set of functions

$$
\Theta = \left\{ \gamma : [0, a] \times \mathbb{R}_+ \to \mathbb{R}_+ \middle| \begin{array}{l} \gamma(t, \cdot) \text{ is non-decreasing for a.a. } t \in [0, a] \\ \gamma(\cdot, \tau) \in L([0, a], \mathbb{R}_+) \text{ for all } \tau \in \mathbb{R}_+ \end{array} \right\}.
$$

Further, write

$$
X[\kappa] = \{ w \in X : ||w||_X \le \kappa \}
$$

$$
X_L[\kappa] = \{ w \in X_L : ||w||_{X_L} \le \kappa \}
$$

where $\kappa \in \mathbb{R}_+$.

2. Bicharacteristics of functional-differential equations

We start with assumptions on the initial function φ .

Assumption H₀. Suppose that φ : $(-\infty, 0] \times \mathbb{R}^n \to B$ and

(i) $\varphi_{(0,x)} \in X_L$ for $x \in \mathbb{R}^n$

(ii) there are $\tilde{L}, L \in \mathbb{R}_+$ such that $\|\varphi(0, x)\| \leq \tilde{L}$ for $x \in \mathbb{R}^n$ and $\|\varphi_{(0, x)} - \varphi_{(0, x)}\|_{X} \leq$ $\begin{align} \textbf{Assu} \ \textbf{(i)} \ \varphi_{\textbf{(i)}} \ \textbf{(ii)} \ \textbf{th} \ L \|x-\bar{x}\| \ \textbf{Assu} \end{align}$ for $x, \bar{x} \in \mathbb{R}^n$. nction φ .

∞, 0 | × ℝⁿ → *B* and
 x) || ≤ \tilde{L} for $x \in \mathbb{R}^n$ and $\|\varphi_{(0,x)} - \varphi_{(0,\tilde{x})}\|$ *x*
 *i*nng:

ⁿ is measurable for $(x, w) \in \mathbb{R}^n \times X$ a

ost all $t \in [0, a]$.
 t, x, w)|| ≤ $\alpha(t, \kappa)$ for (x, w)

Assumption H[ϱ]. Suppose the following:

1) The function $\varrho(\cdot, x, w) : [0, a] \to \mathbb{R}^n$ is measurable for $(x, w) \in \mathbb{R}^n \times X$ and
 $\varrho(\cdot, x, w) : \mathbb{R}^n \times X \to \mathbb{R}^n$ is continuous for almost all $t \in [0, a]$.

2) There exist $\alpha, \beta \in \Theta$ such that $\|\varrho(t, x, w)\| \leq \alpha(t,$ $\rho(t, \cdot): \mathbb{R}^n \times X \to \mathbb{R}^n$ is continuous for almost all $t \in [0, a]$.

2) There exist $\alpha, \beta \in \Theta$ such that $\|\varrho(t, x, w)\| \leq \alpha(t, \kappa)$ for $(x, w) \in \mathbb{R}^n \times X[\kappa]$ almost everywhere on [0, a] and

$$
||\varrho(t,x,w) - \varrho(t,\bar{x},\bar{w})|| \leq \beta(t,\kappa) [||x-\bar{x}|| + ||w-\bar{w}||_X]
$$
 (3)

for $(x, w), (\bar{x}, \bar{w}) \in \mathbb{R}^n \times X_L[\kappa]$ almost everywhere on $[0, a]$.

Suppose that φ : $(-\infty,0] \times \mathbb{R}^n \to B$ and $\varphi_{(0,\tau)} \in X_L$ for $\tau \in \mathbb{R}^n$. Let $c \in [0,a]$, $d = (d_0, d_1) \in \mathbb{R}_+^2$ and $\omega \in L([0, a], \mathbb{R}_+).$ The symbol $Y_{c,\varphi}[\omega, d]$ denotes the function class

$$
y_{0}(x, x, w) = \varphi(t, \bar{x}, \bar{w}) \leq \varphi(t, \kappa) \left[||x - \bar{x}|| + ||w - \bar{w}||_{X} \right]
$$
\n
$$
x, w), (\bar{x}, \bar{w}) \in \mathbb{R}^{n} \times X_{L}[\kappa] \text{ almost everywhere on } [0, a].
$$
\nSuppose that $\varphi : (-\infty, 0] \times \mathbb{R}^{n} \to B$ and $\varphi_{(0, x)} \in X_{L}$ for $x \in \mathbb{R}^{n}$. Let $c \in (d_{0}, d_{1}) \in \mathbb{R}_{+}^{2}$ and $\omega \in L([0, a], \mathbb{R}_{+})$. The symbol $Y_{c,\varphi}[\omega, d]$ denotes the fur
\n
$$
Y_{c,\varphi}[\omega, d] = \begin{cases} \n\zeta(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x) = \varphi(t, x) \text{ on } (-\infty, 0] \times \mathbb{R}^{n} \\
\frac{z(t, x)
$$

For the above φ and for $z \in Y_{c,\varphi}[\omega,d]$ consider the Cauchy problem

$$
\begin{aligned}\n\eta'(\tau) &= \varrho(\tau, \eta(\tau), z_{(\tau, \eta(\tau))}) \\
\eta(t) &= x\n\end{aligned}\n\tag{4}
$$

where $(t, x) \in [0, c] \times \mathbb{R}^n$. We consider Carathéodory solutions of problem (4). Denote by $g[z] (\cdot, t, x)$ the solution of the above problem. The function $g[z]$ is the bicharacteristic of equation (1) corresponding to $z \in Y_{c,\varphi}[\omega, d]$. where $(t, x) \in [0, c] \times \mathbb{R}^n$. We consider Carathor
by $g[z] (\cdot, t, x)$ the solution of the above problem
of equation (1) corresponding to $z \in Y_{c,\varphi}[\omega, d]$.
Let $\Delta_c = [0, c] \times [0, c] \times [0, c]$. For φ satisfy

Let $\Delta_c = [0, c] \times [0, c] \times [0, c]$. For φ satisfying Assumption H₀ define

$$
\|\varphi\|_{(X,\infty)}=\sup\big\{\|\varphi_{(0,x)}\|_X:\,x\in\mathbb{R}^n\big\}.
$$

Lemma 2.1. *Suppose that Assumptions* $H[X]$ *and* $H[\varrho]$ *are satisfied and*

- 1) the functions $\varphi, \bar{\varphi}: (-\infty, 0] \times \mathbb{R}^n \to B$ satisfy Assumption H₀
- 2) $c \in [0, a], z \in Y_{c, \varphi}[\omega, d]$ and $\overline{z} \in Y_{c, \varphi}[\omega, d].$

Then^{the} solutions $g[z](\cdot,t,x)$ and $g[\bar{z}](\cdot,t,x)$ are defined on $[0,c]$ and they are unique. *Moreover, we have the estimates on* Δ_c

Hyperbolic Functional-Differential Equations 101
\n*ons*
$$
\varphi, \bar{\varphi}: (-\infty, 0] \times \mathbb{R}^n \to B
$$
 satisfy Assumption H₀
\n $z \in Y_{c,\varphi}[\omega, d]$ and $\bar{z} \in Y_{c,\bar{\varphi}}[\omega, d]$.
\n*ns* $g[z](:, t, x)$ and $g[\bar{z}](\cdot, t, x)$ are defined on [0, c] and they are unique.
\n*we the estimates on* Δ_c
\n
$$
|g[z](\tau, t, x) - g[z](\tau, \bar{t}, \bar{x})|| \leq \left[||x - \bar{x}|| + \left| \int_t^{\bar{t}} \alpha(\xi, \bar{\kappa}) d\xi \right| \right] \exp \left[\bar{d} \left| \int_t^{\bar{r}} \beta(\xi, \kappa_0) d\xi \right| \right]
$$
\n(5)

and

II *g [z](* ^T*, t, x) - g[](7- , t, x)* lr I *r* ?Co) lfl(, *[KIIz* - *Z[oe;n] + M*II — Il(X,)] *^d* exp no) *^d (6) i*

where

where
\n
$$
\bar{d} = 1 + Kd_0 + ML
$$
\n
$$
\bar{\kappa} = Kd_0 + M \|\varphi\|_{(X,\infty)}
$$
\n
$$
\kappa_0 = K_0(d_0 + d_1) + L_0 \sup \{ \|\varphi_{(0,z)}\|_{X_L} : x \in \mathbb{R}^n \}.
$$
\nProof. Suppose that $(\xi, \eta), (\xi, \bar{\eta}) \in [0, c] \times \mathbb{R}^n$ and a function $\tilde{z} : (-\infty, c] \times \mathbb{R}^n \to B$
\nis defined by
\n
$$
\tilde{z}(\tau, s) = z(\tau, s + \bar{\eta} - \eta) \qquad ((\tau, s) \in (-\infty, 0] \times \mathbb{R}^n).
$$
\nThen $\tilde{z}_{(\xi, \eta)} = z_{(\xi, \bar{\eta})}$. It follows from Assumptions H[X] and H₀ that
\n
$$
\|z(\xi, \eta) - z(\xi, \bar{\eta})\|_{X} = \| (z - \tilde{z}) (\xi, \eta) \|_{X} \le (Kd_0 + ML) \| \eta - \bar{\eta} \|.
$$

is defined by

$$
\tilde{z}(\tau,s)=z(\tau,s+\bar{\eta}-\eta) \qquad ((\tau,s)\in(-\infty,0]\times\mathbb{R}^n).
$$

Then $\tilde{z}_{(\xi,\eta)} = z_{(\xi,\bar{\eta})}$. It follows from Assumptions H[X] and H₀ that

$$
||z_{(\xi,\eta)} - z_{(\xi,\tilde{\eta})}||_X = ||(z-\tilde{z})_{(\xi,\eta)}||_X \leq (Kd_0 + ML) ||\eta - \tilde{\eta}||.
$$

The existence and uniqueness of the solutions of problem (4) follows from classical theorems. On this purpose, note that the right-hand side of the differential system satisfies the Carathéodory assumptions, and the Lipschitz condition **110(** ^l**,** 17,z(,,)) - *(r,* 77, *Z(r, j) d8(1,* ko) IIi - II

$$
\left\| \varrho(\tau,\eta,z_{(\tau,\eta)}) - \varrho(\tau,\bar{\eta},z_{(\tau,\bar{\eta})} \right\| \leq \bar{d} \, \beta(\tau,\kappa_0) \left\| \eta - \bar{\eta} \right\|
$$

holds on $[0, c] \times \mathbb{R}^n$. The function $g[z](\cdot, t, x)$ satisfies the integral equation

$$
\|\varrho(\tau,\eta,z_{(\tau,\eta)}) - \varrho(\tau,\bar{\eta},z_{(\tau,\bar{\eta})}\| \leq \bar{d}\,\beta(\tau,\kappa_0) \|\eta - \bar{\eta}\|
$$

Rⁿ. The function $g[z](\cdot, t, x)$ satisfies the integral equ

$$
g[z](\tau,t,x) = x + \int_{t}^{\tau} \varrho(\xi,g[z](\xi,t,x),z_{(\xi,g[z](\xi,t,x))}) d\xi.
$$

$$
\bar{x}) \in \Delta_c \text{ we have}
$$

$$
\|z_{(\tau,g[z](\tau,t,x))}\|_{X} \leq \bar{\kappa}
$$

$$
\|z_{(\tau,g[z](\tau,t,x))}\|_{X_L} \leq \kappa_0
$$

For $(\tau, t, x), (\tau, \overline{t}, \overline{x}) \in \Delta_c$ we have

$$
\|z_{(\tau,g[z](\tau,t,z))}\|_{X} \leq \bar{\kappa}
$$

$$
\|z_{(\tau,g[z](\tau,t,z))}\|_{X_{L}} \leq \kappa_{0}
$$
 (7)

and

2 Z. Kamont
\nd
\n
$$
\|z_{(\tau,g[z](\tau,t,x))} - z_{(\tau,g[z](\tau,\tilde{t},\tilde{x}))}\|_X \leq (Kd_1 + ML) \|g[z](\tau,t,x) - g[z](\tau,\tilde{t},\tilde{x})\|.
$$
\n(8)

It follows from Assumption H[X] and from (7) - (8) that the integral inequality

$$
||g[z](\tau, t, x) - g[z](\tau, \bar{t}, \bar{x})||
$$

Z. Kamont
\n
$$
Z(r,g[z](r,t,x)) = Z(r,g[z](r,\bar{t},\bar{x})) \Big\|_{X} \leq (Kd_1 + ML) \|g[z](r,t,x) - g[z](r,\bar{t},\bar{x})\|.
$$
\nas from Assumption H[X] and from (7) - (8) that the integral inequality
\n
$$
z[(r,t,x) - g[z](r,\bar{t},\bar{x})]\Big\|
$$
\n
$$
\leq ||x - \bar{x}|| + \left| \int_{t}^{\bar{t}} \alpha(\xi,\bar{\kappa}) d\xi \right| + \bar{d} \left| \int_{t}^{\bar{r}} \beta(\xi,\kappa_0) \|g[z](\xi,t,x) - g[z](\xi,\bar{t},\bar{x})\| d\xi \right|
$$
\n
\nfield. Now we obtain (5) by the Gronwall inequality.
\n
$$
z \in Y_{c,\varphi}[\omega,d] \text{ and } \bar{z} \in Y_{c,\bar{\varphi}}[\omega,d] \text{ we have the estimate}
$$
\n
$$
\|z(\xi,g[z](\xi,t,x)) - \bar{z}(\xi,g[z](\xi,t,x))\|_{X}
$$
\n
$$
\leq (Kd_1 + M\bar{L}) \|g[z](\xi,t,x) - g[\bar{z}](\xi,t,x)\|
$$
\n
$$
+ K ||z - \bar{z}||_{[0,\bar{t}]} \|x + M ||\varphi - \bar{\varphi}||_{(X,\infty)}.
$$

is sastisfied. Now we obtain (5) by the Gronwall inequality.

For $z \in Y_{c,\varphi}[\omega,d]$ and $\bar{z} \in Y_{c,\varphi}[\omega,d]$ we have the estimate

$$
|z - z(r,g[z](r,\bar{t},\bar{x}))||_X \leq (Kd_1 + ML)||g[z](r,t,x) - g[z](r,\bar{t},\bar{x})||. \tag{8}
$$
\n
$$
\text{umption H}[X] \text{ and from (7) - (8) that the integral inequality}
$$
\n
$$
g[z](r,\bar{t},\bar{x})||
$$
\n
$$
|| + \left| \int_t^{\bar{t}} \alpha(\xi,\bar{\kappa}) d\xi \right| + \bar{d} \left| \int_t^{\bar{r}} \beta(\xi,\kappa_0) ||g[z](\xi,t,x) - g[z](\xi,\bar{t},\bar{x})|| d\xi|
$$
\n
$$
\text{re obtain (5) by the Gronwall inequality.}
$$
\n
$$
d] \text{ and } \bar{z} \in Y_{c,\bar{\varphi}}[\omega,d] \text{ we have the estimate}
$$
\n
$$
||z(\xi,g[z](\xi,t,x)) - \bar{z}(\xi,g[z](\xi,t,x))||_X
$$
\n
$$
\leq (Kd_1 + M\bar{L}) ||g[z](\xi,t,x) - g[\bar{z}](\xi,t,x)||
$$
\n
$$
+ K||z - \bar{z}||_{[0,\xi;\mathbb{R}^n]} + M ||\varphi - \bar{\varphi}||_{(X,\infty)}.
$$
\n
$$
\text{umption H}[X] \text{ and from (9) that the integral inequality}
$$
\n
$$
(9)
$$

It follows from Assumption $H[X]$ and from (9) that the integral inequality

$$
g[z](\tau, t, x) - g[\bar{z}](\tau, t, x)||
$$
\n
$$
\leq \left| \int_{t}^{\tau} \beta(\xi, \kappa_{0}) \left[\left\| z - \bar{z} \right\|_{[0, \xi; \mathbb{R}^{n}]} + M \|\varphi - \bar{\varphi}\|_{(X, \infty)} \right] d\xi \right|
$$
\n
$$
+ \bar{d} \left| \int_{t}^{\tau} \beta(\xi, \kappa_{0}) \left\| g[z](\xi, t, x) - g[\bar{z}](\xi, t, x) \right\| d\xi \right|
$$
\nwe obtain (6) by the Grouval inequality. This compl

is satisfied. Now we obtain (6) by the Gronwall inequality. This completes the proof of the lemma I

3. Existence and uniqueness of solutions

Now we construct an integral operator corresponding to problem (1) - (2). Suppose that the function φ satisfies Assumption H₀, $c \in (0,a], z \in Y_{c,\varphi}[\omega,d]$ and $g[z](\cdot,t,x)$ is the Now we construct an integral operator corresponding to problem (1) - (2). Suppose that
the function φ satisfies Assumption H₀, $c \in (0, a]$, $z \in Y_{c,\varphi}[\omega, d]$ and $g[z] (\cdot, t, x)$ is the
bicharacteristic corresponding to bicharacteristic corresponding to z. Let us define the operator U_{φ} for all $z \in Y_{c,\varphi}[\omega,d]$ be the formulas **Lence and uniqueness of solutions**
 If the matrice an integral operator corresponding to problem (1) - (2). Suppose that

on φ satisfies Assumption H₀, $c \in (0, a]$, $z \in Y_{c,\varphi}[\omega, d]$ and $g[z] (\cdot, t, x)$ is the

risti *U* uniqueness of solutions
 U,*z*(tegral operator corresponding to problem (1) - (2). Suppose that
 S Assumption H_0 , $c \in (0, a]$, $z \in Y_{c,\varphi}[\omega, d]$ and $g[z](\cdot, t, x)$ is the

sonding to z. Let us define the operator

$$
U_{\varphi}z(t,x) = \varphi\big(0,g[z](0,t,x)\big) + \int\limits_{0}^{t} f\big(\tau,g[z](\tau,t,x),z_{(\tau,g[z](\tau,t,x))}\big) d\tau \qquad (10)
$$

where $(t, x) \in [0, c] \times \mathbb{R}^n$ and

$$
U_{\varphi}z(t,x)=\varphi(t,x) \qquad \text{on } (-\infty,0] \times \mathbb{R}^n. \tag{11}
$$

Remark 3.1. The operator U_{φ} is obtained by integration of equation (1) along bicharacteristics.

Now we give sufficient conditions for the solvability of the equation $z = U_{\varphi} z$ on $Y_{c,\varphi}[\omega, d]$.

Assumption H[f]. Suppose the following:

1) The function $f(\cdot, x, w) : [0, a] \to B$ is measurable for $(x, w) \in \mathbb{R}^n \times X$ and **f**
 **hyperbolic Functional

h**ightharpoonuple 1) The function $f(\cdot, x, w) : [0, a] \rightarrow B$ is measurab
 $f(t, \cdot) : \mathbb{R}^n \times X \rightarrow B$ is continuous for almost all $t \in [0, a]$
 2) For $(x, w) \in \mathbb{R}^n \times X[\kappa]$ and for almost all $t \in [0,$ Hyperbolic Functional-Different

: following:

] $\rightarrow B$ is measurable for (*x*

r almost all $t \in [0, a]$.

r almost all $t \in [0, a]$ we have
 $,x, w$)|| $\leq \alpha(t, \kappa)$.

c] and for almost all $t \in [0, a]$

2) For $(x, w) \in \mathbb{R}^n \times X[\kappa]$ and for almost all $t \in [0, a]$ we have

$$
||f(t, x, w)|| \leq \alpha(t, \kappa).
$$
 (12)

3) For $(x, w), (\bar{x}, \bar{w}) \in \mathbb{R}^n \times X_L[\kappa]$ and for almost all $t \in [0, a]$ we have

$$
w), (\bar{x}, \bar{w}) \in \mathbb{R}^n \times X_L[\kappa] \text{ and for almost all } t \in [0, a] \text{ we have}
$$

$$
|| f(t, x, w) - f(t, \bar{x}, \bar{w}) || \leq \beta(t, \kappa) \left[||x - \bar{x}|| + ||w - \bar{w}||_X \right].
$$

Remark 3.2. We prove a theorem on the existence and uniqueness of solutions of problem (1) - (2). For simplicity of notations, we have assumed the same estimation for and for *f.* We have assumed also the Lipschitz condition for these functions with the same coefficient.

Lemma 3.3. Suppose that Assumptions $H[X]$, H_0 , $H[\varrho]$ and $H[f]$ are satisfied. *Then there are* $(d_0, d_1) = d \in \mathbb{R}^2_+$, $c \in (0, a]$ and $\omega \in L([0, c], \mathbb{R}_+)$ such that U_{φ} : $Y_{c,\varphi}[\omega,d] \to Y_{c,\varphi}[\omega,d].$

Proof. Suppose that the constants $(d_0, d_1) = d$ and $c \in (0, a]$ and the function $\omega \in L([0,c], \mathbb{R}_+)$ satisfy the conditions

atisfy the conditions

\n
$$
d_0 \geq \tilde{L} + \int_0^c \alpha(\tau, \bar{\kappa}) d\tau
$$
\n
$$
d_1 \geq \Gamma_c
$$
\n
$$
\omega(t) \geq (1 + \Gamma_c) \alpha(t, \bar{\kappa})
$$

where

se that the constants
$$
(d_0, d_1) = d
$$
 and $c \in (0, a]$ and the function
\ntisfy the conditions
\n
$$
d_0 \ge \tilde{L} + \int_0^c \alpha(\tau, \bar{\kappa}) d\tau
$$
\n
$$
d_1 \ge \Gamma_c
$$
\n
$$
\omega(t) \ge (1 + \Gamma_c) \alpha(t, \bar{\kappa})
$$
\n
$$
\Gamma_c = \left[L + \bar{d} \int_0^c \beta(\tau, \kappa_0) d\tau \right] \exp\left[\bar{d} \int_0^c \beta(\tau, \kappa_0) d\tau \right].
$$
\n(13)
\n
$$
Y_{c,\varphi}[\omega, d].
$$
 Then we have
\n
$$
V_{\varphi}z(t, x) || \le \tilde{L} + \int_0^c \alpha(\tau, \bar{\kappa}) d\tau \le d_0 \quad \text{on } [0, c] \times \mathbb{R}^n.
$$
\n(14)

Suppose that
$$
z \in Y_{c,\varphi}[\omega,d]
$$
. Then we have
\n
$$
||U_{\varphi}z(t,x)|| \le \tilde{L} + \int_{0}^{c} \alpha(\tau,\bar{\kappa}) d\tau \le d_0 \quad \text{on } [0,c] \times \mathbb{R}^n.
$$
\n(14)

If $(t, x), (\bar{t}, \bar{x}) \in [0, c] \times \mathbb{R}^n$, then using Lemma 2.1 and (10) we obtain

$$
d_0 \geq \tilde{L} + \int_0^c \alpha(\tau, \bar{\kappa}) d\tau
$$

\n
$$
d_1 \geq \Gamma_c
$$

\n
$$
\omega(t) \geq (1 + \Gamma_c) \alpha(t, \bar{\kappa})
$$

\n
$$
\Gamma_c = \left[L + \bar{d} \int_0^c \beta(\tau, \kappa_0) d\tau \right] \exp \left[\bar{d} \int_0^c \beta(\tau, \kappa_0) d\tau \right].
$$

\nt $z \in Y_{c, \varphi}[\omega, d]$. Then we have
\n
$$
||U_{\varphi}z(t, x)|| \leq \tilde{L} + \int_0^c \alpha(\tau, \bar{\kappa}) d\tau \leq d_0 \quad \text{on } [0, c] \times \mathbb{R}^n.
$$

\n
$$
|\Theta(c)| \times \mathbb{R}^n, \text{ then using Lemma 2.1 and (10) we obtain}
$$

\n
$$
||U_{\varphi}z(t, x) - U_{\varphi}z(\bar{t}, \bar{x})||
$$

\n
$$
\leq ||\varphi(0, g[z](0, t, x)) - \varphi(0, g[z](0, \bar{t}, \bar{x}))|| + \left| \int_t^{\bar{t}} \alpha(\tau, \bar{\kappa}) d\tau \right|
$$

Z. Kamont
\n
$$
+ \int_{0}^{t} \beta(\tau, \kappa_{0}) \Big[\Big\| g[z](\tau, t, x) - g[z](\tau, \bar{t}, \bar{x}) \Big\| + \Big\| z_{(\tau, g[z](\tau, t, x))} - z_{(\tau, g[z](\tau, \bar{t}, \bar{x}))} \Big\|_{X} \Big] d\tau
$$
\n
$$
\leq \Gamma_{c} \Bigg[\|x - \bar{x}\| + \Bigg| \int_{t}^{\bar{t}} \alpha(\tau, \bar{\kappa}) d\tau \Bigg| + \Bigg| \int_{t}^{\bar{t}} \alpha(\tau, \bar{\kappa}) d\tau \Bigg|.
$$
\nso we see that

\n
$$
\Big\| U_{\varphi} z(t, x) - U_{\varphi} z(\bar{t}, \bar{x}) \Big\| \leq d_{1} \|x - \bar{x}\| + \Bigg| \int_{t}^{\bar{t}} \omega(\tau) d\tau \Bigg|.
$$
\n110 was from (14) and (15) that $U_{\varphi} z \in Y_{c, \varphi}[\omega, d]$ which completes the proof of the

Thus we see that

$$
\left\|U_{\varphi}z(t,x)-U_{\varphi}z(\bar{t},\bar{x})\right\|\leq d_1\|x-\bar{x}\|+\left|\int\limits_{t}^{\bar{t}}\omega(\tau)\,d\tau\right|.\tag{15}
$$

It follows from (14) and (15) that $U_{\varphi}z \in Y_{c,\varphi}[\omega,d]$ which completes the proof of the lemma **U**

Next we will show that there exists exactly one solution of problem (1) - (2) . The solution is local with respect to *t.*

Theorem 3.4. Suppose that Assumptions $H[X]$, H_0 , $H[\varrho]$ and $H[f]$ are satisfied. *Then there are* $(d_0, d_1) = d \in \mathbb{R}^2_+$, $c \in (0, a]$ and $\omega \in L([0, c], \mathbb{R}_+)$ such that problem $(1) - (2)$ *has exactly one solution* $u \in Y_{c,\varphi}[\omega,d].$ bblem (1) - (2).
 d H[*f*] are satis
 (o, d] is a solution
 (o, y)||
 (o, y)||
 (o, y)||
 d

If $\bar{\varphi}: (-\infty, 0] \times \mathbb{R}^n \to B$ satisfies Assumption H₀ and $\bar{u} \in Y_{c,\varphi}[\omega, d]$ is a solution of
 If $\bar{\varphi}: (-\infty, 0] \times \mathbb{R}^n \to B$ satisfies Assumption H₀ and $\bar{u} \in Y_{c,\varphi}[\omega, d]$ is a solution of
 ition (1 *equation (1) with the initial condition* $z = \bar{\varphi}$ on $(-\infty, 0] \times \mathbb{R}^n$, then there is $\Lambda_c \in \mathbb{R}_+$ *such that*

$$
||u-\bar{u}||_{[0,t;\mathbb{R}^n]} \leq \Lambda_c \Big[||\varphi-\bar{\varphi}||_{(X,\infty)} + \sup_{y\in\mathbb{R}^n} ||\varphi(0,y)-\bar{\varphi}(0,y)|| \Big] \qquad (16)
$$

where $t \in [0, c]$ *.*

Proof. Lemma 3.3 shows that there are $(d_0, d_1) = d, c \in (0, a]$ and $\omega \in L([0, c], \mathbb{R}_+)$ such that $U_{\varphi}: Y_{c,\varphi}[\omega, d] \to Y_{c,\varphi}[\omega, d]$. Write where $t \in [0, c]$.
 Proof. Lemma 3.3 shows that there are $(d_0, d_1) = d, c \in ($

such that $U_{\varphi}: Y_{c,\varphi}[\omega, d] \to Y_{c,\varphi}[\omega, d]$. Write
 $\lambda_c = K(1 + \Gamma_c) \int_0^c \beta(\tau, \kappa_0) d\tau$

where Γ_c is given by (13). Let $c \in (0, a]$ be such a

$$
\lambda_c = K(1+\Gamma_c)\int\limits_0^c \beta(\tau,\kappa_0)\,d\tau
$$

where Γ_c is given by (13). Let $c \in (0, a]$ be such a constant that $\lambda_c < 1$. Now we prove

$$
||U_{\varphi}z(t,x) - U_{\varphi}\tilde{z}(t,x)|| \le L ||g[z](0,t,x) - g[\tilde{z}](0,t,x)||
$$

+
$$
\int_0^t \beta(\tau,\kappa_0) \Big[||g[z](\tau,t,x) - g[\tilde{z}](\tau,t,x)||
$$

+
$$
||z_{(\tau,g[z](\tau,t,x))} - \tilde{z}_{(\tau,g[z](\tau,t,x))}||_X \Big] d\tau.
$$

The estimate

$$
||z_{(\tau,g[z](\tau,t,x))} - \tilde{z}_{(\tau,g[z](\tau,t,x))}||_X
$$

$$
\leq (Kd_1 + M\tilde{L}) ||g[z](\tau,t,x) - g[\tilde{z}](\tau,t,x)|| + K||z - \tilde{z}||_{[0,\tau;\mathbb{R}^n]}
$$

and Lemma 2.1 imply

Hyperbolic Functional-Differential Equations
\nand Lemma 2.1 imply
\n
$$
||U_{\varphi}z(t,x) - U_{\varphi}\tilde{z}(t,x)|| \leq K(1+\Gamma_c) \int_{0}^{t} \beta(\tau,\kappa_0)||z - \tilde{z}||_{[0,\tau;\mathbb{R}^n]}d\tau
$$
\nfor all $(t,x) \in [0,c] \times \mathbb{R}^n$, and consequently
\n
$$
||U_{\varphi}z - U_{\varphi}\tilde{z}||_{[0,c;\mathbb{R}^n]} \leq \lambda_c ||z - \tilde{z}||_{[0,c;\mathbb{R}^n]}.
$$
\nBy the Banach fixed point theorem there exists a unique solution $u \in Y_{c,\varphi}[\omega,d]$ of the equation $z = U_{\varphi}z$.
\nNow we prove that u is a solution of (1). We have proved that

for all $(t, x) \in [0, c] \times \mathbb{R}^n$, and consequently

$$
||U_{\varphi}z - U_{\varphi}\tilde{z}||_{[0,c;\mathbb{R}^n]} \leq \lambda_c ||z - \tilde{z}||_{[0,c;\mathbb{R}^n]}.
$$

By the Banach fixed point theorem there exists a unique solution $u \in Y_{c,\varphi}[\omega,d]$ of the equation $z = U_{\varphi} z$.

Now we prove that *u* is a solution of (1). We have proved that

$$
\begin{aligned}\n\mathbf{F} &= \begin{bmatrix}\n\mathbf{0},c \\
\mathbf{0}\n\end{bmatrix} \times \mathbb{R}^{n}, \text{ and consequently} \\
& \|\mathbf{U}_{\varphi}z - U_{\varphi}\tilde{z}\|_{[0,c;\mathbb{R}^{n}]} \leq \lambda_{c} \|z - \tilde{z}\|_{[0,c;\mathbb{R}^{n}]}.\n\end{aligned}
$$
\neach fixed point theorem there exists a unique solution $u \in Y_{c,\varphi}[\omega,d]$ of the $= U_{\varphi}z$.

\nProve that u is a solution of (1). We have proved that

\n
$$
u(t,x) = \varphi(0,g[u](0,t,x)) + \int_{0}^{t} f(\tau,g[u](\tau,t,x), u_{(\tau,g[u](\tau,t,x))}) d\tau \qquad (17)
$$
\n
$$
\mathbf{F}^{n} \cdot \text{For given } x \in \mathbb{R}^{n} \text{ let us put } \eta = g[u](0,t,x). \text{ It follows that } g[u](\tau,t,x) = \text{for } \tau \in [0,c] \text{ and that } x = g[u](t,0,\eta). \text{ The relations } \eta = g[u](0,t,x) \text{ and } 0, \eta \text{ are equivalent for } x, \eta \in \mathbb{R}^{n}. \text{ It follows from (17) that}
$$
\n
$$
u(t,g[u](t,0,\eta)) = \varphi(0,\eta) + \int_{0}^{t} f(\tau,g[u](\tau,0,\eta), u_{(\tau,g[u](\tau,0,\eta))}) d\tau \qquad (18)
$$
\n
$$
\mathbf{F} &[0,c] \times \mathbb{R}^{n} \cdot \text{By differentiating (18) with respect to } t \text{ and by using the}
$$

on $[0, c] \times \mathbb{R}^n$. For given $x \in \mathbb{R}^n$ let us put $\eta = g[u](0, t, x)$. It follows that $g[u](\tau, t, x) =$ $g[u](\tau,0,\eta)$ for $\tau \in [0,c]$ and that $x = g[u](t,0,\eta)$. The relations $\eta = g[u](0,t,x)$ and $x = g[u](t,0,\eta)$ are equivalent for $x, \eta \in \mathbb{R}^n$. It follows from (17) that

$$
u(t,g[u](t,0,\eta)) = \varphi(0,\eta) + \int_{0}^{t} f(\tau,g[u](\tau,0,\eta),u_{(\tau,g[u](\tau,0,\eta))})d\tau
$$
 (18)

where $(t, \eta) \in [0, c] \times \mathbb{R}^n$. By differentiating (18) with respect to t and by using the transformation $\eta = g[u](0, t, x)$ which preserves sets of measure zero, we obtain that *u* satisfies equation (1) for almost all $(t, x) \in [0, c] \times \mathbb{R}^n$. It follows from (11) that *u* satisfies also condition (2).

Now we prove relation (16). If $u = U_{\varphi} u$ and $\bar{u} = U_{\bar{\varphi}} \bar{u}$, then

$$
||u(t, x) - \bar{u}(t, x)||
$$

\n
$$
\leq \sup_{y \in \mathbb{R}^n} ||\varphi(0, y) - \bar{\varphi}(0, y)|| + L ||g[u](0, t, x) - g[\bar{u}](0, t, x)||
$$

\n
$$
+ \int_0^t \beta(\tau, \kappa_0) \Big[\bar{d} ||g[u](\tau, t, x) - g[\bar{u}](\tau, t, x)||
$$

\n
$$
+ K ||u - \bar{u}||_{[0, \tau; \mathbb{R}^n]} + M ||\varphi - \bar{\varphi}||_{(X, \infty)} \Big] d\tau
$$

where $(t, x) \in [0, c] \times \mathbb{R}^n$. Put

$$
J_0
$$

+ K ||u - \bar{u} ||_[0, r; \mathbb{R}^n] + M ||\varphi - $\bar{\varphi}$ ||_(X, \infty)] $d\tau$

$$
x) \in [0, c] \times \mathbb{R}^n
$$
. Put

$$
A_c = (1 + \Gamma_c)M \int_0^t \beta(\tau, \kappa_0) d\tau \quad and \quad \gamma(t) = K(1 + \Gamma_c) \beta(t, \kappa_0).
$$

Then we get the integral inequality

 $||u - \bar{u}||_{[0,t;\mathbb{R}^n]}$

get the integral inequality
\n
$$
- \bar{u} \Vert_{[0,t;\mathbb{R}^n]}
$$
\n
$$
\leq \sup_{y \in \mathbb{R}^n} \Vert \varphi(0,y) - \bar{\varphi}(0,y) \Vert + A_c \Vert \varphi - \bar{\varphi} \Vert_{(X,\infty)} + \int_0^t \gamma(\tau) \Vert u - \bar{u} \Vert_{[0,\tau;\mathbb{R}^n]} d\tau
$$

for all $t \in [0, c]$. It follows from the Gronwall inequality that we have estimate (16) for $\Lambda_c = \exp[\int_0^c \gamma(\tau) d\tau]$. This completes the proof of the theorem **I**

4. Phase spaces

We give examples of spaces X satisfying Assumption H[X].

Example 4.1. Let X be the class of all function $w : (-\infty, 0] \times [-r, +r] \rightarrow B$ which are uniformly continuous and bounded on $(-\infty,0] \times [-r,+r]$. For $w \in X$ we write

$$
\|w\|_X = \sup \Big\{ \|w(\tau,s)\| : (\tau,s) \in (-\infty,0] \times [-r,+r] \Big\}.
$$

Let $X_L \subset X$ denote the set of all $w \in X$ such that

$$
\|w\|_X = \sup\left\{\|w(\tau, s)\| : (\tau, s) \in (-\infty, 0] \times [-r, +r]\right\}.
$$

$$
X_L \subset X \text{ denote the set of all } w \in X \text{ such that}
$$

$$
|w|_L = \sup\left\{\frac{\|w(\tau, s) - w(\tau, \bar{s})\|}{\|s - \bar{s}\|} : (\tau, s), (\tau, \bar{s}) \in (-\infty, 0] \times [-r, +r]\right\} < +\infty.
$$
 (19)

Write $||w||_{X_L} = ||w||_X + |w|_L$ where $w \in X_L$. Then Assumption H[X] is satisfied.

Example 4.2. Let X be the class of all functions $w: (-\infty, 0] \times [-r, +r] \rightarrow B$ such that

(i) *w* is continuous and bounded on $(-\infty, 0] \times [-r, +r]$

(ii) the limit $\lim_{t\to-\infty} w(t,x)$ exists uniformly with respect to $x \in [-r, +r]$. Let

$$
||w||_X = \sup \Big\{ ||w(\tau,s)|| : (\tau,s) \in (-\infty,0] \times [-r,+r] \Big\}.
$$

Let $X_L \subset X$ denote the class of all $w \in X$ such that the Lipschitz condition (19) is satisfied. Write $||w||_{X_L} = ||w||_X + |w|_L$ where $w \in X_L$. Then Assumption H[X] is satisfied. and bounded on $(-\infty, 0] \times [-r, +r]$
 $\infty w(t, x)$ exists uniformly with respect
 $\sup \{ ||w(r, s)|| : (\tau, s) \in (-\infty, 0] \times [-t, t, s] \}$
 ∞ and ∞ in $\{ ||w||_X + |w||_L \}$ where $w \in X_L$. Then $\gamma : (-\infty, 0] \to (0, +\infty)$ be a conting
 $\gamma : (-\infty$ *iiwiix* = sup *ii w(r,* s)Ii . *(7, S)* E (—oo,0] x *[—r, +r] { 7(T) I -*

Example 4.3. Let γ : $(-\infty, 0] \rightarrow (0, +\infty)$ be a continuous function. Assume also that γ is non-increasing on $(-\infty,0]$. Let X be the space of continuous functions $w: (-\infty,0] \times [-r,+r] \to B$ for which

$$
\lim_{r \to \infty} \frac{\|w(\tau, x)\|}{\gamma(\tau)} = 0 \qquad (x \in [-r, +r]).
$$

Put

$$
||w||_X = \sup \left\{ \frac{||w(\tau,s)||}{\gamma(\tau)} : (\tau,s) \in (-\infty,0] \times [-r,+r] \right\}.
$$

Denote by $X_L \subset X$ the set of all $w \in X$ such that

$$
|w|_{\gamma.L}=\sup\left\{\frac{\|w(\tau,s)-w(\tau,\bar{s})\|}{\gamma(\tau)\|s-\bar{s}\|}:(\tau,s),(\tau,\bar{s})\in(-\infty,0]\times[-r,+r]\right\}<+\infty.
$$

For $w \in X_L$ put $||w||_{X_L} = ||w||_X + |w|_{\gamma,L}$. Then Assumption H[X] is satisfied.

Example 4.4. Let $\delta \in \mathbb{R}_+$ and $p \ge 1$ be fixed. Denote by X the class of all functions $w: (-\infty, 0] \times [-r, +r] \rightarrow B$ such that $\limsup_{x \to \infty} \frac{1}{x} \cdot \limsup_{x \to \infty} \frac{1}{x} \cdot$

- (i) *w* is continuous on $[-\delta, 0] \times [-r, +r]$
- $\lt +\infty$

(iii) $w(t, \cdot) : [-r, +r] \to B$ is continuous for $t \in (-\infty, -\delta]$.

Write

Hyperbolic Functional-Differential Eq
\n
$$
[-r, +r] \rightarrow B \text{ is continuous for } t \in (-\infty, -\delta].
$$
\n
$$
\|w\|_X = \sup \left\{ \|z(\tau, s)\| : (\tau, s) \in [-\delta, 0] \times [-r, +r] \right\}
$$
\n
$$
+ \sup \left\{ \left(\int_{-\infty}^{-\delta} \|w(\tau, x\|^p d\tau) \right\}^{1/p} : x \in [-r, +r] \right\}.
$$
\nbe the set of functions $w \in X$ such that the Lipschitz c

Let $X_L \subset X$ be the set of functions $w \in X$ such that the Lipschitz condition (19) is satisfied. Write $||w||_{X_L} = ||w||_X + |w|_L$ where $w \in X_L$. Then Assumption H(X) is satisfied.

Remark 4.5. Differential equations with a deviated argument and differentialintegral equations can be obtained from equation (1) by specializing operators ρ and *1.*

Remark 4.6. It is important in our considerations that we have assumed the Lipschitz condition for given functions on some special function spaces. More precisely, we have assumed that the functions $\rho(t,.)$ and $f(t,.)$ satisfy the Lipschitz condition on the space $\mathbb{R}^n \times X_L$ for almost all $t \in [0, a]$, and the condition is local with respect to the functional variable. ith a deviated argument and differential-

aation (1) by specializing operators ρ and

siderations that we have assumed the Lip-

special function spaces. More precisely, we
 $P(t, \cdot)$ satisfy the Lipschitz condition on in (1) by specializing operators
ations that we have assumed that
al function spaces. More precis
satisfy the Lipschitz condition
condition is local with respect
 f . Suppose that there is $P \in \mathbb{R}$
 $-\bar{x} \parallel + \Vert w - \bar{w} \Vert_X$

Let us consider simplest assumption on ϱ and f . Suppose that there is $P \in \mathbb{R}_+$ such for almost all $t \in [0, a]$ we have
 $\|\varrho(t, x, w) - \varrho(t, \bar{x}, \bar{w})\| \le P[\|x - \bar{x}\| + \|w - \bar{w}\|]x]$ (20)
 $\|f(t, x, w) - f(t, \bar{x}, \bar{w})\| \le P[\|x$ that for almost all $t \in [0, a]$ we have $\begin{aligned} \text{obtest assumption on }\varrho\text{ and}\\ \text{0, a] we have}\ x, w) - \varrho(t,\bar{x},\bar{w}) \|\leq P[\|x\|^2],\ x, w) - f(t,\bar{x},\bar{w}) \|\leq P[\|x\|^2], \end{aligned}$

$$
\| \varrho(t, x, w) - \varrho(t, \bar{x}, \bar{w}) \| \le P[\| x - \bar{x} \| + \| w - \bar{w} \|_{X}] \tag{20}
$$

$$
|| f(t, x, w) - f(t, \bar{x}, \bar{w}) || \leq P[||x - \bar{x}|| + ||w - \bar{w}||] \tag{21}
$$

where $(x, w), (\bar{x}, \bar{w}) \in \mathbb{R}^n \times X$. Of course, our results are true if we assume (20), (21) instead of (3), (12).

Now we show that formulations (3), (12) are important. We show that there is a class of quasilinear equations satisfying (3), **(12)** but not satisfying (20), (21). Let *X* and X_L be the spaces given in Example 4.1. Consider the equation with a deviated argument Now we show that formulations (3), (12) are important. We show that there is a
 S of quasilinear equations satisfying (3), (12) but not satisfying (20), (21). Let *X*
 X_L be the spaces given in Example 4.1. Consider

$$
D_{t}z(t,x)+\sum_{i=1}^{n}\tilde{\varrho}_{i}(t,x,z(\psi_{0}(t),\psi(t,x)))D_{x_{i}}z(t,x)=\tilde{f}(t,x,z(\psi_{0}(t),\psi(t,x)))
$$
 (22)

where

 Δ and Δ and Δ

$$
E_{\lambda} x, z(\psi_0(t), \psi(t, x))) D_{x_i} z(t, x) = \tilde{f}(t, x, z(t))
$$

$$
\tilde{\varrho} = (\tilde{\varrho}_1, \dots, \tilde{\varrho}_n) : [0, a] \times \mathbb{R}^n \times B \to \mathbb{R}^n
$$

$$
f : [0, a] \times \mathbb{R}^n \times B \to B
$$

$$
\psi_0 : [0, a] \to (-\infty, a]
$$

$$
\psi : [0, a] \times \mathbb{R}^n \to \mathbb{R}^n.
$$

We assume that $\psi(t) \leq t$ and $-r \leq \psi(t, x) - x \leq +r$ for $(t, x) \in [0, a] \times \mathbb{R}^n$. We get (22) by putting in (1)

$$
\begin{aligned}\n\dot{\varrho}(t,x,w) &= \tilde{\varrho}\big(t,x,w\big(\psi_0(t)-t,\psi(t,x)-x\big)\big) \\
f(t,x,w) &= \tilde{f}\big(t,x,w\big(\psi_0(t)-t,\psi(t,x)-x\big)\big).\n\end{aligned}
$$

From now we consider the function ϱ only. Suppose that there are $\bar{C}, \tilde{C} \in \mathbb{R}_+$ such that

For the function
$$
\varrho
$$
 only. Suppose that there are $\|\tilde{\varrho}(t,x,\zeta) - \tilde{\varrho}(t,\bar{x},\bar{\zeta})\| \leq \bar{C} [\|x-\bar{x}\| + \|\zeta - \bar{\zeta}\|]$.

\n $\|\psi(t,x) - \psi(t,\bar{x})\| \leq \tilde{C} \|x - \bar{x}\|$.

It is evident that for $(x,w),(\bar{x},\bar{w})\in \mathbb{R}^n\times X_L[\kappa]$ and for almost all $t\in [0,a]$ we have

$$
\|f(x,y)-f(x)-f\| = \varepsilon \|\varepsilon - \varepsilon\|.
$$

At that for $(x, w), (\bar{x}, \bar{w}) \in \mathbb{R}^n \times X_L[\kappa]$ and for almost all $t \in [0, a]$

$$
\|\varrho(t, x, w) - \varrho(t, \bar{x}, \bar{w})\| \leq \bar{C} \left[1 + \kappa(1 + \tilde{C})\right] \|x - \bar{x}\| + \bar{C} \|w - \bar{w}\|_X.
$$

Then condition (3) is satisfied.

We see at once the the function $\rho(t, \cdot)$ does not satisfy the global Lipschitz condition (20) for $(x, w), (\bar{x}, \bar{w}) \in \mathbb{R}^n \times X$. Similar consideration apply to f.

References

- [1] Brandi, P. and R. Ceppitelli: *Existence, uniqueness and continuous dependence for a first order nonlinear partial differential equation in a hereditary structure.* Ann. Polon. Math. 47 (1986), 121 - 136.
- *[2] Czlapiñski, '1'.: On the existence of generalized solutions of nonlinear first order partial differential-functional equations in two independent variables.* Czech. Math. J. 41(1991), $490 - 506$.
- *3] Czlapiñski, T.: On the mixed problem for quasilinear partial differential-functional equations of the first order. Z.* Anal. Anw. 16 (1997), 464 - 478.
- *[4] Hino, Y., Murakami, S. and T. Naito: Functional Differential Equations with Infinite Delay.* Lect. Notes Math. 1473 (1991), 1 - 317.
- *[5] Jaruszewska* Walczak, D.: *Existence of solutions of first order partial differential-functional equations.* Boll. Un. Mat. Ital. (7),4 - B (1990), 57 - 82.
- *[6] Kamenskii, C. A. and A. D. Myshkis: Mixed functional-differential equations.* NonI. Anal.: TMA 30 (1997), 2577 - 2584.
- *[7] Kamont, Z.: On the Chaplygin method for partial differential-functional equations of the first order.* Ann. Polon. Math. 37 (1980), 27 - 46.
- *[8) Kamont, Z. and H. Leszczyñski: Uniqueness result for the generalized entropy solutions to the Cauchy problem for first-order partial differential-functional equations. Z.* Anal. Anw. 13 (1994), 477 - 491.
- [9] Lakshmikantham, V., Wan Li Zhi and Zhang Bing Gen: *Theory of Differential Equations with Unbounded Delay.* Dordrecht: Kluwer Acad. PubI. 1994.
- [10] Leszczyński, H.: On CC-solutions to the initial-boundary value problem for first order *partial differential-functional equations.* Rend. Math. 15 (1995), 173 - 190.
- *[11] Przdka, K.: Difference methods for non-linear partial differential-functional equations of the first order.* Math. Nachr. 138 (1988), 105 - 123.
- *[12] Szarski, J.: Generalized Cauchy problem for differential-functional equations with first* order partial derivatives. Bull. Acad. Polon. Sci., Ser. sci. math. astr. phys. 24 (1976), $575 - 580.$
- *[13] Topolski, K.: On the uniqueness of viscosity solutions for first order partial differentialfunctional equations.* Ann. Polon. Math. 59 (1994), 65 - 75.
- [14) Turo, J.: *A boundary value problem for hyperbolic systems of differential-functional equations.* Nonlin. Anal.: TMA 13 (1989), 7 - 18.
- *[15] Walter, W.: Functional differential equations of the Couchy-Kovalevsky type.* Aeqat. Math. 28 (1985), 102 - 113.

 \sim

 $\overline{}$

 $\alpha=1$

Contract

 α , and α , and α , and α

 $\bar{\Lambda}$

Received 24.08.1998

 $\hat{\boldsymbol{\cdot} }$

L.