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Frequent Oscillation
of a Class of Partial Difference Equations

C. J. Tian and B. G. Zhang

‘Abstract. This paper is concerned with the partial difference equation-
Am+l.n + Am,n+l - am,nAm,n + pm,nrAm—’k,n-r—l =0

where k and ! are non-negative integers, {@m,» } and {pm.» } are real double sequences. Frequent
oscillation criteria of this equation are obtained.
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1. Introduction
We consider the partial difference equation
Am+l,n + Am,n+l - am,uAm,n + pm,nAm—k,n—l =0 (11)

where {@m n} and {pm, n} are real double sequences, m and n are non-negative integers,
k and [ are positive integers. Equation (1.1) with @, = 1 has been studied in [2, 6, 8
- 11). Partial difference equations arise from considerations of random walk problems,
the study of molecular orbits [5], mathematical physics problems (8], and numerical
difference approximation problems (1, 4]. Difference equation (1.1) can be obtained
from the difference approximation of a class of delay partial differential equation of the
form (see [4])

2 2
e+ 5 +9(mvuleu(ey — o0 u(e — ) ulz — iy o)) =0

The oscillation of the above delay partial differential equation has been investigated by
Tramov [7].

By a solution of equation (1.1) we mean a double sequence { A, »} which is defined
for m > —k and n > —! and satisfies (1.1) for m > 0 and n > 0.
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The usual concept of oscillation of a sequence {Am n} is the following: A solution
{Ai ;} of equation (1.1) is said to be eventually positive if A; ; > 0 for all large 7 and 7,
and it is said to be oscillatory if it is neither eventually positive nor eventually negative.

However, the above definitions does not catch all the fine details of an oscillatory
sequence. A strengthened oscillation which is called frequent oscillation has been posed
by Tian et al. in [6]. In the present paper we will discuss frequent oscillation of solutions
of equation (1.1).

2. Preparatory lemmas

For the sake of completeness, we list the following definitions which have been given in
(6)-

The set {1,2,---} will be denoted by N and the set of integers by Z. An element
of Z = Z x Z is called a lattice point. Let Q be a set of lattice points, i.e. Q C Z2.
The size of such set Q will be denoted by |2|. Given integers m and n, the translation
operators X™ and Y are defined by

X" = {(i+m,j) €2 (i,5) € R} and Y"Q={(i,j+n) €2 (j)€ R},

respectively. Let «,f and 7,7 be integers such that @« < # and ¥ < 7. The union
zfi:a Z;=,7X‘Yj9 is called a derived set of Q. Thus (see [6])

B
(i,5) € 22\ > ) x'vin
i=a j=v

) (2.1)
(i—k,j—-0)€Z*\Q for a<k<PBandy<I<r
Definition 2.1. Let Q be a set of lattice points and
Qimn) — {(i,j) €2t <mandj<n}

If
|Qmsn)|

limsup
m,n—oco NN
exists, then this limit denoted by u*(2) will be called the upper frequent measure of .
Similarly, if
|Q(m,n)|

lim inf
m,n—oo mn
exists, then this limit denoted by p.(Q) will be called the lower frequent measure of Q.
If u* = p., then the common limit denoted by u(2) will be called the frequent measure
of Q.

Definition 2.2. Let X = {z,;} be a real double séquenceﬁ If u*(X €0) =0, then
the sequence X is said to be frequently positive, and if u*(X > 0) = 0, then X is said to
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be frequently negative. The sequence X is said to be frequently oscillatory if it is neither
frequently positive nor frequently negative.

Obviously, if a double sequence is eventually positive, then it is frequently positive,
and if it is eventually negative, then it is also frequently negative. Thus, if the sequence
is frequently oscillatory, then it is oscillatory.

Definition 2.3. Let X be a real double sequence. If u*(X < 0) < w, then X is
said to be frequently positive of upper degree w, and if p*(X > 0) < w, then X is said
to be frequently negative of upper degree w. The sequence X is said to be frequently
oscillatory of upper degree w if it is neither frequently positive nor frequently negative
of the same upper degree w. The concept of frequently positivity of lower degree etc.
is similarly defined by means of p..

In order to show the difference of frequent oscillation and usual oscillation, let us
see the following two examples in one dimension [6].

Example 2.1. Consider the sequence
X={.’L'k}:‘;]={1,1,1,—1,1,1,1,—1,~~}, (2.2)

Since p.(X < 0) =1 and p. (X >0) = %, thus X is frequently positive of lower degree

41, frequently negative of lower degree i’-, and frequently oscillatory of lower degree %

Example 2.2. The sequence

{-1 ifk=2" (neN)
Ty =

+1 otherwise

is oscillatory, and frequently positive.

To prove our main results we need several preparatory results. The first three
lemmas to show basic properties of frequency measures are taken from [6].

Lemma 2.1. Let Q,T C N2. Then
(@ +T) < () + (D). (2.3)
Furthermore, if Q and T are disjoint, then

pe() + pe(T) S pa(Q+T) < po(02) + p*(T) < p™(Q+T) < p7(Q) + p*(T).

From Lemma 2.1 we can get
w@eN\R=1 (e

for any subset § of N2.
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Lemma 2.2. Let QI C N2, If 4*(Q) + pu(T) > 1, then QNT is an infinite set.

Lemma 2.3. Let @ C N? and let a,8 and v, 7 be integers such that o < f and
v < 7. Then

B T
/"(ZZX‘ijl) SB-a+1)(7T—7+ 1) (Q)

i=a j=v

and

5 - _
#'(ZZXinQ) SB-a+l)(r—y+1)p"(Q)

i=o j=1

Lemma 2.4. Assume that {Am .} is @ solution of equation (1.1) such that

me{m—-2k,....m+71}
Ann >0 for

ne{n-2l,...,n+71)}
: me{m—k,...,m+71}
Pan>2p>0 and 0<amn.<a for
ne{n-Il,...,n+7}

where Tt > k, it > | and T > 2 are positive integers. Then

T+1

- 1 .
@ Ama > Y ClyyAmirsiointi
1=0

+(r+1)p Y ClAmirok—jatimt
7=0
i—1

.
_2 c—r—3 ]
+p Zza’ 'ZC,']_lAﬁ+x'—l—j—2k.ﬁ+j—2lo
i=1 =0

Proof. From (1.1), we have

Ami1,n + Ama1 + PiaAm—ka—1 = Gmadma < @GAma

’

and, forme {m—k,...,m+r}andne {R—1,...,n+ 71},

Am+l,n + Am,n+l +pm,nAm—k,n—l < am,nAm,n < a-Am n

Therefore,

Amy2,a + Amt1p41 + Prt1,adme1—ka—l = Gmtl,admtra < 8Amsra
Avig1,ne1 + Am a2 + Prat1 Ami—kat1-1 = Gmas1Amat: S GAm a1

Amir—ka—t + Am—ka+1-1 + Pr—ka—1Am-2k,0-21 < BAm—k a—1-
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From the last three inequalities, we have

a*Ama > a(Amrra + Amasr + P Am—k,n-t)
> Ami2,a + 2Am41,a+1 + Amate + (Pm1,a + Pma) Am 1 —k i
+ (pm.a+1 + P )Am—k,a+1-1 + D aPr—k,a-tAm-2k,0—21,

l.e.

2
-2 .
@ Ama > E CrAmt2—in+i

1=0
1
+ 2132 ClAmsr—k—ja+jt
=0
1 i
e i . .
+p Z wa ! Z Cl | Amyici—j-2k,n4j-21-
i=1 J=0

From (1.1) we obtain-

Amis,n + Ams2,a+1 + Prt2.nAmi2—kn—t S 8GAmi2n

IN

Amtz,a41 + Amprne2 + DAL at1 Amti—kat+1 -1 S GAmg a4

IA

Amy,a+2 + Amaes + PmareAm-kar2—1 < GAm g2

N

Ami2—ka-t + Amt1—kat1-1 + Prt1—-ka—tAmt1—2k,a-21 < QAmy1—k,a-1

IN

Amt1-kat+1-1 + Am—kat2—1 + Pm—kat1-1Am—2k,a+1-21 < GAm_k,nt+1-1-

Hence

a’Ama > Amtan + 3Amiz.at + 34mpr a4z + Aﬁ,ﬁ;{-J
+ (pm+2,a + P41, + Pma)Ams2—k,n-l
+ (2pm+1,a+1 + Pm+1r,n + Pratr + 2w n) Amt 1k a1 -1 (2.5)
+ (pm,a+2 + Pm,a+1 + Pm,a) Am—kat2-1
+ ap? Am—2k,n—21 + 2D° Amti—2k.n—21 + 25" Am—2k nd1-21.

In view of the conditions of Lemma 2.4, we have

3
@’ Ama 2 z C3Amss—inti

i=0
2 -
+3p Z C Amga—k—jatj—t

J=0
2 i~1

L s2 g i oo
+p Zla g Cl_ Amtici—j—2ka+j—21

i=1 j=0
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Assume that

T .
—r 1
a"Ama 2 ) CrAmyr_iati
1=0

r—1
= J
+ 7P E Cr 1 Ampr—1—k—jatj-l
j=0
i-1

Cor=—1
-2 e —f=1 y
+p° Y i@ N O Amici-jozk ad o2t
i=1 j=0

Then,for 0 <:<7and 0 <j <t -1, we have

Aigr+1-iat+i + Amgrointi+i + PAmbr—k—iati—t < QAmgpr—inti
Ampr—k—jatj-1

+Amipr_1—k—jati1+j-t + PAmyr_1-2k—jatj—2 S BAmyr1—k—jatj—1-

Thus

> C; (Am+r+1-i,n+i + Amyr—iat1+i + ﬁAm+r—k—.’,ﬁ+i—1)
1=0

r—1
+7p Z cl_, (A’ﬁ+r—k—j,ﬁ+j—l
i=0

+ Amtro1-k—jat1+j-1 + ﬁAm+r-1—zk—j,a+j—21)
Cr=1 i—1
_2 . r—i j
+p Zwr ! E Cl_ | Amyici—j—2k,n4j-21
=1 =0

= Am+r+1,4

-
+ ) CiAmyrsiints
=1
r—1
+ 2 CrAmir—int1+i + Amatr+1
1=0

.
+p Z CrAmyr—k—inti-t + TD| Amtr—k,n—l
=0
T—1
+ Z Ci—lAﬁ+r—k—j,ﬁ+i—l
=1
r—2
+ Z Cl | Amyr—i—k—jns14j—1 + Amoknsr—i
j=0 '



Frequent Oscillation of Difference Equations 117

r—1
2 y
+75° Y Cl_ Amproiak—jntj-al
j=0
r—1 i—1
~2 oT~1 C] A= : . .
+p a =1 m+4i—1—3-2k,a+j-21
i=1 j=0
= Aﬁ+r+1,h

+ ) (CL+ CI ) Amsrsr-iari + Amatrsn

i=1

T
+5Y ClAmpr—kointiot + Tﬁ(Am+r—k,ﬁ-1

=0

r—1 )
+ Z(Ci_, + CIZ)) Amtr—kmjintjot + Am—k,m-r-l)
j=1

T i—1
_2 - i
+p Z ™! Z Cl  Amyro1-2k—ja+j—2
i=1 j=0
r+1
= Z C;+1Aﬁ+r—l—i,ﬁ+i
1=0

+(T+1)p Y CrAmpr—k—jntj=t
=0
i—1

.
_2 . _pei ]
+p E ™! E Cl_ | Amsr-1-2k—ja+j-21-

=1 1=0
The proofv is complete i

The following two lemmas can easily be derived from Lemma 2.4 and their proofs
are thus omitted.

Lemma 2.5. Assume that {Am n} i3 a solution of equation (1.1) such that

me {m-3k,... m+l}
Ann >0 for
ne{n-3l,... a+k)
me {m—2k,...,m+1-1}
Pmn >0 and O0<amn<a for
ne{n-2,... a+k-1)

where ™ > 2k and 7 > 21 are positive integers. Then

{ ket
CipiAma <@ Am_k et
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Lemma 2.6. Assume that {Am,n} is a solution of equation (1.1) such that

me{m—-2k—1,... m+2k+1+1}
Amn >0 for

ne{n-2l—k,. .. ,a+k+20+1}
me{m—k—1,... m+2k+1}

Pmn2>2p and O0<amn<a for
ne{n-—k-1,...,n+k+20})

where M, n > k + | are positive integers. Then
aktitig_ Atk 2 (k+1+ l)pCH,Am a-

for =k <h <L
Lemma 2.7. Assume that the conditions of Lemma 2.4 hold and p = 0. Then

r+1 T—j J
m a2 Zcr+1Am+r+l—l n+i +Z (ZZP_+J n+t> A'n'i+r —k~—jatj—1-

8=0 t=0

Dl

Proof. Asin the proof of Lemma 2.1, we know that inequality (2.5) holds. Assume
that

T—1 L4
(_1 ﬁﬁZZCAm-i-‘r lﬂ+l+Z<

-J

Z me+a,ﬁ+z Amtr—k—j—1,a+j-1-
s=0 t=0
Then, for 0 <:<7and 0<j <71 -1, we have
Ampr—k—jat+j—l + Amsr—ko1—jati+j—1 < @Amar—1—k—ja+j-1
Amirri—ijat+i T Amdr—int14+i + Pitr—iatiAmpreickntict < GAmpr—iati-
Thus
' ar+1Aﬁ' it
T

R
> z C; (Aﬁ+r+1—i,h+i + Ampr—iati4i + Pﬁ+r—i,ﬁ+.‘Aﬁ+r—i—k,ﬁ+i—l)

1=0
r—

1 -1=-3 3
+ ( Z Z DPmi+s n.-H) (Am+r k—jati— I+Am+r—k 1—j,r+145— l)
=0

s=0 t=0

j=
T+1
_Zcr+1Am+r+l |n+t+zcrp_+r tn+|Am+r —i—k,nrti-!
0

= i=0

- —~ r—1-j3 j
+ Zp;ﬁ+s,ﬁAm+r—k,ﬁ-l + Z ( Z Zpﬁ+s,ﬁ+z> Ampr—k—ja+j-!
s=0 =1

s=0 =0

r—2 /r—1—5 j r—1
+ Z Z me+s,ﬁ+t> Asitr—k-1-ja+1+j-1 T ZPH,HtAﬁ—k.ﬁH—l
J=0

=0 =0 t=0
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r+1 T—1
Z Z CriiAmtrsrointi + O PrsreinsiAmbr—icknticl

i=0 =1

+ Pt raAmir—ka—t + P atrrAm—k atr—1
T—1 -1

+Zp_+snAm+r k,n— I+Zp_n+tAm k,a+r—1

=0 t=0
r—1 r=1-3 J r—j3 -1 '
Sy zpm+,n+,+zzpm,n+,) N
j=1 s=0 3=0 t=0
T+1
> Z C,,+1A,,,+r+1—x ati ZP—+3 aAmyr—kn-t
=0 s=0
Cel” .
+Zp_'n+(Am k,atr— I+Z Dmtr— —J,ntj
t=0 1=1
r—1—3 5 r—3J-1
DI HENS 5) D) PR
t=0 $=0 t=0
r+1 T T—j J
2 ClioAmirnimintit ) D Pmtsnart | Amirkojnti—t
=0 )= 3=0 t=0

The proof is complete il

Lemma 2.8. If 0 < am,n < 1 and pm,n 2 0 for all large m and n, then every
non-oscillatory solution of equation (1.1) tends to zero as m,n — oo.

Proof. Assume that {An, .} is an eventually positive solution of equation (1.1).
Then there exist positive integers ™ > —3k and 2 > —3! such that

m > m - 3k
Amn >0 for <.
n>n-—3l
m > m—2k
0<amn<1 and pman=>0 for
C . n2>n-—2l
By Lemma 2.4, for positive integers 71 and 1, we have
A2 Cr‘+rg m4r, Ty
Thus
Amtr ntr S C —0 as 7,7 — oo
nit+r2

The proof is complete B ‘

Lemma 2.9. Assume that for some positive integers m and @1, equation (1.1) has
a solution {Am n} such that
m=3k<m<m+l+k+1

Amn >0
’ f‘"{n—sm <h4k+l+l.
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If
m-2k<m<m+i+k
Pmn 2 0 and 0< aGmn < @ or
n-2l<n<n+k+l
SR mM<m<m+k
Z ZP:’,J’ZB>0 for
i=m—k j=n—| n<n<n+l,
then 4 "
Zmoka-l 2\ o3k+3144
Ama < (B) ¢ )
Proof. It is easy to see that there exists m* such that 71 € {m*~k,...,m"} and
m 7 B m A B
_ Z . .Z_:lp"j 25 and Z_ .lel',j 25
t=m* ~k j=n— V=7 j=f—-

By Lemma 2.7, we have

am —ﬁ+1+1Am _

m*-m
Z Zpﬁ+sn+l I)Am‘—kn l> Am‘—kn {

=0 =0

NCO

and

(—l'ﬁ—m +k+l+1A ke [ >

( Z me —k+s,n— I—H)Am k- l> gAm k,n—1.

t=0

Thus Br2
T (5) a-k-2-24_ .
Similarly, there exists n* such that 7 € {n* .,n*} and
m+k n B m+k n*
SO TR 5 S )
i=m j=n*-lI i=m j=n

By Lemma 2.7, we have

. _ -
n® —

. B
_nt—hbk
A A R Z m+3,ﬁ+1) Amope—t 2 EAm,m—l

(

and
k a—n*+! B
S R—n" k441
N Pﬁ+s.""‘+') Amn-t 2 5 Ama-
s=0 (=0
Hence B\2
__l—2k-2
Amn 2 (E) e A .
Therefore
Am—ka-t _ Am—kn-t Am it < (3)453"*3’“
Am,ﬁ Aﬁ,ﬁ—l Aﬁ.ﬁ B

The proof is complete B
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The following fact is also an easy consequence of Lemma 2.4 and its proof is thus
omitted.

Lemma 2.10. Assume that for positive integers W, 7 and T equation (1.1) has a
solution {Am,n} such that

me{m—k,...m+71}
Amn >0 for
ne{n-1..,n+7}

me{m,....,m+r71}

Pmn 20 and 0 < amn < a for
ne€{n,...,n+71}.

Then
&'A,—,,-,,—, > Aﬁ+r,ﬁ and- (_IrA",ﬁ"ﬁ > Am’ﬁ.*.,—.

3. Main results

Let a = {am,n} and p = {pm,n} be real double sequences.

Theorem 3.1. Assume that p and a are two positive real numbers and w a non-

negative number. Let p*(a > @ ora < 0) = A and p*(p < p) = B. Suppose further
that (k+1+1)!

_(k+1+1)

P pmgrrr 21

and

Qk+1+ 1)@ +k+1)A+B)+Gk+1+2)3l+k+2w < 1.
Then every solution of equation (1.1) is frequently oscillatory of lower degree w.

Proof. Suppose to the contrary there is a frequently positive solution A = {Am n}
of equation (1.1) with lower degree w such that yp.(A < 0) < w. In view of Lemmas 2.1
- (2.4) we have

k 1 o
#.(Nz\ Z E X’Y’(a>aorp<[))>

i=—k—l j=—k=I

2k 21
+put <N2\ 3 > X'ri(ag 0))

i=—k—l—1j=—k—l—1

k !
=2—y'( Z Z Xin(a>&orp<ﬁ)>

i=—k—l j=—k—I

2k 21
—#.( > > Xin(ASO))

i=—k—~1—1j=—k—1—-1

>2—(2k+1+ )2+ k+1)p*(a>aorp<p)

— Bk +14+2)3l+ k + 2)u.(A < 0)
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22— (2k+1+1)21+k+1) A+ B) — 3k + 1+ 2)(31 + k + 2)w

> 1.

Hence, by Lemma 2.2,

k ]
(N2\ > Y XVi(e>aorp< ;3))

t=—~k—lj=—~k—1

N(¥\ 2 5 xviaco)

i=—k—1-1j=—k—-Il-1

is an infinite subset of N?, which together with (2.1), imply that there is a lattice point
(m,#) such that

m-2k<m<m+k+i4+1
Amn >0 for

0< Am,n <a and Pmin 2 P for {

By Lemma 2.4, we obtain &"““A-,;;',—, >(k+1+ 1);3C,£+,Aml,—,. Hence

_(k+ 1+ 1)
P gk

which is a contradiction. The proof is complete il
Lemma 3.1. Let k> 0,1 >0,% >0,a >0 and

P =a"t22=2(1 4 0712 where A = 2ki(k + 1)1,

Assume that for some positive integers 71, 7t and T equation (1.1) kas a solution {An )}
such that

m—(r+3)k<i<m+1
Ai; >0 for

n—(t+3)<j<n+k
{m—(r+2)ksz‘5m+1
,

0<ai;<a and p;; 20 fo
! ! a—(r+2)I<j<n+k

Then
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Proof. From (1.1) and Lemma 2.5, we have

Am+1,n + Am,n+l - aAm,n < Am+l.n + Am,n-{-l - am,nAm,n

—Pm, nAm—k,n—l

Ci

Ykt
< =Pmngyr Am

form—-—tk<m<mandfAa—71l<n<n Thus

_k+l - Am-f-l,n + Am,n+l ak+' - 2(Am+l,nAm,n+l)%
Pman S = a— A < C a— A .
Ck+l m,n k+1 m,n

Hence,forﬁ—(r—l)kSmSﬁandﬁ—(r—l)lSn.Sﬁ'wehave

v< o

IA

G 2(Ais1,jAi 1)}
Ai;

)
)

Note that by the inequality between the arithmetic and geometric means and Lemma
2.10 we have

z (Ax-HJ x]+l)
A i,

-k j=n-l ’

1 1
S S (A '+lJ tJ+l)’

»J

H (A,+,,, i ;+1)¥

gt
y

j=n-1

n—1
Aig1,j

1
Am,n - 1 l Am,n W
am—i ai—m+kAm—k.n—I &l Am—k,n—l

Jj=n-l
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k41

_ kz--i#(_Amm )

Am-k,n—l
b
= kg [ Amn )
m—k,n—{
Thus '
Fk+i+1 2 X
Ck-H Am—k,n—l
ie.

vel, \*  a
Am,n <attip=r (1 _ k1) @ £
Am k,n—-1 Yy

Hence in view of (1.1) we have

_ VCiyi
Am+l,n + Am,n+1 - aAm,n < _Pm,nAm—k,n—l < - a
Thus
_atHr . 2(Amt1,nAmni1)? o JTETESm
Pmon = C£+I\I/ Am,n n—rl S n S

¥ < l z Z Pi,j
t=m—kj=n-1|
< atr [ 29 mz_l Z (Aiy ;A ,J+1)’>
< a— — 7
Cl, v K~ Ai;
&k+l+lp

Hence

A
k41 C!, P2 Ak+l 2
Amn 8 () Ch <2 (E)
Y 22

By induction, we can get

Amn @ Tyr M-k<m<m
: < z ( ) for
Am—k,n—l Cl n

The proof is complete i
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In view of Lemma 2.9 and Lemma 3.1, we see that if welet @, 7, ¥ and " = 21‘%%{%;
be positive such that ‘
kIl 4 1 /\r
> -
() 2 (%) (31)

and 7, be positive integers such that

m—(r+2k<i<m+k+1
pi,j =20 and O0<aq;;<a for
A-(r+2)<j<ntk+l

m=1 n-1 m-(r—Dk<m<m+k
- >0 for
S S

i=m—k j=n—1 ii—(r-1l<n<na,
then equation (1.1) has no solution {4, ;}, which satisfies

M—(r+3k<i<m+k+l+1
A.',j>0 for _ . _ .
A-(r+3)<j<n+k+l+1

The follwing theorem now follows easily.

FLEIEE

Theorem 3.2. Assume that A = 2—- ' = W a>0,¢>0,7>0 a.mz
(3.1) holds. Let g = {qmn} be a double sequence defined by

m-— n—1
1 m=k+1,k+2,...
mn = 17 E > pi; or
= i {n=l+1,l+2,....

Assume further that

p*(p <0) =B, u'(a>aora<0)=A4, plg<¥)=D
and
(r+3)k+1+1)((r+3)+k+1)(A+B+D)< 1.
Then equation (1.1) has no frequently posstive solutions.

Proof. Supposing the contrary, let A = {4, ;} be a solution of equation (1.1) such
that u*(A < 0) = 0. By Lemmas 2.1 -. 2.4 we get

(r+3)k (r43)1 o
(NZ\ > X'Y’(ASO))

i=—k—I—1j=—k—1-1

. (r+2)k (r+2)1 o ) _
+u‘(N2\ Z Z X'Y’(aSOora>&orp<Oorq<\il))

t=—k=lj==k=!
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i=—k—lj=—k—I

(r+3)k (r+3)t
—#‘( > X X'Y"<A50)>

t=—k—Il-1j=-k—-Il-1

(r+2)k (r42)1
=2—/£.( Z Z X'Y’(aSOOra>&orp<Oorq<\Il))

22-((T+3)k+1+1)((r +3) +k+1)
X p(a<0ora>aorp<0orgq< V)
—((T+ Dk +1+2)((T+ )+ k+2)u"(A<0)

>2-((r+3)k+1+1)((r +3) +k+1)(A+ B + D)
> 1.
Thus

(r+3)k (r+3)
(Nz\ > > X‘Y’(ASO))

i=—k—Il-1j=—k—-1-1

(r+2)k (r42)0
ﬂ(Nz\ Z Z X'Y’(aSOOra>c‘zorP<00“J<‘I’))

i=—k—l j=—k—l

is an infinite subset of N?. In view of (2.1), we see that there are positive integers m
and 72 such that

m—(r+3)hk<m<m+k+1+1
Amn >0 for
n—(r+3<n<at+k+i+1
m—(r+2k<m<m+k+1
Am,n € (0,&], Pm,n 2 07 dm,n 2 ¥ for
-+ <n<n+k+!
which is a contradiction. The proof is complete B
Corollary 3.1. Assume that
Sk+I+1yA
= 2k and r= 37T A
k+1 2A(1 + A)1+A

and ann =a >0 form,n>0. If ppn >0 and
1 m—-1 n-—1
imintg 2 2 pu>T
i=m—k j=n-~

then every solution of equation (1.1) is frequently oscillatory.

Proof. It is easy to see that there exist 7 > 0 and ¥ > T such that for all large m
and n
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() > g (5"

and (3.1) holds, i.e.

Since
p*(a>aora<0)=0, u'(p<0)=0, (g < ¥)=0,

then .
(r+3k+1+1)((r+3)+k+1)(0+0+0)=0< 1.

By Theorem 3.2, every solution of equation (1.1) is frequently oscillatory i
From Corollary 3.1, the following result is obvious.
Corollary 3.2. Ifamn =1 and pm,a 20, and

m-1 n-1 ' /\,\'

,l,irﬂ_l.not; Z Z Pij > (1 + NI+

i=m—k j=n-!
where A = :—_’;’l, then equation (1.1) has no frequently positive solutions, and hence it
has no eventually positive or eventually negative solutions.
Remark. Corollary 3.2 improves [10: Theorem 3.4].
From Lemma 2.6 we can obtain the following result.

Theorem 3.3. Assume that p and @ are two positive numbers and w is a non-
negative number. Let p*(a < 0 ora > a) = A and p.(p < p) = B. Further assume
that

plk+141),/CH,p 2 a*
and o )
(Bk+21+1)31+2k+1)(A+B)+ (4k + 21+ 2)(4l + 2k + 2)w < 1.
Then every solution of equation (1.1) is frequently oscillatory of‘ upper degree w.

Proof. Without loss of generality, assume that min(k,!) = I. Suppose to the
contrary there is a frequently positive solution A = {A,, »} with upper degree w such
that 4*(A < 0) € w. In view of Lemmas 2.1 - 2.3 and (2.4) we have

k+l k41 o
<N2\ Z X'Y’(aSOora>&orp<ﬁ)>

i=—2k—1 j=—k—2I

2k+41 k+21
fe (Nz\ > Y X'yiac< 0))

i=—2k—1—1 j=—k—=21—1

k+1 k+1 o
=2—,u.( Z Z X'Y’(aﬁOora>&orp<f))

i=—2k—1 j=—k~21

. . 2k+1. 2i+k -
_,p< 3 > x‘yf(A50)>

i=—2k—l-1j=—k=-21-1
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>22-Bk+2l4+1)2k+3l+1)p{a<0ora>aorp<p)
~(4k+20+2)(2k + 4l +2)u"(A<0)

— (Bk+ 21+ 1)(2k + 31 + 1)(A + B) — (4k + 21 + 2)(2k + 4l + 2)w

> 1.

Hence by Lemma 2.2,

K+l k+1 o
(Nz\ Z Z X'Y’(aSOora>&orp<;3))

i=—2k—{ j=—k—2!

2k+1 214k
N <N2 vy Y X'viac< 0)>

i=—2k—l-1 j=—k—2I-1

is an infinite subset of N?, which together with (2.1) implies that there is a lattice point
(7, 7n) such that

Ann>0

‘ me{m—2k—-1,.... m+2k+1+1)}
or
ne{n-2l—k,....a+k+20+1)}
me{m—-k—1I,.... m+2k+1}
for

0<amn<a and pman>p
ne{n—k-1I,...,n+k+21}.

By Lemmas 2.4 and 2.6 we obtain

k+!
a* M Aga > (k14 1)132 ClyiAmst—jntj-t
i=0
20
> (k+14+1)p) ) ClyAmei-jati-i
i=0
21

PPk+1+1)* -
Tk Z CluCrit Amoa

By the inequality E?Lo C,{+,CZI+_,j = C2i ;4 we have

a* i S (k14 1)py/C2L .,

which is a contradiction. The proof is complete B

Example 3.1. Consider the partial difference equation

Am+l,n + Am,n+l - 2Am,n +pm,nAm—l,n—l =0 (32)
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where

i otherwise.

{—1 if m =8k and n =8l (k,l € Ny)
Pmonn =
3

Take 0 € w < %. Since
p(a>20ra<0)=0, p'(p<§)=¢5 1Bxg+3Bw<l, IxH=1,

then by Theorem 3.1 every solution of equation (3.2) is frequently oscillatory of lower
degree w, and hence oscillatory.

Example 3.2. Consider the difference equation

Am+l,n + Am,n+l - Am,n + Pm,nAm—l,n—2 =0 : B (33)
where
p 0 ifm=9kandn =9 (k,l€ Ny)
T 11—2 otherwise.
Then

p*(a<0ora>1)=0 and Be(P < 15) = a5

Taking 0 < w < ﬁ, then 72 x % 4+ 120w < 1 and 11—2 x 4 x \/C% > 1. Therefore by
Theorem 3.3 every solution of equation (3.3) is frequently oscillatory of upper degree w
and hence oscillatory. But Theorem 3.1 is not available here.

References

[1] Agarwal, R. P.: Difference Equations and Inequalities. New York: Marcel Dekker 1992.

(2] Cheng, S. S. and B. G.Zhang: Qualitative theory of partial difference equations. Part I:
Oscillation of nonlinear partial difference equations. Tamkang J. Math. 25 (1994), 279 -
288.

(3] Courant, R., Friedrichs, K. and H. Lewy: On partial difference equations of mathematical
physics. IBM J. 11 (1967), 215 — 234.

[4] Kelley, W. G. and A. C. Peterson: Difference Equations. New York: Acad. Press 1991.

[5) Li, X.-P.: Partial difference equations used in the study of molecular orbits (in Chinese).
Acta Chimica SINICA 40 (1982), 688 - 698.

(6] Tian, C. J., Xie, S. L. and S. S. Cheng: Measures for oscillatory sequences. Comp. Math.
Appl. (to appear).

(7] Tramov, M. L.: Oscillation of partial diffferential equations with deviating arguments (in
Russian). Diff. Uravn. 20 (1984), 721 - 723.

[8] Zhang, B. G. and S. T. Liu: Oscillation of partial difference equations. PanAmer. Math.
J. 5(1995)2, 61 - 70.

[9] Zhang, B. G. and S. T. Liu: On the oscillation of two partial difference equations. J.
Math. Anal. Appl. 206 (1997), 480 - 492.

[10] Zhang, B. G., Liu, S. T. and S. S. Cheng: Oscillation of a class of d-elay partial difference
equations. J. Difference Equ. Appl. 1 (1995), 215 - 226.



130 C. J. Tian and B. G. Zhang

11] Zhang, B. G. and J. S. Yu: Linearized oscillation theorems for certain nonlinear dela
f Y
partial difference equations. Comp. Math. Applic. 35 (1998)4, 111 - 116.

Received 29.04.1998: in revised form 16.12.1998



