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Frequent Oscillation 
of a Class of Partial Difference Equations 

C. J. Tian and B. G. Zhang 

Abstract. This paper is concerned with the partial difference equation 

Am+i, + Am,,.+i - am,,.Am,,. + pm,Am_k,,,.1 = 0 

where k and! are non-negative integers, {am,n} and fPm,n I are real double sequences. Frequent 
oscillation criteria of this equation are obtained. 
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1. Introduction 

We consider the partial difference equation 

Am+i,n + Am,n+i - am,nAm,,. + Pm,nAm_k,n_1 = 0	 (1.1) 

where {am,,.} and {pm,n} are real double sequences, m and n are non-negative integers, 
k and 1 are positive integers. Equation (1.1) with am,,.	1 has been studied in [2, 6, 8
- 11]. Partial difference equations arise from considerations of random walk problems, 
the study of molecular orbits [5], mathematical physics problems [8], and numerical 
difference approximation problems [1, 4]. Difference equation (1.1) can be obtained 
from the difference approximation of a class of delay partial differential equation of the 
form (see [4]) 

32 u a2u 
5X 2	^7y2+ -- +g(x,y,u(x,y),u(x, - i ),u(x - r i ,y),u(x - r2 ,y _ci)) = 0. 

The oscillation of the above delay partial differential equation has been investigated by 
Tramov [7]. 

By a solution of equation (1.1) we mean a double sequence {Am,n} which is defined 
for m —k and n —1 and satisfies (1.1) for rrz 2 0 and n 0. 
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The usual concept of oscillation of a sequence (A,,, , ,,) is the following: A solution 
{A 1, } of equation (1.1) is said to be eventually positive if A , >0 for all large i and j, 
and it is said to be oscillatory if it is neither eventually positive nor eventually negative. 

However, the above definitions does not catch all the fine details of an oscillatory 
sequence. A strengthened oscillation which is called frequent oscillation has been posed 
by Tian et al. in [6]. In the present paper we will discuss frequent oscillation of solutions 
of equation (1.1). 

2. Preparatory lemmas 

For the sake of completeness, we list the following definitions which have been given in 
[6).

The set 11, 2, . .} will be denoted by N and the set of integers by Z. An element 
of V = Z x Z is called a lattice point. Let Q be a set of lattice points, i.e. Q C Z2. 
The size of such set Q will be denoted by JQJ. Given integers in and n, the translation 
operators xm and Y" are defined by 

xtm ci = {(i + m,j) E z2 (i,j) E Q} and }fflQ = {(i,j + n) E Z 2 (i,j) ed), 

respectively. Let a, 0 and -y, ,r be integers such that a	0 and	T. The union 
XYd is called a derived set of Q. Thus (see [61) 

(i,j) E	
'0	

r 
 

i=o j=-1

(2.1) 

(i—k,)—l)EZ2\d for a<k<f3arid-y<l<r. 

Definition 2.1. Let d be a set of lattice points and 

d(m,n) = {(i,j)E Q1  m and  <n}. 

If

lim sup 
mn—co Tifl 

exists, then this limit denoted by 1f(d) will be called the upper frequent measure of Q. 
Similarly, if

liminf iI(m,0)I 
mn—co 7flfl 

exists, then this limit denoted by (d) will be called the lower frequent measure of Q. 
If p' = y., then the common limit denoted by z(d) will be called the frequent measure 
of Q.

Definition 2.2. Let X = {x, , ,} be a real double sequence. If z*(X < 0) = 0, then 
the sequence X is said to be frequently positive, and if i(X > 0) = 0, then X is said to
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be frequently negative. The sequence X is said to be frequently oscillatory if it is neither 
frequently positive nor frequently negative. 

Obviously, if a double sequence is eventually positive, then it is frequently positive, 
and if it is eventually negative, then it is also frequently negative. Thus, if the sequence 
is frequently oscillatory, then it is oscillatory. 

Definition 2.3. Let X be a real double sequence. If 4u(X 0) w, then X is 
said to be frequently positive of upper degree w, and if 1z(X 2 0) w, then X is said 
to be frequently negative of upper degree w. The sequence X is said to be frequently 
oscillatory of upper degree w if it is neither frequently positive nor frequently negative 
of the same upper degree w. The concept of frequently positivity of lower degree etc. 
is similarly defined by means of p. 

In order to show the difference of frequent oscillation and usual oscillation, let us 
see the following two examples in one dimension [6]. 

Example 2.1. Consider the sequence 

X =	= {i,i,i,—i,i,i,i,--i,... }.	 (2.2) 

Since L.(X 0) = and.(X 2 0) = , thus X is frequently positive of lower degree 
-, frequently negative of lower degree, arid frequently oscillatory of lower degree . 

Example 2.2. The sequence

f-i ifk=2Th (nEN) 
Xk = S

1. +-I otherwise 

is oscillatory, and frequently positive. 

To prove our main results we need several preparatory results. The first three 
lemmas to show basic properties of frequency measures are taken from [6]. 

Lemma 2.1. Let ci,r C N2 . Then 

ci + r) <,(c) + ,(r).	 (2.3) 

Furthermore, if Q and r are disjoint, then 

j.(1l) + ,t.(r) :5 .(c1 + [') ç il) +	() <'( 1l + r)	z(5) + ,(r). 

From Lemma 2.1 we can get

p.() + 1 (N2 \ Q) = 1	 (2.4) 

for any subset ) of N2.
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Lemma 2.2. Let Q, I' C N2 . If p(ci) + it. (r) > 1, then ci n r is an infinite set. 

Lemma 2.3. Let ci C N2 and let a,j9 and 7,r be integers such that a fi and 
-y<. Then

/13 

i >J xY3cl) < ( 13 — a + 1)(r — 7 + 1).(ci) 
i=c j=y 

and
/13 r

xiy)Q)	 a + 1)(' -Y + 
i=c j=y 

Lemma 2.4. Assume that {Amn } is a solution of equation (1.1) such that 

fmE tiff —2k,...,wt+r} 
Am,n >0	

for 1nE {n-21,...,n+r} 

Pm,n^P> O and 0<am,nã	
for lflE{h1+} 

where 'I > k, n > 1 and r > 2 are positive integers. Then 

r-4- I 

	

T+IA_ >	f	A a	mn -	r+1 W+r-FI—iñ+i 

+(r + 

+ 2	iä T '	C_IA+_1_j_zk,h+J_21. 

Proof. From (1.1), we have 

+	+pm,nAw_k,n_1 = aw,nA,n 

and, for mE{Wi—k,...,ffI+r} and nE{h—1,...,n+r}, 

Am+i,n + Am,n+i +Pm,nAm_k,n_l :^ aAmn < ãAm,n. 

Therefore, 

A+2n + Am+i,n+i + pm+I,n Am+I_kn_i = aj+i,nAj+in 5 ãAm+,. 

A+1,+ 1 + A n+2 +piin+1Ai_k,n+1_I = ajn+iAn+ i <aAn+i 

Am+I_k,n_, + Aji_k,n+1_1 + pm_k,n_lA i .2k,n_2I <ãAj_,ft_j
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From the last three inequalities, we have 

	

a2 A , ^!	+ An+i + pi,nAr_k,h_:) 

	

>	+ 2A+ i, + + Ar,n+2 + (P—.+1,n + pin)Aw+1_k,n_1

+ (pi,n+i + p,)A_k,+i_, + pr,npir_k,n_zAi_2kh_2:, 

i.e.

a2 A , F.?	CA+2_,n+ 

+ 2p	 CA+1_k_,n+J_( 

+ p2 C/_lA^j_I_j2k,n+j_2,. 

From (1.1) we obtain

A+3 + A+ 2 n+ 1 + p+2,nA7ff+2_k,n_1 &A -ii!+2, ft 

A+2+1 + A+1n+2 + p +1,n+I A +I_k,n+1_1 !^ 

Aw+l,n+2 + A,n+3 +p ,i3+2A_k,n+2_1 

A+2_k,n_1 +	 + pnr+1_k,n_IAi+1_2k,n_2I <aAj+lk,n_, 

AjjI _ k, n I _ l + A_k,n+2_: + Pii_k,n+1_1Ai_2k,n+i2i 

Hence

a3 A, ?	+ 3A7 + 2 n+ I +	 + An+3 

• (p w+2,, + Pi+i,n + pj,n)Aj2_kn_1 

• (2p+ ,	± Pw-f1h + Pn,n+i + 2pn)A+ I _ k, n+ I _ 1	(2.5) 

• (p ,n+2 + Pw,n-4-I + p,n)Aj_k,n+2_1 
--2	 '2A • ap 1t -2k,ñ-2I + Lp '1 i+i-2k,h-2I + 2p2 '-2kh+1-21 

In view of the conditions of Lemma 2.4, we have 

3AW,Ij 

•	CA+2_k_,n+_: 

• p2	2'	Ci_lA+_1_j_2kn+J_2:.Zzi
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Assume that

ãr A,  

+ 

+ 2	jr_!_I	Cf_1A+_Ij_2k,+j_2g. 

Then, for O<i < r and Oj <r-1, we have 

A+r+i_jn+i + A +_1,+1+1	 < 

A+ - k - , n + - i 

+A+T_1_k_,n+1+_1 + PA+r_I_2k_J,n+j_21 

Thus
-r+I A a	mñ 

^ +	 +A+T_k_n+I) 

+	 (A+7_k_j,+J_l 

• A+_1 —k—j,ñ+1+j—I + PA+ r _ i _2k_j,h+j_21) 

• 2	iãT	Ci_IA+j_I_j_2k,n+j_2, 

= A+r+in 

+ 

++ A,++1 

+ p	CA+rk_ 1, n+ I _: + 

+ 

+ 
:C_IA+T_1_k_iñ+1+i_1 + A_k+T_I)
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+	ClA+r_1_2k_j,n+j_2, 

+ P2	za Cj 

=

++ C')A+r+i_i,n+i + Añ+r+i 

• p E CA+ r _ k _ j,n+_ 1 + 

+	 + A_kñ+r_I) 

+ p2	zä'	CI_jA+T_I_2k_j,n+j_21 
1=1	j=O 

r+1 

=

+ (r + 1)p	CA+_k_J,n+_1 

+p2	 _1A+T_1_2k_,n+j_21 

The proof is complete I 

The following two lemmas can easily be derived from Lemma 2.4 and their proofs 
are thus omitted. 

Lemma 2.5. Assume that {Am,n} is a solution of equation (1.1) such that 

^rn E{-3k,...,i+l}

	

Am,n >0	
for nE {n-31,...,ñ+k} 

IrnE{-2k,...,+l-1} 

	

Pm,n^° and 0<am,nä	for 

where i > 2k and ñ > 21 are positive integers. Then 

CL+IAIh
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Lemma 2.6. Assume that {Am , n} is a solution of equation (1.1) such that 

ImE {?i-2k—l...1+2k+1+1}

	

Amn>O	
nE{n-2lkn+k+21+1} 

ImE{—k-1...+2k+1}

	

Pm,n 	and O<amn	
fornE{nkln+k+2l} 

where TTi, n 2 k + I are positive integers. Then 

ã''Aj_h, + h 2 (k + I + 

for —k h 1. 

Lemma 2.7. Assume that the conditions of Lemma 2.4 hold and p = 0. Then 

r+I	 rfr—i i 
ar+lA1	2 > C ^i Am+r+i_i,n+. +	(I	Pn+sn+t)A+r_k_in+i_:. 

j=O s=O i=O 

Proof. As in the proof of Lemma 2.1, we know that inequality (2.5) holds. Assume 
that

fr—I—i i 

	

a'A	2	C.A+_,+1 +	(	Pm+i,n+t JA+rki_1,n+i_1 
i=o	 j=O \ s=O t=O 

Then, for  <i T and 0<j <r-1, we have 

Ai+r_k...j,+j...1 + Ai+r_k_l_jñ+I+j...I <Aii+r_I...k...j,+j_I 

Am+r+i_,j+, + A+_1,+1+ + Pni+r_i,n1.iAn4r_i_k,n+i_I <aA+rj,n+j. 

Thus 

	

a	mn 

	

2	C(A+r+i_i,ñ+ +	 ++r_i,n+iA+r_i_k,n+i_I) 

f r_I_i i 
+	(	pm+3,n+t (A n+r_k_i,n+i_l + 

j=O \ s=o t0	 / 

	

=	 + 

r—I	 r—I fr — I —i i 
+	Pn.f,,n Am+r_k,n_: +	(	Ipr-f3,n+t )Am+r_k_j,n+il 

30	 i=I \ 30 t0  
r-2 (r-1—j j	 r-1 

+ 	> 
i=O 	=o i=o	/	 t=o
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T +1	 r-1 

^	C .+ i A +r+i_i,ñ+i +	P	f3 w+r_i,+i A r+r_i_k,n+i_l i=o

+ p+,ñAi+r_k,n_, + Pi,ñ+rAi_k,n+r_l 

+	+3,nA+r_k,n_1 + 

r-1 (r-1-3 j	 r-jj-I
+

Y: PM—+ .' ,n+' +Y:Y: NM-+3,fi+i 
j 1 	s=0    

C+1A++i_n+, + 

+	
+ : 

r-I-j j	 r-jj-I 
+	i:	2p-1-3,fi+1 + >1p+3,n+i jA+r_k_j,n+j_1 

30 10	 30 lrO  
r-4-1	 r fr-i j 

C.+i A i+r+i_ñ+i +	(	P+s,n+g ) A+_k_,n+j_I. 
io	 j=0 \ 3=0 1=0  

The proof is complete I 
Lemma 2.8. If 0 < am,n	1 and Pvn,n > 0 for all large in and vi, then every

non-oscillatory solution of equation (1.1) tends to zero as m, n - no. 
Proof. Assume that {A m,n } is an eventually positive solution of equation (1.1). 

Then there exist positive integers ff1 > —3k and ñ > —31 such that 
in> ff1— 3k 

Am,n>0	for
n ñ —31

"m > WI —2k 
- 0 < am,n	1 and Pm,n	for

I.. n ñ - 21. 

By Lemma 2.4, for positive integers 71 and r2 we have 

Amn > - 

Thus
A 

Am+ri,n+r <	-+ 0	as r1 ,r2 —* no. 2 —

r, + r2 
The proof is complete I 

Lemma 2.9. Assume that for some positive integers WI and ñ, equation (1.1) has 
a solution {Am,n} such that

t

ff1-3k< m<ff1+1+k+1 
Am,n>0	

for n_3lnn+k+1+1.
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if

1-2km+1+k 

	

Pm,n20 and O<am,nã	
for lñ-21<n<ñ+k+j 

fwi< rn 

	

p j 2B>O	
for jñn<ñ+l, i=m-k j=n-1 

then

<
AwFjj ".BJ 

Proof. It is easy to see that there exists m' such that n+i e {m - k,. . . , m} and 

	

P . 2	and	 p) 2 

By Lemma 2.7, we have 

äm	+'+'A_, 2	+sft+t_I) Am- _k_I 2 Am -k,n-1 

s0 i=O 

and
i-m+k j 

2 (Pm ._k+ _:^) A_k.nI 2 

Thus
(B)2_ a_k_212 

i r,n_z 2  
Similarly, there exists n such that ñ E {n - 1,. . . , n } and 

ffi+ 	n	 -1-k n 

P* ' ' 	and Pi,j 2 
. rn j=n-t	 irnjn 

By Lemma 2.7, we have 

	

an_n+k+1A, 2 (	P+sn+t)Avn._: 2
s=O t0 

and
k ñ-n+t	 B 

	

2 (
	

2 

Hence
A,h 2 ()2a_1_2k_2A_1. 

Therefore
A_k,n_1	A_k,_:	 (2'4-3k+3l+4

B 
The proof is complete I
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The following fact is also an easy consequence of Lemma 2.4 and its proof is thus 
omitted. 

Lemma 2.10. Assume that for positive integers M,fi and r equation (1.1) has a 
solution {Amn } such that

(mE{ñ—k,...,i+r}

	

Amn>O	for
lnE{nl,...,n+T} 
ImE{3i,...,Fi+T}

	

Pmn ^ 0 and 0 <am,n <— a	for
nE{n,...,n+r}. 

Then
aTA,n > Ain,.,n	and-	ãr Awj,n > Am,n+r. 

3. Main results 

Let a = {am,n} and p = { pm,n} be real double sequences. 

Theorem 3.1. Assume that j and a are two positive real numbers and w a non-
negative number. Let f(a > a or a 0) = A and 1f(p < ) = B. Suppose further 
that

- (k + 1 + 1)! 
k!1! àk+1+I > 1 

and
(2k+1+1)(21+k+1)(A+B)+(3k+l+2)(31+k+2)w< 1. 

Then every solution of equation (1.1) is frequently oscillatory of lower degree w. 

Proof. Suppose to the contrary there is a frequently positive solution A = {Amñ } 
of equation (1.1) with lower degree w such that u.(A 0) w. In view of Lemmas 2.1 
- (2.4) we have

(
 

2 
\ k 

> äorP<)) 

+ (N 2	
2k	21	

X1Y)(AO)) 

= 2— (	 X'Y(a > a or 

_.u*(

2k	21

	

>	XIYJ(A<0)) 

?2_(2k+l+1)(21+k+1)p*(a>ãorp<) 

- (3k + 1 + 2)(31 + k + 2)jt.(A —< 0)
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?2—(2k+l+1)(21+k+1)(A+E)_(3k+1+2)(31+k+2)w 

>1. 

Hence, by Lemma 2.2, 

(N2\	 XY'(a> a or p < 

	

(N2
\	

XY'(A 0)) 

is an infinite subset of N2 , which together with (2.1), imply that there is a lattice point 
(WI, n) such that

for I WI —2k <;	WI + k +1+ 1 

(n —21 : n < n + k + 1 + 1 

for I + n —I n n + k + 1. 

Amn > 0 

0<am,nã and Pm,n>P

By Lemma 2.4, we obtain'Aw^ ,jj > (k + I + 1)C, + ,Arn. Hence 

- (k + I + 1)!
< 1 

which is a contradiction. The proof is complete I 

Lemma 3.1. Let k >0,1> 0,4' > 0,&>0  and 

r = ak+I+1.2_A(l + A)"	where ). = 2k1(k + l)' 

Assume that for some positive integers WI,ñ and r equation (1.1) has a solution {Am,n} 
such that

A,,3 > 0 

0 <a ,3 !^ a and Pi,j ^! 0 

i
sm—k j=n—i

for < 
I - (r + 3)k < i WI + 1 

I n - ( + 3)1 <j n + k 

for 
WI - (T + 2)k i < rff + 1 

I n - (r + 2)1 <j <n + k 

for
WI - (r - 1)k m WI 

'
( n - (T - 1)1 < n	ii. 

Then
a' (Fr 

- cL+ l \4'"
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Proof. From (1.1) and Lemma 2.5, we have 

Am+i,n + Arn,n+i — dAm,n S Arn+i,n + Am,n+i — arn,nArn,n 

= pm,nAm_k,n_1 

1 Pm,n CL Arn,n 

for Wi — rk<rn <ñ'i and fl—rl<n <n. Thus

— 
ak + ! I	Arn+i,n + Amn+i < )	äk+l 

(a — 
2(Arn+inArnn+i)4 

A	
\ 

rn n	 k+l	 Am )• k+1 

Hence, for ?i—(r--1)k <m <'i andñ— (T — 1)1< n ñ we have 

Pi,j 
1m-k jn-1 

CL+I k),(a
2(A;+iiA$i+i)) 

k + I (_	2 
=	

a —
rn-I	n-i 

I
,1 (A,A1,,+i)4 

A1,, i rn kJ n I 

Note that by the inequality between the arithmetic and geometric means and Lemma 
2.10 we have

(A+1,A1,+1)4 
Aij i=m-k jn-i

(A1+1,A1,+1)	
T 

TtI 
>

(j=n-I Aij i=m-k 
rn-I	/

' A,,3  
hAj,n_i  

rn-I
>kl H

/	\	rn-i	n-I	/ 

H .H	•(\ _c") t=rn-k .=m-k jn-1 

=kl	''

I	 I 

(A,:)m	(A:,)m 
.i 

rn-I 
> ki H

--	n-I 
( Am 

zmk
-i di-m+k Am- k,n- I zam

jnl
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= klaJ /Am,,, 
Am_,n_z) 

= k1a—F /Am,n \ * 
Am_k,n_i) 

Thus

iIi<  
ak+1+1	itga ( 

 1 2a 2U  ____ -	Am,n 

	

-	 l 
k+I	 Am_k,n_l) ) I 
I-  

i.e

<k+12A ( -	
A 

	

Am,n	 k+l r 

	

Am_k,n_l	 ã1+1J - 

Hence in view of (1.1) we have 

	

Am+i,n + Am,n+i -	 <_pm,nAm,n. Amn	Pm,nAm_k,n_1	WCL+I 
- 

Thus

	

ã k + tF /	2(Am+i,nAm,n+i)\	
for 

jM—rk<m<Fi! 

	

Pm,,, C 1 ( -	Am,,,	)	ñ - ri <n <n. 

For ñ'i_(i- - 1)k <m < M and n -(r - 1)1< n < ñ we have 

kI 
3;j'	Pi,

,rrm-k jn-1 
ãk+ IF (_	

2 rn-i n-i 
C1 %P a -	irm-kj=n-t	A,, 

a'11r ( - 2ã	(_Am,n 
- C.,'I' 

Hence

	

Amn	ãk+I /	cL+1'112 A
	k-fl (")2. 

	

Amk,nl	\1 - -k-fl-fir) - 

By induction, we can get 

	

Am,,,	ãk+I (r )r 

Amk,nl	
for	

- tP



The proof is complete I
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In view of Lemma 2.9 and Lemma 3. 1, we see that if we let a, r, t11 and i - - 
k+t+IAA 

 2(1+A)+ 
be positive such that

(
kl'Ji )4	1 (1' 

2a

	

-k+1+I	- l  k+1
	 (3.1) 

and M, n be positive integers such that

^ fz—(r+2)l<j

i—(r +2)k i ^ +k+ I 

	

p,j ^ 0 and 0 < aR,, a	for 
	_<n+k+l 

1 rn-I ' 

	

i	>2P,j > 'P	for	 - 
i=rn-kj=n-I	 in—(r-1)l<n<n, 

then equation (1.1) has no solution {A 1,,}, which satisfies 

A,,>O	for 
{Y1_(r+3)kiñi+k+1+1 

n—(r+3)1j ñ+k+l+1. 

The foliwing theorem now follows easily. 

	

Theorem 3.2. Assume that A =	F a - 
k+l'	- 2(1+A))+	> 0, 'I' > 0, r > 0 and 

(3.1) holds. Let q =	be a double sequence defined by 

	

1 rn-I n-i	 Im=k+1,k+2,...
Ali qrn,n =

	irn-kj=n-I	
for	

=1+1,1+2..... 

Assume further that 

,i*(p<O)=,E	*(><0)A	p,(q<'I')=D 

and
((r+3)k-i-1+1)((r+3)l+k+1)(A+E+b)< 1. 

Then equation (1.1) has no frequently positive solutions. 

Proof. Supposing the contrary, let A = {A1,,} be a solution of equation (1.1) such 
that i*(A 0) = 0. By Lemmas 2.1 -.2.4 we get 

/	(r-f3)k	(r4-3)I 
(2\ >	X'Y)(A 0) 

-	 (r+2)k (r+2)l 

+ 1z* (N2\XY3(a 0 or a > a or p < 0 or q <
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(r+2)k (r+2)l 
=2—/2.(	 X'Y'(aOora>aorp<Oorq<) 

/ (r+3)k	(r+3)I
X'Y-(A<o) 

>2— ((r+3)k+1+ 1)((r +3)1+k+ 1) 

x * (aOora>aorp<Oorq< 'I') 
— ((T + 4)k + 1 + 2)((r + 4)1 + k + 2)*(A < 0) 

>2— (( 7 +3)k+1+1)(( 7 +3)1+k+1)(A++D) 

>1. 
Thus

/	(r-(-3)k	(r+3)I
X'Y-'(A < 0) 

(r+2)k (r+2)1 
fl(N2\ x1YJ(a_<oora>aorp<oorq<)) 

is an infinite subset of N 2 . In view of (2.1), we see that there are positive integers 
and ñ such that

(Yfl — (r + 3)k < in <?i + k + 1+ 1 
for

(ñ— (r +3)1< n < ñ +k+ 1+ 

for	
-(7+2)k <m<i+

1

k+l 

ñ—(r+2)l<n<ñ+k+l 

Arn,n > 0 

am,n E (0,aj, Pm,n 2 0, q.,n > '1'

which is a contradiction. The proof is complete I 
Corollary 3.1. Assume that 

A =	and	1' = 

	

k+1	 2(1+A)1+A - 

and am,nã>0 for m,n>0. IfpTfl,fl20and 

i=m-k jn-t 

then every solution of equation (1.1) is frequently oscillatory. 

Proof. It is easy to see that there exist r > 0 and '4' > F such that for all large m 
and n

	

=	 Pi,j 2	F 
kl i=m-k j=n-I
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and (3.1) holds, i.e.

(2+') 2
C11+1 T 

Since
(a>ãora<0)=0, It* (p<O)=O,	t.(q< 'I')=O, 

then
((T +3)k+ 1+ 1)((r +3)1+ k+ i)(0+0+0) = 0<1. 

By Theorem 3.2, every solution of equation (1.1) is frequently oscillatory I 

From Corollary 3.1, the following result is obvious. 

Corollary 3.2. If arn,n 1 and Pm,n 2 0, and 

rn-i n-i 
liminf i  
rnn-.00	 2A(l + A) ki i=rn-k j=n-I 

where A =	then equation (1.1) has no frequently positive solutions, and hence it 
has no eventually positive or eventually negative solutions. 

Remark. Corollary 3.2 improves [10: Theorem 3.4]. 

From Lemma 2.6 we can obtain the following result. 

Theorem 3.3. Assume that P and a are two positive numbers and w is a non-
negative number. Let f(a 0 or a > a) = A and /2.(p < ) = B. Further assume 
that	 _______ 

(k + 1 + 1)JCL +21 2 k+ 

and
(3k + 21 + 1)(31 + 2k + 1)(A +	+ (4k + 21 + 2)(41 + 2k + 2)w < 1. 

Then every solution of equation (1.1) is frequently oscillatory of upper degree w. 

Proof. Without loss of generality, assume that min(k, 1) = 1. Suppose to the 
contrary there is a frequently positive solution A = {Arn,n } with upper degree w such 
that p*(A 0) u.'. In view of Lemmas 2.1 - 2.3 and (2.4) we have 

k -f l	k+l 

	

11 . (N2 \
	

XtY(a^0ora>ãorp<) 
i=-2k-1 3=-k-21 

(N2
	2k+1	k+21

X'Y-'(A<O) 
i=-2k-1-1 j=-k-21-I 

/	k-fl	k+l 
=2_t.,(	 X'Y'(a0ora>ãorp< 

\ i=-2k-1 j=-k-21 

/	2k-f1	21-4-k 

	

-	 X'Yi(A 0) 
i=-2k 7 l-i j=-k-21-1
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>2—(3k+2l+1)(2k+3l+1)i(aOora>ãorp<) 
- (4k + 21 + 2)(2k + 41 + 2)f(A <0) 

> 2— (3k + 21 + 1)(2k + 31 + 1)(A + .) - (4k + 21 + 2)(2k + 41 + 2)w 

>1. 

Hence by Lemma 2.2, 

/

	

 
N2\ 

k+1	k-fl 

	

( 	 X'Y3(a0ora>ãorp<ii) 

	

\	i=-2k-lj=-k-21 

	

/	2k-fl	 21+k
fl(N2\ >	>	X'Y'(A<O) 

i=-2k-1--1 j=-k-21-1 

is an infinite subset of N2 , which together with (2.1) implies that there is a lattice point 
(, n) such that

m  {ii-2k—1,...,+2k+l+1} 

	

Am,n>0	for {flE{2lk+k+2l+l} 

mE{i—k—1,...,fi+2k+l} 
0<am,nã and Pm,n^	for{flE Iii _k1+k+2l} 

By Lemmas 2.4 and 2.6 we obtain

k+l 

a _k+l+IA_m ,n - > (k + 1 + 1)
j=o 

21 

	

^ (k + 1 + 1)	C^1A+,_,+,_, 
j=O 

> 2(k+1+1)2

	

-	ãk+l+1
j=o 

-2 I 

	

By the inequality	 =	we have 

> (k + I + 1) p V 62
2 
2k+21 

which is a contradiction. The proof is complete U 

Example 3.1. Consider the paI-tial difference equation 

Am+i,n +	- 2Am,n +pm,nAm_ i ,n_i = 0	 (3.2)
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where
(-1 ifin=8k and n=81 (k,1ENo) 

Pm,n = otherwise. 

Take 0 <w < . Since 

jf(a>2ora<O)=0, i(p<) - - 16x+36w<1, 5x 3! =1, - 64'	
4 

 

then by Theorem 3.1 every solution of equation (3.2) is frequently oscillatory of lower 
degree w, and hence oscillatory. 

Example 3.2. Consider the difference equation 

Am+i,n + Am,n+i - Am,n + Pm,nAm_ i ,n...2 0  

where
(0 ifm=9k and n=91(k,1ENo) 

Pm,n =
I 12 otherwise. 

Then
.t(a<Oora>1)=O	and 

Taking 0 < , then 72 x + 120w < land x 4 x C-2/> 1. Therefore by81 12 V
Theorem 3.3 every solution of equation (3.3) is frequently oscillatory of upper degree w 
and hence oscillatory. But Theorem 3.1 is not available here. 
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