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Existence and Uniqueness of Solutions 

to a Class of 

Stochastic Functional Partial Differential Equations 

via Integral Contractors 

J. Turo 

Abstract. Existence and uniqueness theorem for first order stochastic functional partial differ-
ential equations with the white noise as a coefficient is proved. In the proof the characteristics 
method and the concept of integral contractors are used. 
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1. Introduction 

Let Rm denote the rn-dimensional Euclidean space with the norm I . , and let B = 
[—r,0) x [—d,+dI where r 0 and d = (di,...,dm) E R (in particular, it may be 
d, = c,o for some i, 1 <i m) and R+ [0,). Put 1= [O,T]xRm , jo = [_r,O]xRm 
and D	I U 10, where T > 0. Let (1l,F,P) be a complete probability space. We

assume that there is a set of sub-a-algebras F1 (t E [0,T]) in F such that F C Tt if 
s t. Let w(t;w) be a p-dimensional standard Brownian motion process adapted to 
F1 such that F(w(t + h; w) - w(t;w),h > 0) is independent on F1 (I E [0, T]), where 
F(w(t),e > 0) denotes the a-algebra generated by the. process w() ( > 0). For any 
function u: D x Q -* R'1 and a fixed (t,x;w) E 1 x Q we define the Hale-type operator 
u( l ,)(w): B - R' by 

U(t,Z)(w)(T,O) = u(t + T,X + 9;w)	((T, 0) E B, Lo E ç). 

Let L2 be the space of all random variables - R n with finite L2-norm 
11e112 = {ElI 2 } 4 , where E is an expectation. Denote by CB = C(B,L 2 ) the space of 
all continuous processes v : B - L 2 . Let £(IRu) , Rm ) be the space of all linear snaps 
from R" into R". 
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Let us consider the functional partial differential equations of first order with a 
random coefficient 

au
x; ) + { a(t, x;) + b(t, x; w)(t;w)} —(t, x; w)	) ax	

I 

	

= f(i,x,u(1)(w);w) + g(t,x, u()();i)ai(t;w) ((t, x) e I) (	(1) 

u(t,x;w) = (t,x;w) ((t, x) E 10 ,w E ci)	 J 
where

a : I x ci 

b 	x  —* £(R",Rm) 
f I x C x ci - ll' 
g I x C33 x ci 

x ci - 

and ti(t;) is the formal derivative of the process w(t;w), namely the so called white 
noise. Equation (1) contains as particular cases the equations investigated in [3, 5 - 81. 

Now, we consider the stochastic functional integral equation 

u(t,x) = p(O,y(O;i,x)) 

	

+ J

t	

y(	

I 

f(s,	s; t, x), u( 3Y ( 3 . i )))ds	 I 

(2) +1 g (s, y(s; t, x), tL(,Y(S.)))dW(S) ((t, x) E I) I


	

Jo	 I 
u(t, x) = (i, x) ((t, x) E i)	 J 

where y(s; t, x) is a solution of the stochastic integral equation, 

t	 f 

Y(s) - x + f a(T,y(T))dT + f b(r,y(r))dw(r).	 (3) 

We can notice the close analogy between our consideration and the common theory 
of partial differential equations of first order. In this sense we call the stochastic process 
{y(s; t, x), s t} the characteristic line of equation (1) through (1, x) and equation (2) 
can be considered as equation (1) integrated along the characteristic line. 

The concept of contractors by Altman [1] has been used by Constantin [2] to prove 
the existence and uniqueness solutions of a stochastic integral equation. A particular 
case of equation (2) has been studied in [4] under the condition that the functions f 
and g satisfy a Lipschitz condition with respect to the last variable (see also [5]). In 
this paper, using the characteristics and integral contractors methods, we obtain more 
general conditions for the existence and uniqueness of solutions to equation (2).
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2. The existence of characteristic lines 

Denote by C = C([0, TI, L 2 ) the space of all processes y : [0,T] -* L2 which are 
continuous and adapted to the Ft (t E [O,T]). We consider on C the norm IIfl = 
511PIE[0,71 IIy(t)112. 

Define the integral operators i i and J2 on C by 

(f1 y)(i) = Jo y(s)ds 
 

fo
1 

(J2 y)(t) = 
	

y(s)dw(s). 
 

It is easy to seen (see [21) that 

IJi yII	7'IIyII 

11 J2 y 11	IyII }	
C).	 (4) 

Assumption ( H 1 ). Suppose the following: 
(i) The functions a : I x 	Rm and b : I x Q -* £(RP ,IR m) are such that 

	

a(.,y(.)),b(.)y(.)) E C for all y 	C. 
(ii) For each t E [0, T] arid y E L2 there exist bounded linear operators F 1 (t, y) (i = 

1,2) on C such that 1 F 1( t , y ) II are continuous in (t,y) and there is a constant Q > 0 
such that

(i(t, y(t))v) ( t )I2	IIv(t)II2 
for every v E C. 

(iii) There exist continuous functions 5'j :	-* R+ with 5',(0) = 0 (i	1,2) such 
that for each t E [0, T] and y, v E C we have 

-(t, y(t) + v(t) + ( i i ( i, y(t))v) (t) + (i2 f 2 (t, y(t))v) (t)) 

—a(t, y(t)) -	(t, y(t))v)(t)D	5' (IIv(t)112) 

and

b(t, y(t) + v(t) + (4 I' i (t, y(t))v) (t) + (J22 (t, y(t))v) (i)) 

—b(t, y(t)) - (i2(t, y(t))v)(t)M
	5'2(IIv(0112). 

The vector of functions (a, b) satisfying assumption (H 1 ) is said to have a bounded 
integral vector contractor (I' l ,1' 2 ) with nonlinear majorants (5'1,5'2) with respect to C. 

Remark 1. If 5' = a 1 t (t E IR+) where a i >0 (i = 1,2) are constants, we have 
that the vector functions (a, b) has a bounded integral vector contractor (1' 1 , r2 ). These - 
conditions are weaker than the usual Lipschitz condition. Indeed, if r, = 0 (z = 1,2), 
the condition in assumption (H 1 ) reduces to Lipschitz condition on a and b.
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Definition 1. Let ?1 be the family of all functions	E C'(R,R+ ) satisfying

y(0) = 0 and 7'(t) E (0,1) (t E R). 

Lemma 1 (see 12]). If y E 71, we have that y is non-decreasing on R, y(t) < t 
for t > 0 and	7(k)(t) < oo for t E R+, where 7(k) denotes the k-th iterate of . 

Remark 2. Examples of functions E 7-1 are 7(1) = at (t E R), where a E (0, 1), 
7(t) = -j- (1 E lR), y(t) = t - arctant (t E R), and y(t) = t - ln(1 + 1) (t E R+). 

Lemma 2 (see (2], but also [9]). Let us suppose the following: 
(i) The functions a : I x 	- IR tm and b : I x 	- £(RP , ll m ) are such that if 

Yn -* y in C, then a(,yn(-)) - a( . , y( . )) and b( . ,y(-)) - b(-, Y(')) in C for n -+ 00. 
(ii) Assumption (H i ) is satisfied with the vector of nonlinear majorants (5 1, 72) such 

that T 1 + V' Y2 = E 7-1. 

Then equation (3) has a unique solution y(s) = y(s; t, x) in C. 

Remark 3. Note that y satisfies the group property 

y(s; -r, y(r; t, x)) = y(s; t, x)	 (5)


for r E [s, t] and (t, x) E I, since y(s;t,x) is the unique solution of equation (3). 

3. Assumptions and lemma 

Let Cy = C(Y, L 2 ) be the space of all processes v Y - L2 which are continuous 
bounded and adapted to the Fj for each x, where Y C I or Y C D (let F1 = Fo for 
—r < t < 0). We consider on Cy the norm ll v II y SUp(jz)Ey II v ( t , x )lIz . Define the 
integral operators J1 and J2 on C, by 

(Jiu)(t,x) = J u(s,x)ds 

(J2 u)(t,x) = fu(s,x)dw(s). 

For these operators we have analogous estimates as in (4) 

IJi ull i	TI lull, 

Il J2 u lli	lIulli }	
(u E Cj). 

Put
f[u](s; t, x) = f(s, Vs; t, x), u(s,y(j;t,z))) 
g[u](s; 1, x) = g (s, Y(s) t, x), U(3y(3;ji))). 

Assumption (H 2 ). Suppose the following: 
(i) The functions f: Ix C8 x  -i R+ and g: I x CB x  - £(R,R') are such 

that f[u](-) E C1 for u E C8 and g[u](-) E C, for y E C.
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(ii) For each s E [0, TI, y E L2 and u E CD there exist bounded linear operators 
r(s,y,u) (i 1,2) on CD such that II r (s ,m u )II are continuous in (s,y,u) and there 
is a constant Q > 0 such that

u]v)(s;	QIIV(S, y(s; 1, x))fl2 

for every v E CD, where 

(r[y, u]v)(s; t, x) = (r 1 (s, y(.s; t, x), U(, y(,i r))) v)(s, y(s; t, x)). 

(iii) There exist continuous functions -y R+ - R with 7(0) = 0 (i = 1,2) such 
that for each u,v E CD and y E C we have 

11 f
	+ v ± J 1 r 1 [y, ujv + J2 r2 [y, uJv] (s; t, x) - f[u](s; t, x) - (F 1 [y, u]v)s; t, 

(IIvsys;i,zIIr) 

and

11 g [u + v + J1 171 [ y , u]v + J2172[y, u]vl(s; t, x) - g[u](s; t, x) - ( 17 2 (y, u]v)(s; t, 

72(IIV(s,y(s;,z))IIB) 

for all .9 E [0, T] and (t, x) El. 

Lemma 3. If assumption ( H2 )/(ii) is satisfied and y is a solution of equation (3) 
and u(.,y(.;t,x)) E CD, then for every h  Cj such that h(0; r) = 0, there is a unique 
solution v € CD to the stochastic integral equation 

v(t;x) = h(t;x) 

- J , (r i  y, u]v)(s; t, x) ds 

- J ' (17 2 [,uIv)(s;i,x)dw(s) ((t, -'r) E I)
	 (6) 

v(t,x) = 0 ((t, X) € Jo). 
Proof. Define an operator K on CD as 

(Kv)(t;x) = 

fh(t; x) - f(r 1 [y, u]v)(s; t, x) ds - J(r2 [y, u]v)(s; t, x) dw(s) if (t, x) E 

0	 if(t,x)E 'o• 

It is obvious that K maps CD into itself. Let us introduce the norm 

II v II * =	sup { e ' t II v ( t , x )112 } 
(t,x)ED
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where A > Q 2 (T + 1). Now we prove that K is a contraction. Indeed, since (x + y) 2 < 
2(x 2 + y2 ) we have 

(Ky 1 )(t, x) - (Kv2 )(t, x) 11 2  

<2Q2 (T + 1)1 11 V1 (s, y(s; t, x)) - v2 (s, y(s; t, z))IIds 

2Q2 (T + 1 )II v i - v2II f e2A3ds	
(7) 

0 
 Q2(T + 1 ) (e2 At- 1 )II v i - v2II A 

for all (t, x) e I. Multiplying (7) by e_2At we obtain 

K y 1 —Kv2II < Q2(T+1)
lvi —v211. -	A 

thus
11Kv1 - Kv211.	qJlv i - V211- 

where q = [Q 2 + 1)J . The assertion of Lemma 3 now follows from the Banach fixed 
point theorem I 

4. The main results 

We are now in the position to prove the main results. 
Theorem. Let us suppose the following: 

(i) o 10 - L2 is continuous and FO -adaptedfor each x, and (O,y(O;t,x)) is 
independent on {w(t), t E [0, T]) for each x. 

(ii) The functions f :IxCB xi_.+R'  and g:IxCB xIl_J2(RP , Rn ) are such 
that if u - u in CB, then f[ut2J(.) - f[u]( . ) and g[u]( . ) - g[uj( . ) for n -	. 

(iii) Assumptions of Lemma 2 are satisfied. 
(iv) Assumption (112 ) is satisfied with the vector of nonlinear majorants (71,1'2) 

such that T-y 1 + 'V72 = e R. 
Then equation (2) has a unique solution in CD. 
Proof. Consider the sequence {u"} defined by 

(t, x) = u"(t, x) - v(t, x) 

- 
J0 '(r1 [y, u]v)(s; t, x) ds
 (8) 

- J 
(r2[y,u]v)(s;t,x)dw(s) ((t,x) E I) 

u'(t,x) = (t, x) W, X) E I)
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where
v'(i, x) = u'(t, x) - p(O, y(O; t, x)) 

- f f[u](s;t,x)ds 
0	 (9) 

— 
fg[u](s;t,x)dw(s) ((t, X) E I) 

0 
v'1 (t, x) = 0 ((t, x) E lo) 

and u0 E CD. We will now demonstrate that the auxiliary sequence {v} is such that 
IIvIlD —* 0 as n -	. By (8) - (9) applying (5) we deduce that 

v(t, x) = f fIuJ(s; t, x) ds + f g [u n](s. t, x) dw(s) 

— 
J'(r. [y,u]v)(s;t,x)ds - J (r2[y,u)v)(s;t,x)dw(s) 

f[u fl - v - Ji r i [y,u}v- J2172[y,u]v](s;i,x)ds 

-	 i[n -
	- J1 r i [y,u]v - J2172y,un]vnJ(s;i,x)dw(s) 
f  

((t, X) El) 

vT1(t,x) = 0 ((t, x) E lo). 

Using assumption (H 2 )/(iii) on f and g we obtain 

IIV''IID <Tf[u - v — J 1 r 1 [y,u']v — J2r2[y,u]v'J(s;t,x) 

— f[u](s; x) — r 1 ly, u)(—v)(s; , 

+11glU—
	-	 - J2r2[y,u']v](s;i,x)


- g[u](s; t, x) - r2 [Y, u](—v)(s; t, x) D 
:5 Y(IlVn 

-'(IIvIIr) 

since II V ( t ,r)IIB	IIt1 'IID Thus II v 'IID	)''(lIV°IID). Since 1im () (t) = 0 
for all i E R+ (see Lemma 1) we get limfl...00IIv lID = 0. 

From (8) we see that 

U' — U'IID	II V 2 II D + (T + / QlIvllD 

(1 + TQ + \/Q)-Y()(IlV°llD).
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Since	 -i 0 as n -	, we get that {u} is a Cauchy sequence and thus 

there exists u E CD such that lim_u" = U. 

From (9) and assumption (ii) it follows that u is a solution of equation (2). Let us 
now prove the uniqueness of solutions to equation (2). Let u, ü be two solutions in CD 
of equation (2) with u(t,x) =i(t,x) r= (t,x) for (t,x) E 10. Then 

u(t, x) - ü(t, x) = f {f[u](s; t, x) - f[i](s; t, x) Ids 

+ ji {g[u](s; t, x) - g[u](s; 1, x)}dw(s) ((t, x) E I)	
(10) 

u(t, x) - ü(t, x) = 0 ((t, x) E lo). 

We denote h(t,x) = u(t,x) - ü(t,x) ((t, x) E I), and let v E CD be a solution to the 
stochastic integral equation (see Lemma 3) 

v(t,x) = h(t,x) 

- I t (ri  [y, u],)(,; t, x) ds 

- 1 (172[ u]v)(s; t, x) dw(s) ((t, x) E I) 

v(t,x) = 0 ((t, X) E Ia). 

By (10), (11) and (5) we get 

MID < f 
- ffu](s; t, x) - ( 1 [y, i]v)(s; t, x)}ds L 
+ 10, {g[u + v + J1 F 1 [y,ü]v + J2F2[y,u]v)](s;t,x) 

- g (ill (s; t, x) - (F2 []v)(s; t, x)}ds 

7(IIVIID). 

Hence (see Lemma 1) v(t,x) = 0 as., (t, x) E D, and so by (11) we obtain h(t,x) = 0, 
a.s., (t, x) E D, i.e. u = i in CD and the uniqueness is proved. This completes the 
proof of the Theorem U 

Corollary. Let assumptions (i), (iii) and (iv) of Theorem be satisfied. If 3(T2 + 
T)Q2 < 1, then equation (2) has a unique solution in CD.

(11) 

Proof. Let us prove that if u' - u in CB, then f[u"] -i f[u and g[u) - g[uJ in
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Cj for n - 00. Let v" e CD be a solution to the stochastic integral equation 

v"(i,x) = u'(t,x) - u(t,x) 

- 1 , ( r, , [y , u]v)(s; t, x) ds 

— J ' (172 [Y u]v)(s; t, x) dw(s) ((t, x) E I) 

v'(i, x) = 0 ((t, x) E lo). 

The existence of a such solution follows from Lemma 3. Since (x+y+z)2 3(x 2 +y2 +z2) 
we have 

ii v ( t , x )Ii	3 ll u ( t , x) - u(t, x)I 

+ 3TQ2 
j II v ( s , y(s; t, x))ds + 3Q2 

j Ilv(s, y(s; t, X))112 ds 

therefore
2'	n''2 

iiv ii ^ 3Ii u - uii + 3(T2 + T)Q li v lID 

Since 3(T2 + T)Q 2 < 1 and lim_ iI u - u iiD = 0 we obtain	iIvt2iID = 0. 
Writing relation (iii) from Assumption (H2 ) with u and v, we get 

f [ +V n + j1 r 1 [y, u]v + J2 ['2 [y, u]v] (s; t, x) - f[u](s; t, x) - ( F i fy, uJvTh)(s; 

:5 
71(IiV's,y(,;i,x))iiB) 

and 

11
glu + v" + J ['i y, u]v" + J2 1P2 [y, u]v'] (s; t, x) - g[u](s; t, x) — ( ['2 [y, u]v")(s; t, 

'Y2(iit'(s,y(3;i,z))iiB) 

Thus

lIfEu1(s; t, X) - f[i(; t	)M2	' ( v,,y(3;,I))IB) + Qftv(s, y(s; i, x))112


g[u"](s; t, x) - g[u](s; t, x) 2 15 Y2 (It'S y(st z)) M2) + QII v "( .s , y(s; t, x))I2. 

Hence we get 

ftu '1 — f [u)iij + ig[un] — gIu] 1	sup	{7(r) + 72(r )} +2QiIv'IiD 
r E[ O ,Il v " b] 

and since v" — 0 as n —* 00 in CD and y (i = 1,2) are continuous with 7(0) = 0 we 
obtain the desired property of I and g. The result now follows from Theorem U
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5. Particular forms of functional dependence 

We give now a few examples that show how the Hale-type operator defined in Intro-
duction acts in particular forms of functional dependence such as delays, integrals and 
other Volterra functionals. 

Example 1. Let a,,3 : I -	a = (ao, a 1 ,..., am) and 3 = (i9o, /3i 
and let f: I x R' x ci - R" and : I x R n x  - £(RP ,Rn ) be given functions such 


	

that –r ao(t, x) and 30 (t, x)	t for (t, x) E I. If we define 

f(t,x,v) = f (t,x,v(a(t,x) - (t, X))) 
g(t, x, v) = 4 (t, x, v(13(i, x) - (t, x))) 

then equation (1) reduces to the differential equation with retarded argument 

Ou	 .	 au .ä....(t, x) + {a(t, x) + b(t, x)w(t)} —(t, x) 
0x	 ((t, x) El). 

= f(t, x, u(ci(t, x))) + g(t, x, u(/3(t, x)))tb() 

	

Example 2. Suppose that 	I x R" x  —* R', :1 x R" x  —

a,B: I - R+ l and k : I .— £(lR'1 ,R') (i = 1,2) are the given functions. Let 

f(t, x, v) = f ( t, x, J	k1 (s, e)v(s - t, — x) dsde 

	

\	c(iz) 

	

/	p/3(i,r) 
g(t,x,v) = ( t,x, /	k2(s,e)v(s — t, — x)dsd 

	

\	Ja(i,x) 

Then equation (1) reduces to the differential-integral equation 

au -(t, x) + {a(t, x) + b(i, x)tb(t)} –(t, x)
ax 

f(t,x	
$(t,z) 

=	, /	ki(Se)u(se)dsd)  (t,x)	 ((t, x) E I). Ja 

	

+ (
t,  x, /	k2(1, e)u(s, )dsd) ü(t) 

Jcv(t,z) 

Example 3. Take f: IxC(D,R)xci —* R'1 and : lxC(D, R I ) xci — £( RP,Rhl). 
Consider the equation 

au -(t, x) + {a(t, x) + b(t, x)ti(t) Ou } —(t x) = f(t, x, u) + g(t, x,u)i,(t) ((t, x) E I). 

The dependence on the past is expressed by means of so called Volterra condition which 
reads as follows: if u, ii E CD and u(s,x) = ü(s,x) for (s, x) E [–r, t) x R , then 
f(t, x, u) = f(t, x, u). The definition of the Volterra condition for is analogous. There 
are various possibilities of extending this notation. For instance, if we want to describe
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the dependence of f locally on the past and locally on the space, then we can formulate 
the Volterra-type condition as follows: if u, ii E CD and u(s,) = i(s,) for (s,) € 
B + (t, x), then J(t,x,u) = J(t,x,u), where B + (t, x) {(s + t, + x) : (s,) € B} is 
the translation of the set B. In this case we can define 

f(i, x, v) = f(t, x, I, , 1 V(- - I, . - x)) 

g(t, x, v) = Ot , x, Iv( - t, . - x)) 

where 11,1 : CB -' CD+(..1,_1) is defined by (11,1v)(s,e) = v(.s - t, - x). 

Acknowledgement. The author wishes to express his gratitude to the anonymous 
referees for a number of valuable comments and suggestions. 
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