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Global Solution of

Optimal Shape Design Problems 

A. Fakharzadeh J. and J. E. Rubio 

Abstract. We consider optimal shape design problems defined by pairs of geometrical elements 
and control functions associated with linear or nonlinear elliptic equations. First, necessary 
conditions are illustrated in a variational form. Then by applying an embedding process, the 
problem is extended into a measure-theoretical one, which has some advantages. The theory 
suggests the development of a computational method consisting of the solution of a finite-
dimensional linear programming problem. Nearly optimal shapes and related controls can thus 
be constructed. Two examples are also given. 
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1. Introduction 
In general, most known methods of solving an optimal shape design problem associated 
with the solution of a (partial) differential equation are concerned with the numerical 
solution of the differential equation. The exception is the mapping method which maps 
the solution spaces of the differential equations in an optimal shape design problem on a 
fixed domain (see [4], for example). Also, all optimal shape design problems considered 
have been based on not more than one geometrical element (which, indeed, has usually 
been a domain); thus efforts have been directed to obtain an optimal clement as the 
optimal solution. 

The paper [1] shows a new approach, an embedding method, for solving an opti-
mal shape design problem defined in polar coordinates, in which no partial differential 
equation is involved. We introduce there a new approach to attack an optimal shape 
design problem by transferring the problem into a new one in which positive Radon 
measures are involved. Moreover, Rubio in [7] applied the embedding method for solv-
ing a control system governed by an elliptic equation to find the global control for the 
described system. The history of these ideas can be find, for instance, in [6]. Based on 
these papers, here we introduce a method to solve a new and larger set of optimal shape 
design problems associated with elliptic equations; those are defined in terms of a pair 
of geometrical elements (a domain and its boundary) and a pair of control functions. 
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2. Problem 

Here, we take J = [0, 27r], J° = (0, 27r), A = [0, 11 and W C R bounded, and suppose 

r: J -p A to be an absolutely continuous 

w : J -p W to be a Lebesgue-measurable 

function. This pair of functions satisfies the differential equation 

= w(9) g(&,r,w)	(9 E J°) 

Let Q = J x A, w = J x A x W and 3D a smooth simple closed curve (simple in 
the sense of the Green Theorem (see, for instance, [10: p. 1030]) that 3D is not cut 
itself between its initial and final points). Here 9D is the boundary of the Lebesgue-
measurable set D C R2 in the polar plane; we know that in polar coordinates, when 
r > 0 and 0 < 9 <2ir, the curve r = r(9) is simple, and these conditions are considered 
when defining Q and w. We also assume that 3D contains a fixed point (0., r.) and is 
defined by the equation r = r(9), r(6) E A for all 9 E J. It is also supposed that D has 
a fixed area. 

Let u : Q -p R, a differentiable and bounded function in C2 (D) with first deriva-
tives bounded in D, be a bounded solution of the elliptic problem with Neumann con-
dition

	

div(k(9,r)Vu) - f(9,r,u) = 0	 (1) 

	

Vu . nIaD=v	 (2) 

that takes values in a bounded set U C R. Here 

k is a positive function in C'(D) 
I : Q x U -* R is a bounded function in C(Q x U) 
n is the outward normal vector on 3D 
v : J -i V C R is a bounded Lebesgue-measurable function (V bounded). 

In this paper, (v, w) is considered as a pair of control functions, and (r, u) is regarded as 
a pair of trajectory functions in a classical shape design (or optimal control) problem. 

Definition 1. The quadruple (D,3D,u,v) defined above is called admissible if 
the elliptic problem (1) - (2) has a bounded solution on D. The set of all admissible 
quadruples is denoted by T. 

The aim of this work is to find a minimizer for the following optimal shape design 
problem over the set F by applying a method similar to that introduced in [1]. Let 
fo E C(Q) and h0 E C() be two given continuous functions; they can be regarded as 
any suitable objective function in a related physical system, like energy, heat distribution 
in surface and so on. We seek the solution of the following
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Optimization problem. Minimize 

I(D, ÔD, u, v) 
= ID fo(8 , r, u, Vu) drd9 + Ja D h 0 (0, r, w, v) ds	(3) 

subject to
(D,ÔD,u,v) E 1F) 

div(k(O, r)Vu) - f(O, r, u) = 0	 (3)2


Vu . n IaD = V. J 

3. The elliptic equation in variational problem 

In general, it is difficult to identify a classical solution for the general case of the elliptic 
Neumann problem. Thus usually it has been tried to find a weak (or generalized) solution 
for it. So we change the elliptic problem into the variational form in the following 
proposition; we follow Mikhailov in [2: Chapter IV] to prove it. 

Proposition 1. Let u be the classical solution of problem (1) —(2). Then we have 
the integral equality 

ID	+ fço)r drd8 - 
./0D 

kovds = 0	( V E H'(D))	(4) 

where H'(D) is the Sobolev space of order 1 on D. 

Proof. Multiplying (1) by a function p E H'(D) and then integrating over D, we 
obtain

/ div(kVu)r drd9 - Ifcpr drd9 = 0.
JD	 D 

Because div(kVu) = kAu + VuVk (see, for instance, [21), thus 

ID	 ID	ID 
Wf r drdO =O•	(5) 

Gren's formula (see [2]) gives rise to 

= I ^pk
 —
	

L 
au 

ds -	VuV(Wk) r drdO.	 (6) 

But V(k) = Vk + kV. Hence by considering (2) and applying (6) in (5), equality 
(4) is obtained U 

Definition 2. A bounded function u E H'(D) is called a bounded weak solution of 
problem (1) - (2) if it satisfies equality (4) for all function W E H'(D).
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4. Metamorphosis 

Generally, the minimization of (3) over Jr is not easy, even if the function u satisfies (4) 
instead of (1). The infimum may not be attained at any admissible quadruple. If this 
is the case, it is not possible for instance to write necessary conditions for this problem. 
We proceed then to transform it into a measure-theoretical form. Because u E H'(D) 
is bounded and the first order partial derivatives of u are also bounded, then Vu is 
a bounded real-valued function. Let Vu take values in the bounded set U'. Then we 
define' = Q x U xU' and '=wx V (that w=J xAxW). 

An admissible quadruple (D, 3D, u, v) C Jr introduces the two following functionals: 
Any bounded weak solution u of problem (1) - (2) determines a linear, bounded and 

positive functional
u: F__4JF(O,r,u, Vu) drd	 (7) 

on the space C(I'). Also, a control function v defined on 3D and satisfying (2) intro-
duces a linear, bounded and positive functional 

______	 1 
v3: G	.. fG(O,r,w,v)dG	

( f'9D	 +w 
Gds)	(8) 

on the space C(w'). On the base of the Riesz representation theorem (see [9: The-
orem 2.14)) the above functionals represent two positive Radon measures A and a, 
respectively (see, for instance, [1: Proposition 3.1] and [5: Chapter 1]), so that 

A(F) = ID 
F(9,r,u,Vu)drd9 u jj (F)	(Fe C(cl'))
	 (9) 

=
 J

G(O,r,w,v)dO va(G)	(Ge C(')). 
J 

Thus each admissible quadruple (D, 3D, u, v) C Jr can be considered as a pair of mea-
sures (, ) in the appropriate subset of M+(cl' ) x M+(w'), say Jr again. Hence there 
exists the transformation 

(D,0D,u,v) C Jr —* (A,a) C M(') x M(w'). 

As we showed in [1: Proposition 3.2], this transformation is injective. Hence someone 
may think that nothing is changed and the same difficulties as before (existence of the 
optimal pair in Jr and so on) still remain. So, we will extend the underlying space of 
the problem: Instead of seeking the optimal pair of (,\, o) in the set Jr, we look for 
the minimizer of the functional 

(, a) e Ml') x M(L') —4 A(f0 ) + a(hoV'r2 +w2) 

in a subset of M+(1l') x M+(w') defined by some linear equalities in terms of the 
properties of admissible quadruples, which will be explained later.
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5. Conditions 

According to the new formulation and considering the properties of the weak solution, 
an admissible pair of measures (A, a) must satisfy 

A(F,) + a(G) = 0	( W E H'(D))	 (10) 

where
F, = rkVuVp + rfp	and	G, = _kçovJr2 + w2. 

Below we shall apply the measures A and a to functions of the variables (9, r) and 
(9, i-, it ), respectively, in relationships embodying the geometrical features of the problem. 
Thus, the measures here will actually be the projection of the measures A and a in the 
appropriate spaces; we shall use the same names for these projections, A and a. 

The admissibility of the curve 9D (and hence the set D) has been characterized in [1: 
Section 3]. We assumed there that (9) = w(9) g(O, r, w) (9 € J°) and w = J x Ax W 
where w e W, W C R bounded. Let B be an open ball in R 2 containing J x A, and 
denote by C'(B) the space of real-valued continuously differentiable functions on B such 
that they and their first derivatives are bounded on B. For 0 E C'(B) we define 

09 (9,r,w) = 0 r (9,r)w + 0 0 (0, r)	((9,r,w) EL)).	 (11) 

The function 09 is in the space C(w) and 

2,r 

J
9 (9,r(9),w(9))d9 = J(9,r(9))d9 d	(diE C'(B)).	(12) 

3 
0 

We now consider a special case of (11). Let V(J°) be the space of infinitely differ-
entiable real-valued functions with compact support in J° and define 

	

9 (9,r,w) = r(9)7'(9) +w(9)(9).	 (13) 

Then
/V5 1 (9,r(9),w(9))d9 = r(27r)0(27r) —r(0)(0)	(74' E V(J°)).	(14) 

JJ 

Since the function 0 has compact support in J°, 0(0) = (27r) = 0. It is important 
to single out this special case of (12), because later on, when we want to consider the 
approximation problem, it will be necessary to include some of the functions in V(J°). 

The same situation arises for another special choice of functions in C'(B). Put 

0(9,r,w) = f(9)	((9,r,w) E L).	 (15) 

Then 09 (9, r, w) = f(9) ((9, r, w) E w) also is a function of 9 only. We are led thus 
to consider a subset of C(w), to be denoted by C i (w), of those functions in this space 
which depend only on the variable 9. Thus 

jf(9r(9),w(9))d9 = af	(1 E C1 (w))	 (16)
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where aj is the integral of f(, r, u) over [0, 27r], independent of r and u. 
Thus, the properties of an admissible pair have been shown by sets of equalities in 

(12), (14) and (16), in the classical formulation of the optimal shape design problem. 
So we have

cy(09) = d	(0 E C'(B)) 
(VI EV(J°))	 (17) 

a(f) = Of	(1 e C1()). 
The simple and closed curve 9D is the boundary of D. This fact introduces a relation 
between the measures A and ci. In [1: Section 6], this relationship has been considered 
by computing the inside measure ju in terms of the boundary measure v by use of a 
special function. Here we are going to do this in another way. Let p,r E Cl). Then 
by the Stokes theorem we have 

ID
 (-(rp) - )drd& = f(rw + pr)dG. 

Therefore

p + rap - or - a(rw + pr) = 0	(p, r E C'()).	(18) 

Moreover, the definition of the functional uD shows that, for any (, r, u, t) E ci', there is 
a relation between the variables u E U and t E U'. These variables are not independent 
from each other and this dependency should be regarded in the determination of the 
measures A and ci. It is also very important to regard this fact in numerical examples 
when we identify the variables u and t just by some (finite) values (see Example). By 
use of the Green formula (see [2: p. 104]) this relation can be come into account as 

ID (uAW + VuV)rdrdO = fa D 
çovds	(	H1(D)). 

Thus we have the relation 

A(ruiç + rVuV) = ci(vr2 -+w2)	(W E H'(D)).	(19) 

As a result, to find the minimizer of I over .T in (3), one can search for the minimizer 
of the functional

(A, a) —* A(f0 ) + a(hoV'r2 -+w2) 

over a subset Q of M (ci') x M (w') defined by all pairs (A, a) which satisfied conditions 
(10) and (17) - (19). Thus, instead of solving problem (3), we look for the minimizer of 
the following new problem over Q. 

Problem. Minimize

i(,\, a) = .X(f0 ) + c7(hoV'r2 +w 2 )	 ( 20)



Optimal Shape Design Problems
	

149 

subject to

= d,, 

a(t,1') =0 

off) =aj 

A(F,) + a(G,) = 0 
o a 

+ r -	—a(rw + pr) =0 

A(rutp + rVuV) = ov/r _+w2)

(0 E C'(B)) 

(b E D(J°)) 

(1 E Ci(w)) 

( E H'(D)) 

(p,T E C'(cZ)) 

(W E H'(D)).

(20)2 

6. Existence and approximation 

The following theorem states that the above problem has a minimizer. To prove the 
theorem the reader can follow Rubio [5: p. 16/Theorem 11.1] or [1: Theorem 4.11. 

Theorem 1. There exists an optimal pair of measures (A', o) in the set Q C 
M(l') x M(') for which 

i(A', o')	i(A, a)	((A, a) E Q) 

holds. 

We remind the reader that, since the set .1 of admissible quadruples can be con-
sidered, by means of the mentioned injective transformation, as a subset of Q, then 
infF l(D,aD,u,v) > infi(A,a). Thus, in (20) the minimization is global. So in 
the non-classical form of the optimal shape design problem (problem (20)), the global 
minimizer will be illustrated. 

All the equations in problem (20) are linear in their arguments A and a. It is an 
infinite linear program; the number of equations and the dimension of the underlying 
space are infinite. 

We are going now to approximate the solution of the problem by the solution of an 
appropriate finite linear programming problem so that not only the number of equations 
is finite, but the underlying space on which minimization takes place on it, will be 
finite-dimensional. This important can be happened by use of a total set in each space 
H'(D),C1(),Ci(w),D(J°) and C'(B). 

The total sets in the spaces C1 (),V(J°) and C'(B) were introduced in [1: Section 
51 and [5: pp. 52 - 531. Here we identify those for the other spaces. Let P be the C-
vector space with the basis {Z Th , Z" : Z E }. Under multiplication, P is an algebra and 
satisfies the conditions of the S tone- Weierstrass Theorem (see [8: Theorem 7.33]). Hence 
it is dense in C(l). Moreover, since each Z E Q can be rewritten as Z = r(cos + i sin 0), 

Z' =rhl (COS ri0+i sin no) 

= r" (COS nO - i sin no)
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So the set of functions {r" cos n9,r' sin n9}> i is a base for P. Hence the set of func-
tions {o}> with p = r" cos nO or r" sin n9 is dense in C 1 (1l) C C(Q). By 
[2: Chapter Ill/Theorem 3] C'(Il) is dense in H'(D). Therefore the set of functions 
{°n}n>' is total in H'(D). 

Now consider the following problem which results from (20) just by choosing a finite 
number of functions in the mentioned total sets. 

Problem. Minimize

i(),) = .\ ( fo)+ cY (ho /r2 + w2)
	

(21) 
subject to

= d,,k 

= 0 

7(f) = a3 

A(FR)+o(GI) = 0 
.\(D) ) + a(E3 ) = 0 
A (Hr) + c(Ir) = 0

(k=1,2,...,M1) 

(1= 1, 2, ... , k12) 

(s	1,2,...,M3) 

(i = 1,2,... ,A14) 

(j=1,2,...,M5) 

(r = 1,2,... ,M6).

(21)2 

(22) 

Here
Di = ruAp + rVuVp 

Ej = _(9,jv\/r2 + w2) 

F, = F 

G = Gçpj 

	

Hr = H1 = p + r	 - 
ar	190 

Ir Iii= — (w + r). 

Then we have the following proposition which shows that the solution of problem (20) 
can be approximated by the solution of problem (21). For proof one can follow Rubio 
in [5: p. 25/1'roposition 111.11. 

Proposition 2. For positive integer. M (i = 1,. . . , 6) let QM' be the set of pairs 
(.\,a) E M(1') x A4(w') which satisfy the constraints of problem (21). JIM 1 - 
then

inf i(A,) - infi(A,a). 
QM'	 Q 

In other words, the solution of problem (21) tends to the solution of problem (20). 

We have already limited the number of constraints of problem (20) in the first 
stage of approximation. But the underlying space QM' is still infinite-dimensional. Let (.\*, o) be the optimal solution of problem (21) (the existence of (.\*, o) can be resulted 
from Theorem 1). By applying [5: Theorem A.51 one can obtain 

	

and	a=fi,5(z,) 
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that for each n = 1,2,... ,N and m = 1,2,... ,M we have ^! 0 and /3 ^! 0, and 
also that Z,*, and z,, belong to a dense subsets of ci' and W 1 , respectively. Here M and 
N are positive integers and 8(z) is a unitary atomic measure with support the singleton 
point set {z} I 

In the next stage of approximation, let En' and Eu,' be two countable dense subsets 
of ci' and W', respectively. Then (as a result of [5: Proposition 111.3]) the measures 
and can be approximated by 

	

Arzr6(Zn )	and	 0m8(Zm) 

where Zm E En' and zn E This result suggests that problem (21) can be approxi-
mated by the following linear programming one which the points Z. and Zm are chosen 
from a finite subset of a countable dense subsets in the appropriate space by putting 
discretization on ci' and w'. So the only unknowns are the coefficients an and /3m. 

It is assumed in (23) that 

	

Zn = ( On ,r,u,t)Eci'	and	Zm	9m,rm,Wm,tm)E 
Moreover, the last equation in (23) represents the area condition as explained in [1]. 

Problem. Minimize 

> afo(Z) + >i: flmho(zm)J	w 

subject to
(n=1,2,...,N) 

13m^!0	(m=1,2,...,M)

= do,, (k = 1,2,... ,M1) 

>)3mXi(Zm)0 (11,2,...,M2) 

flmfs(zm)as (s=1,2,...,Ma) 

nFi(Zn) +	/3mGi(zm) = 0 (i = 1,2,... ,M4) 

anDj(Zn)+flmEj(zm)0 (j=1,2,...,M5) 

> a n Hr( Zn ) + >13m 1r( zm) = 0 (r = 1,2,... ,M6) 

firn (rm ) = given area.

(23)2 
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7. Numerical examples 

For the following two examples, we choose fo = 0, h 0	v 2 , I = u(u - 0.5) and 
k(9, r) = 1. We remind the reader that in polar coordinates 

VV	
1ô(p 

	

—	Ur +	 ( E H'(D)) r	ra8 

(see [31). Also, it is supposed that Vu = UiU,. + U2u9 where u 1 E U1 and u 2 E U2. 

Example 1. For this example we choose 

W = [-0.3,0.3),	V = [-10, 101,	U = [- 5 , 51,	U' = U1 x U2 = [_15,15)2 

and discretized ' with M = iO nodes z = (9, r, w, v) by selecting: 
10 angles for 6 as -- 3,r	 on J = [0,2r] io'Th'"' to 
10 values for rasO 1 , a	linA 
10 values for was -03 -21 -

	

-	.,0.3 in W 90 ' 90 

10 values for v as -10,, –°	10 in V. 

	

9	9 

Figure 1: The suboptimal control function w 

And also discretized Q' with M 105 nodes Z = (9,r,u,u i ,u 2 ) as: 
10 values in each sets J and A for 0 and r as above 
10 values for uas-5,,,...,5inU 

10 values for u 1 and u2 as -15,	,.. . , 15 in each sets U1 and U2. 
We also choose the area as 0.6, (0,0.5) = ( 27r, 0.5) as the fixed point, M1 = 2,M2 = 
8, M3 = 10, M4 = 5, M5 = 2 and M6 = 2. Then the linear program (23) was run with 
30 equations and 110000 variables. We applied the E04MBF NAG-Routine to solve 
the problem. The optimal value of performance criterion was 274.23683327352. 

Based on the equation w(9) =	( as Rubio did in [5]), the suboptimal control dO 
function w and 20 different points of the boundary of the (approximate) optimal shape
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were obtained. We remind the reader that by increasing the number of equations, the 
number of points will be increased. 

)4
\ \\ 

3:3

\	S.. 

)	
\5	

\\ 

C	
\\	

\ 

,/ }¼	
/ 

Figure 2: Boundary points of the nearly optimal shape 

Regardless the fault of changing the coordinates, the suboptimal control w and the 
boundary points of the nearly optimal shape are plotted in Figures 1 and 2 in Cartesian 
coordinates. To show the simplity of the nearly optimal shape, the points are linked 
to gather with segments. Indeed, Figure 2 can be regarded as an approximation of the 
nearly optimal shape by broken lines (so the area is less than it should be). Moreover, 
one may use the curve fitting methods, increase the number of equations, or use the 
other methods (like we use in (1], for instance) to get the shape. 

Example 2. For the second example, to decrease the optimal valve of the perfor-
mance criteria, we choose everything the same as Example 1, just V = U = U 1 = U2 = 
[-1,1]. So for discretization 10 values as —1,1, . . , 1 in each set were selected. As 
a result, the optimal value of the objective function was decreased to 2.8021342962670. 

Figure 3: The suboptimal control function w 

By the same limitation as previous example, the suboptimal control w and the
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boundary points of the nearly optimal shape are plotted in Figures 3 and 4 in Cartesian 
coordinates.

<-f 

U.b	-4)4	-02	0.0	0.2	0.4	0.6 

Figure 4: Boundary points of the nearly optimal shape 

8. Conclusions 

In this paper, we have shown that the embedding method is applicable to solve a large 
set of optimal shape design problems which are defined in terms of a pair of geomet-
rical elements and control functions and moreover they are involved with a solution 
of linear or nonlinear elliptic partial differential equations with a boundary condition. 
The method changes the classical problem (in polar coordinates) into a nonclassical 
measure-theoretical one in a bigger space, which is defined in term of a pair of positive 
Radon measures. These measures satisfy some necessary linear conditions and hence 
the computational method for the new problem is much easier. Also the method allow 
us to approximate the optimal solution of the new problem in term of the solution of 
an appropriate finite-dimensional linear program. In this manner the optimal shape for 
the original problem can be identified from the results of the finite linear program. 
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