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Abstract. The paper is devoted to the autonomous Nemytskij operator (superposition oper-
ator) in Holder spaces H 0 [a, b] , (k, a) e x (0, 1]. We study acting, continuity, Lipschitz 
continuity, and Fréchet differentiability conditions. For k = 0, a E (0, 1] and k e N, a = 1 the 
respective conditions are both necessary and sufficient. For k E N, a E (0,1) only the acting 
condition is both necessary and sufficient; the other investigated properties are characterized 
by necessary and sufficient conditions different from each other. 
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1. Introduction 
To describe the contents of this paper properly we start with introducing the function 
spaces needed in the following. 

Let [a, b] C R be a given bounded interval, a E (0, 11 and h0 : C[a, b] - k defined 
by	

ha(u) =
	

{ u(t)_t(S)(	t, s E [ab]}. 

Then u E C[a, b] is said to be a-HOlder continuous on [a, b] if h0 (u) < oo. The set of all 
such functions is called (classical) HOlder space and denoted by H°[a,b]. Introducing 
the norm

IIUIIHa,b] = I U IIC[abl + h0 (u)	 (1.1) 

the set H o' [a, b] becomes a Banach space. In the case of a = 1 we write Lip[a, b] 
instead of H' [a, b]; the elements of Lip[a, b] are Lipschitz continuous functions on [a, b]. 
If further a natural number k E N is given, then a function u E C k [a , b] is said to be 
(k, a)-HOldcr continuous on [a, b] if its k-th derivative	is an a-Holder continuous 
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function. The set of all such functions is denoted by H a [a , b]. When endowed with 
the norm

k 
U IIH k +[ob) = >	I U IIC[a,b] +	 ( 1.2) 

it is also a Banach space. Again, in the ase of a = 1 we use the notation Lipk la , b] 
instead of H[a,b]. By convention, H°[a,b] = H[a,b] and Lip°[a,b] = Lip[a,bJ so 
that the space Hia, b] is defined for any pair (k, a) E Z x (0, 11, where Z = {0}u N. 

Now we turn to functions f = 1(x) acting in R. For given a E (0, 11 a function 
f E C(R) issaid to be locally a-.Hölder continuous on R if for each x 0 E IR there is a 
positive number S such that f E H a [x o - 5,xo +5]. This is equivalent to the condition 
f E H[—r,r] for all positive numbers r. The symbol H,(R) denotes the set of all 
locally a-Holder continuous functions defined on R. We write f E H1 (R), where oc 
again k? 1 is a natural number and a E (0, 1), provided f E C k (R) and 1(k) E H(R ) . to 
In the case of a = 1 we write Lip10 (R) and Lip(R) instead of H(R) and Hj'(R), 
respectively. 

The subject of our paper is the autonomous Nemytskij operator Fu = f o u, gen-
erated by a given function f R - R, as a , map of the HOlder space 
(k, a) e 7L+ x (0, 11, into itself. There are given conditions to I ensuring F act-
ing in H'[a, b], boundedness of F, its continuity, local Lipschitz continuity and 
Fréchet differentiability, respectively. While for H[a, b], a E (0, 1], and Li[a, b], 
k E N, all respective conditions are both necessary and sufficient, for Hk[a,b] with 
(k, a) e N x (0, 1) this is only the case for the acting condition. Concerning the other 
properties for these parameters we have always separate necessary and sufficient condi-
tions with a certain distinction between both. 

The plan of the paper is as follows. In Section 2 we consider the case k = 0, 
a . E (0, 11, in Section 4 the case k E N, a = 1, and eventually in Section 5 the case 
(k, a) e N x (0, 1). Section 3 is devoted to some preliminaries for the subsequent 
sections. Most of the results in Section 2 are known; the results in Sections 4 and 5 
seem to be new. One of the purposes of this paper is to present a self-contained unified 
and not too sophisticated theory of the autonomous Nemytskij operator in Hk40[a, b]. 
Unfortunately, in Section 5 some questions remain open. 

Dealing with nonlinear analysis means at first to study Nemytskij operators. We 
were led to the problems considered in this paper in studying an optimal control problem, 
in which the state equation is a nonlinear singular integral equation of Cauchy type. 
Concerning existence and uniqueness of solutions to the state equation we could refer 
to L. . Wolfersdorf [26]. However, we needed also a simple and convenient condition 
ensuring e.g. differentiability of Nemytsjkij operators in HOlder spaces. First results 
suitable for our purposes can be found in M. Góebel [8]. An application of these results 
to the control problem just mentioned is given in M. Goebel and D. Oestreich [10]. The 
material to be presented now is mainly based on F. Sachweh [21], which was written 
under the auspices of the other author. We have announced our results in M. Goebel 
and F. Sachweh [11], where the reader can find a summary in form of a table (with an 
obvious misprint in the last row).
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From the papers dealing explicitly with autonomous Nemytskij operators in Holder 
spaces we quote at the moment only M. Z. Berkolajko [4], P. Drábek [7] and M. Goebel 
[8]. In case of a non-autonomous Nemytskij operator the generating function I depends 
on t € [a, b] and x E R. For such op'erators considered in a HOlder space H(ab) the 
reader is referred to the papers R. Nugari [19, 20], R. Chiappinelli and R. Nugari [6], and 
M. Goebel [9], and in H[a,b] to T. Valent 124: Chapter II], E. Wegert [26: Section 
1.3], and M. Lanza de Cristoforis 1 12 1 . Most of the quoted papers deal in spaces of 
functions depending on several variables. A profound account of all relevant literature 
for both autonomous and non-autonomous Nemytskij operators in different function 
spaces until about 1988 can be found in the monograph J. Appell and P. P. Zabrejko 
[2].

We finish this introductory section with some notations used throughout the whole 
paper: If X is a Banach space, the set of all continuous operators from X into itself is 
denoted by C(X)and by C'(X) the subset of C(X), whose elements are continuously 
Fréchet differentiable on X. Lip10 (X) denotes the set of all locally Lipschitz continuous 
operators acting in X and £(X) the set of all linear bounded operators acting in X. 
The symbol B(xo,6) C X stands for an open ball in X centered at xo E X with radius 
6 > 0. For any function f we denote its i-th derivative by D'f or f . Finally, c denotes 
a generic constant. 

2. The Nemytskij operator in Ha[a,b] 

Before starting to consider autonomous Nemytskij operators F generated by I : R - IR 
in the Holder space H°[a, b] with a E (0, 11, we give two well-known properties of this 
space in our first lemma. 

Lemma 2.1. 

(a) For any u,v e H[a,b], uv e Hc[a,b] and Ik27 'IIH[a,b] 5 IluIIH[a,blIIvIIH1abl. 
(b) For any 8 e (0,a), H'[a,b] C H[a,b] with h(u) 5 (b - a)h0 (u) for all 

u E H&[a,b]. 

Our first theorem presents a necessary and sufficient acting condition proved by 
M. Z. Berkolajko [4] for generalized Holder spaces. The proof of the necessity part 
given below is an simplified adaption of P. Drábek [7]. It is an easy task to derive 
a necessary and sufficient condition if acting of F is combined with its boundedness 
as it was done e.g. by A. A. Babajev [3]. The subsequent corollary is an immediate 
consequence of Theorem 2.1. 

Theorem 2.1. The autonomous Nemytskij operator F generated by f maps H a [a, b]


	

into itself if and only if f € Lip1 0 (lR).	 . 
Proof. It suffices to show the necessity of f € Lipjoc(IR) provided F is acting in 

Ha[a,b]. 

1. Let x 0 € JR be arbitrarily fixed. The linear function u 0 defined by u 0 (t) =


	

- a + x0 -	(t € [a, b]) belongs to	H' [a, b] and hence, by our assumption, there is 
a constant L0 > 0 with 

	

f(uo( t )) - f(uu(s))	Lot - sI	(t, s € [a, b))
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which implies

1(x) - f()l Lox — y	(x,y E B(xo, 2-) C R). 

Consequently, f E H ,(R) and the statement is already proved for a = 1. 

2. Let a E (0, 1). Assuming f 0 Lip,(R) we can find a number r0 > 0 and two 
convergent sequences (xn),(yn) C [—ro.r 0 ], x, 54 y, for all n E N, such that 

lf(Xn)f(yn)l>ln_ ynI	(nEN).	 (2.1) 

Because of the first point of the proof, the left-hand side of (2.1) is bounded and so (xc) 
and (y) have the same limit, say x 0 . We put 

B = B(x 0 ,y 1 ) C R,	where	
2To±n+2	

(n E N), 

with no E N so large that	< 1 for all n E N. Then for every n E N there is a kn E N 
with xk, Yk E Bn and hence Irk,, — Yk,, I < 2 'n+1 = for all n E N. We may assume 
k > km for n > in. By setting bn Irk — Yk,, Va (ri e N) we get another sequence 
O, c (0,1) with O, <-y,. Now we choose a number t j E (a,a + 4-) and define 

tn = t 1 +(-y i + O) and s = t + on	(n E N). 

Obviously, (t), (s) C [a, b] and Ym < i n — tm for arbitrary m,ri E N with n > in. 
Since 0 < I 1 implies I ta and t > 1 implies jn > 1, we find Ym < (in - t.)°' and in 
the same way also 7m < (in — Sm) and Ym < (sn — SmY for all m, ri e N with n > in. 
We introduce on M = { i n}nEN U { S fl}flEN a function u = u(t) by setting 

U(t)
I rk,, for i=t =
Yk,, fort=s 

and claim
Iu(t) - u(s)I 5 I t - sI a	(I, s E M).	 (2.2) 

Indeed, let m,n E N with n > in. Then we have 
lU(mn) - (im )I = Irk,, - Xk m I 7n+1 + 7m+i	fm <(i a — im)a 

and, analogously, 
tt(tn) — U(Sm)I < (i n — Sm)a	and	Iu(sn) — U(Sm)I	(sn - Sm). 

If in = n, then
Iu(i) - u(s)I = Irk,, - ykj = 6n' = (s - tn)°. 

Thereby (2.2) is proved. Due to E. J. McShane [18] (compare also J.-E. Björk [5] and 
W. Walter [24: p. 65]) u can be extented to [a, b] preserving the Holder condition (2.2). 
This extension is again denoted by u. Then because of our assumption there exists a 
positive constant L such that 

If(u(i)) - f(u(s))I !^ L U i - sI	(I, s e [a, b]). 
For t = tn and S = S n this results in 

If(x k,,) - f(y kj I	LIt, - Sn I n = LO = L I x k,, — Yk,,I. 
Taking advantage of (2.1) we come to L ? kn for all n E N. Since this is impossible 
the assertion is proved U
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Corollary 2.1. Each autonomous Nemytskij operator acting in H' [a, b] is bounded. 

Unfortunately, not each Nemytskij operator acting in H°[a, bj is continuous. As a 
simple example one may take F generated by the function 1, which is defined by 1(x) = 
xl (x E R). Obviously, F maps H10, 11 into itself. But this map is not continuous. To 

see this, take u, defined by u(t) = to — e (t E [0, 1]), with (En) C (0,2) and En 0. 
Then un E Ha LO , 11 and u, — uo in H'[0, 11 as n —* oo, where u 0 (t) = t o (t E [0,1]). 
However, ha(f o u,, — 10 uo) ^! 2 for all n E N, such that Fu —* Fu0 in H[0, 11. 

In the literature we can find also f defined by 1(x) = min{ x, 11 (x E R) as another 
example for a function generating a non-continuous Nemytskij operator in Ha [O , 1]. But 
the given arguments are correct only for a = 1, i.e. in the space Lip[0, 1], and false for 
a E (0, 1) (see F. Sachweh [21: pp. 16 and 52 — 54]). 

The continuity and Lipschitz continuity of an autonomous Nemytskij operator are 
completely characterized in the next two theorems. Thereby, Theorem 2.3 shows that 
there is no sense to assume F satisfies a (global) Lipschitz condition on H°[a, b]. Only 
local Lipschitz continuity makes sense. 

Theorem 2.2. The autonomous Nemytskij operator F generated by f maps the 
space H' [a, b] continuously into itself if and only if I e C1(R). 

Proof. 1. We begin with the sufficiency of the condition f E C 1 (IR). Due to 
Theorem 2.1 Fu = fou E H[a,b] holds for all u E H[a,b). To show the continuity 
of F: Ha [a , bJ —* H[a,b] let there be given a sequence (u n ) C H a [a , b] converging to 
u 0 E H" [a, b]. Since obviously f 0 Un — f o uo in C[a, b] it remains to show that 

ha(f 0 Un — f o uo) —* 0.	 (2.3) 

For any n E N we define 

lf(uo( t )) — f(uo(s)) — f(Un(t)) + f(u(s))[ = 
S)	

It	sin (t, s E [a, b], t	s). —  

Using the Lagrange formula 

f(x)_f()=(x_)Jf'(+r(x_y))dr	(x,yER)	(2.4) 

we may verify that 

n(t, s)	h(uo) / 1' (u(s) + r(uo(t) — UO(S))) 

— f'(u(s) + 7-(u(t) — un(s))) dr 

+ h(uo — Un)J [(un(s) + r(u(t) un(s))) dr
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for all t, s E [a, b] and all n E N. Since if n —* oo the first integrand tends to zero 
uniformly on (a, b) x [a, b] x [0, 11 and since the second integrand is uniformly bounded 
on the same set, we get (2.3). 

2. Now we prove the necessity of f E C'(IR). Again due to Theorem 2.1 we know 
f E Lip10 (R). Hence, both 

f(x+e)—f(x)	 .	f(x+e)—f(x) L i (x) = liminf	 and L2 (x) = urn sup 
C	 e 

are finite for all x E R and, in virtue of the Rademacher Theorem (see, eg., [28: p. 
50]), L i (x) = L 2 (x) = P(x) for almost all x E R. Suppose there exists a point x O E R 
at which f is not differentiable, i.e. L i (xo) < L 2 (xo). We denote by (C,,), (77,,) C IR two 
zero sequences with

f(x+)—f(x) f(xo+j)—f(x) L i (xo) = lim	 and L2 (xo) = lim 

and by (6) C R a further zero sequence such that f has in all points x 0 + 5,. a finite 
derivative f'(xo + 5,.). Without loss of generality, for all n E N we may assume C,, > 0 
or C. < 0 and i',. > 0 or 77n < 0. First assuming Cn > 0 for all n we consider u,. defined 
by

= (t — a) + x 0 + 8,.	(t E [a, b], n E N). 
Obviously, u,. E H[a, b], and if n —* oo, then, in H[a, b], u —* uo E H a [a, b] where u0 

is defined by uo(t) = (t — a) + xo (t E [a, b]). So, by our assumption, f  u, -4 f o uo 
in H a [a , bJ . Taking E	L2(zo)—Li(x0) we find a natural number no = n(c) such that 

o u,. — f o uo) <e for all n.> no which implies 

f((t - a) + x 0 + 8,.) — f((s — a)a + xo + 8,.) 

—f((t — a) + Xo) + f((s — a) +	e	sI 

for all i,s e [a, b] and all n	n 0 . Substitutinghere t = a + C M with Tn E N so large

that t E [a, b], and s = a, we get 

f(xo + 8,. +em) — f(xo + 8,.) — f(xo + m) f(xo)
— 

for all n > no and m sufficiently large. If in this inequality m - oo we arrive at 
Ifo + 8,.)— L i (xo) <E (n > no) . (2.5) 

If ,,. < 0 for all n, the same arguments but with u n defined by u,.(t) = —(b— t) +xo +8,. 
and later t = b — ( — m)' I , s = b lead to the same estimate (2.5). Completely in the 
same way one can show that also f'(xo + 8,.) - L2(x0)I < E for all n > no. So we have 

L 2 (xo)—L i (xo)< L2(xo)—f'(xo +8n)+f'(xo+8,.)-Li(xo)I 

• L2 (xo) — Li(xo) 
for all n > no which is a contradiction. Consequently, the generating function f has 
at each point x E R a finite derivative. Because of (2.5) can now be verified for any 
x0 e IR, any zero sequence (8,,) C IR, and any e > 0, the continuity of f' at xo is also 
proved, i.e. f E C'(IR) as claimed I
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In the proof of the next two theorems we make use of the following lemma. Its proof 
is quite elementary and hence omitted (see [81). 

Lemma 2.2. Let h E C((a, b) x (0, 1 1) and o E (0, 11 be given. If there exists a 
positive constant L such that 

h(t, r) - h(s, T))	L It - sl	(t, s E [a, b], T E (0,11), 

then for the parameter integral g(t) = f0' h(t, T) dr (t E [a, b]) 

9 E H a [ a , b] with h,,,( g)<L	and	llgIlFI[obl	J llh(,T)llH(bl dr. 
-	 .	0 

Theorem 2.3. If the autonomous Nemytskij operator F generated by f maps the 
space H' [a, b] into itself, then: 

(a) F is locally Lipschitz continuous if and only if I E Lip0(R). 
(b) F is (globally) Lipschitz continuous if and only if there are two constants c 1 , c2 E 

IR such that f(x) = c 1 x + c2 for all x E jR 

Proof. (a)/1. Let jr E Lip 0 (R) and let F1 denote the Nemytskij operator gener-
ated by the derivative f' . In virtue of Theorem 2.1 and Corollary 2.1 F1 is a bounded 
operator acting in Ha [a, b]. Because of the Lagrange formula (2.4) 

Fit _Fv=(u_v)JF1 (v+r(u_v))dr	(u,vEHa[a,b]) 

holds and by means of Lemma 2.2 and Lemma 2.1/(a) we get the estimation 

JIFu - FV llH[a,b]	lu - VllH[a,b] f ll Fi(v + r(u - v ))llH[a 6] dr	(2.6) 
0 

for all u,v E H'[a,b] which gives the local Lipschitz continuity of F. 
(a)/2. Assuming now F E Lzpj 0 c(H 0 [a,b]), by Theorem 2.2 we have f E C' (R). 

So it remains to show the local Lipschitz continuity of f' . Let x 0 E R be fixed and 
u 0 E H11a,b1 defined by uo(t) = (t - a)' + x 0 (t E [a,b]). By our assumption, we find 
two constants L0 > 0 and 6 > 0 such that 

	

li Fu - FVlloja,6j < L 0 u - V llH[ab]	(u,v E B(uo,to) C H' [a, b]). 

Clearly, for any x E B(xo,60 ) C  the function u defined byu(t) = (t —a)' +x (t E 
[a, b]) belongs to B(uo,5o) C H°[a,b]. So we get 

ll Fu z - Fu yIlo[a,t]	L 0 x - y l	(x,y E B(xo,60 ) C R)
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and, consequently, 

f((i - a) + x) - f((t - a) + y) - f((s - a) a + x) + f((s - a) +
<LoIx—y 

It — si 

for all t,s E [a, b] and all x,y E B(xo,60 ) CR. For s = a we obtain eventually 

f(x+(t—a))—f(x) - f(y+(t—a)) f(Y)l <Loix — y 

	

(t_a)a	 (t — a) 

for all t E [a, b) and all x,y e B(xo,50 ) CR. Letting t - a we come to 

if'(x)—f'(y)i	Lox — y	(x,y E B(xo,So) CR) 

which proves the desired property. 
(b) Here we have to prove only that the (global) Lipschitz continuity of F in H' [a, b] 

implies the linearity of the generating function f . In H°[a,b] let us take the norm 
ii U If!I[ab] = iu(a)i + h(u) equivalent to the norm given in (1.1). Let r,a E [a, b] with 
T > a and x , y ,e, ri E R be fixed. Consider two functions u,v E H'[a,b] defined by 

X	 ifa<t<cr 

	

u(t)=	—(t—a)+x ifa<t<T 
ifr<t<b 

and
Y	 ifa<t<a 

V(t) =

	

	—(i—a)+y ifa<t<r


ifr<tb. 

Then

il u - V IiH[a,b] = ix - i + 	- x + A 
IT	all, 

Since F is Lipschitz continuous in H' [a, b], there exists a constant L > 0 such that 

h(f 0 u - f  v)	L il u - v IIH[a,b]	(u, v E H a [a , b]). 

Substituting here the functions u, v defined above we get 

11(x) - 1( y) - f() + f(	L(x - I ir - ala + I - - x yl) 

which, for y = x + h and ri = + h with h E R different from zero, results in 

f(x+h)—f(x) 
<LIT_ala. 

h	 h 

Since by Theorem 2.2 we know that f E C'(R), we obtain if'( x ) - f'()i	L IT- - al". 
Therefore f'(x) = f'() for all x,	R, which implies our assertion U
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Finally, we give a necessary and sufficient differentiability criterion. 
Theorem 2.4. The autonomous Nemytskij operator F generated by f is contin-

uously Fréchet differentiable in H'[a, b] If and only if f E C2 (R), where its Fréchet 
derivative F'(u) at u E H o [a, b] is given by 

= (f' o u)v	 (2.7)


for ally E H°[a,b]. 

Proof. 1. First assume f E C2 (R). Again let F1 denote the Nemytskij operator 
generated by f'. Due to Theorem 2.2, we know that F1 E C(H[a,bJ). Like (2.6) one 
can verify that 

F(u + v) - Fu - FI( U ) V M Jj(ab)	1V11[	J 1 F'(u + rv) - FI u II H O (ab] dT (2.8) 
0 

for all u,v E H'(a,bj. Let now u E H'(a,b] be fixed. Then for any E > 0 there is 6 > 0 
such that

Fi(u + TV) - F1uMHtCbl < e 

for all v E B(0,8) C H'[a,b] and all r E [0,1]). Hence, from (2.8) 

F(u + v) - Fu - F1(u)vIIH[ab] EVHo[a,bJ 

for all t' E B(0, 5) C H" [a, b]) follows. Since evidently the map v F1 (u)v is linear and 
bounded in H'[a, b], we see that the operator F is Fréchet differentiable at u E H" [a, b], 
and its Fréchet derivative at u is given by Fl u, i.e. relation (2.7) holds. Furthermore, 
we have

F'(u) - F'(v)[(HO(Obl) :5 II F1U - F1VMH[b)	(v E H a [a , b]), 

showing the continuity of F' : H°[a,b] —i £(Ha [a , b]) at u E H"(a,b). So we have 
proved that FE C1(H[a,b]). 

2. Now we show that FE C1(H"[a,b]) implies f E C2 (R) and its Fréchet derivative 
has the form (2.7). First, because of Theorem 2.2, we know that f E C'(ll). To verify 
(2.7) we fix an arbitrary u E H"[a,b]. Then for any e > 0 there is S > 0 such that 

II F(u + TV) - Fu - TF' (u )v IH O L b]	EITI IkIIH[a,b] 

and, in particular, 

f(u(t) + TV(t)) - f(u(t)) - (F'(u)v) 
(t)	EIIVIIJ.fo[ab) 

T 

for all v E H°[a,b], 0 54 r E R with T III V IIH O [Ob) < S and all t E [a, b]. If in the last 
inequality r - 0, we obtain 

f'(u(t))v(t) - (F'(u)v)(t)I !^ e II v II H'[a,6]
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for all v E Ha [a, b] and all t E [a, b] which implies the validity of (2.7). Putting there 
v = 1 we get f 0  E Hc[a,bj for all u E H[a,b]. Furthermore, 

Ill' ° U - 1' ° ' IIH°(ab) = II F ' ( ti) l - F'(V)lIIHEabl	
(u, V E H''[a, b]). 

II F'( u ) - F'(v)IIc(H[o,b]) 

This means the Nemytskij operator generated by the function 1': R - R maps H[a, b] 
continuously into itself. Again in virtue of Theorem 2.2 f' E C'(R) which completes 
the proof I 

We want to mention that particularly for Theorem 2.2 and Theorem 2.4 (but also 
for Theorem 2.3/(a)) there are well-known criteria even for generalized Holder spaces 
(see J. Appell and P. P. Zabrejko [2: Chapter 7]). Our proofs are independent of these 
somehow sophisticated criteria. The sufficient parts of the theorems just mentioned 
were proved in M. Goebel [8], their necessary parts seem to be new. However, compare 
P. Drábek [7] concerning Theorem 2.2, and R. Chiappinelli and R. Nugari [6] for the 
case of non-autonomous Nemytskij operators. Theorem 2.3/(b) was first proved in J. 
Matkowski [15] for a 1, in A. Matkowska [13] for a E (0, 1) and rediscovered in 
J. Appell, E. De Pascale and P. P. Zabrejko [1]. Further results concerning globally 
Lipschitzian Nemytskij operators in different function spaces can be found in [14, 16, 
17]. Locally Lipschitz continuous Nemytskij operators in spaces of bounded a-Holder 
continuous functions defined on IR were investigated by E. P. Sobolevskij [23, 24]. 

3. Some auxiliary results 

The study of Fu = fou in Hk[a, b], (k, a) E Nx(0, 11, first raises the question whether 
or not f on belongs to H'[a, b] if u is an clement of the same space. In other words, 
we need for the k-th derivative of the composed function 10 u a convenient formula, by 
means of which we may easily answer this and other questions. Such a formula is given 
below in Lemma 3.3 showing that we have to study also certain nonlinear differential 
operators. At first, however, we give in Lemma 3.1 some further properties of HOlder 
and Lipschitz continuous functions required in the subsequent sections. 

Lemma 3.1. 
(a) The inclusion C'[a,b] C Lip[a,b] holds, where h i (u) = II U 'IIc[a,b] for all u E 

C'[a,b].
(b) For any pairs (k, a), (1, 0) E Z+ x (0, 1] with I +,3 < k + a the space H0[a, b] 

is continuously embedded into H I+a , b]. 
(c) There exists a constant c > 0 such that D'.U Jq. [a,bj :5 II u IIH . + . [a,b] for each 

E H[,b] and i E {0,1,. . . ,k}. 
(d) For any u, v E Hk[a, b] we have uv e H' [a, b], and there exists a constant 

c > 0 such that II uv II Hk+. [a,b] 5 d m11 Hk+[ob) l v ii H k +[a,b] for all u, v E H°[a, b]. 

Proof. (a) Due to the mean value theorem, for any u E C' [a, b] and any s, t E [a, b] 
with s 7A t there is some 7 e [a, b] such that lu(t) - u(s)I = Iu'(r)l It - S I . Hence we have
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U E Lip[a,b] with h i (u) < II u 'IIc[ob] . To show the converse inequality let to E [a, b] be 
such that Iu'(to)I = IIu'IIc [c,bl . Then 

h i (u) ^! l
u ( ia) - u(i)I	(t E [a, b], Ito - ti 

and if i - to, we get h i (u) ^: Iu'(to)I which proves the wanted equality 
(b) If I = k, then fi < c and the statement follows via Lemma 2.1/(b). If I + 1 k, 

the inclusion H''[a, b] C H'[a, b] is obvious, and because of Lemma 2.1/(b) and 
property (a) for any u E H[a, b] we have

l+1 

lIUllHi+$[ab] =	II D 'tL IIC[a,oj + h0(D'u) 5 c	II D ' u IIcIa;6] 5 CIIUIIHk+o(o,b] 
i=O	 i=O 

showing the continuity of this embedding. 
(c) Let u E H''' [a, b] be fixed. Because of (1.2) the statement is evident if i = k. 

In the case of i < k we use Lemma 2.1/(b) and property (a) proved above to get 

II D 'tu II H0[ob]	II D tu I!1a6j + (b - a)'	h,(D'u) 

= II D ' u IIc[c,b] + (b - a)'IID'uIIc1a6i 

from which the statement follows. 
(d) If u, v E H''[a, b], then D'u, Dv E H[a, b] (j = 0,..., k) and due to the 

Leibniz formula

Dk(uv) 
= k 

()D_3 uD2 v
	

(3.1) 

and Lemma 2.1/(a) we get Dk(uv) E H°[a,b], which means uv E H'[a,b]. Further-
more, we have

k 
lIlIH k +[a,bj	UVlqo[,g] +

1=' 

Taking advantage of (3.1), Lemma 2.1/(a) and statement (c) just proved we obtain 

k	i 

I UV lIH k +[ab] < IIIIH[a,b] +	C) lI D 'UD'V)IIH[ab] 
=I j=O 

+ o C)) IIUIIHk+[a,b)IIVIIHk+(o,b] 

where the constant c is the same as in statement (c) I
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Let Pk (k E N) be the set of all differential operators P defined by 

	

Pu=p(u ...... u)	(UECk[a,b]) 

where p E C(R k ) is a polynomial of the form 

	

P(XI...Xk)=ci(HX")	((xI, ... ,xk)ERk)	 (3.2) 

with m, ci E N, aii E 7L+ and a	> 0 for at least one index io. 
We consider P E Pk as a map defined on H[a, b]. To prepare the most important 

Lemmas 3.3 - 3.5 we prove firstly the following one. 

Lemma 3.2. For any P E Pk there exists Q E Pk+j such that DPu = Qu for all 
u E Cc[a,b]. 

Proof. Firstly, for any k E N let a 1 ,... , ak_I E Z and a k E N be given. Using 
induction it can be shown that there exists Q E P,i such that 

	

D(H(Di u) ai) = Qu	(u E C[a,b]). 

Then for an arbitrary P E Pk generated by p E C(Rk) as given in (3.2) we have 

DPu =	C D(fl (Di U)a.J)	(u E C k + h ta,bl)	 (3.3) 

where a 20 k > 0 for at least one index i 0 . Since there exists Q10 E	with 

1k 

	

D( fl(D) u)0oJ ) = Q 0 u	(u E Ck+h[a,b]) 

j=1 

the desired statement follows U 

Lemma 3.3. For each f E C k (R) there are k operators P1 E Pk ... t+1 (i = 1,.. . , k) 
such that

Dk(f a u) = Df (t) a u) P1 u	 (3.4) 

for all  E Ck[a,b]. 

Proof. The assertion will be proved by induction. If  E C'(R) arid u E C'[a,b], 
formula (3.4) is true because of D(f a u) = (f a u)Pi u with P1 e Pi generated by 
p 1 (x 1 ) = x 1 . Assume fork E N the statement to be true with certain Ti E 2k—i+1 (i
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1,.. . , k). Then in virtue of Lemma 3.2 there are Qi E Pk—i+2 with DP1 u = Q 1 u for all 
u E C k_ t+ 2 [a , b] (i = 1,... ,k). If now f E C 1 (R) and u E C c [a, b], then 

D(f o u) = D(D'(f o u)) 

D[(f o 

= (P+1) a u)u'u +E(P) o u)u 

k-fl 
=	(f(I) a u)P1u 

where in the last equation we have put 

P1 u = Qiu 

P1 u =u'P1 _ 1 u+ Q 1 u (z =2,...,k) 

Pk+lu = UPktL. 

Since P, E 2k—i+2 (z	1,... , k + 1), the statement is proved for k + 1 U 

Lemma 3.4. Each differential operator P E Pk maps H'[a, b] into H" [a, b] and 
is locally Lipschitz continuous. 

Proof. By the definition of P E Pk it is evident that Pu E H" [a, bJ for each 
u E H0[a, bl . So if uo E H[a, bl and 6 > 0 are fixed, the statement follows after 
showing that there is another constant c = c(uo,t5) >0 such that 

II Pu - PV IIH[ab] < c il u - V IIH k + o [a,b)
	 (3.5) 

for all u,v E B(uo,ö) C H'[a,b]. Let P be generated by p E C(R k ) as given in (3.2). 
Then using the identity 

k	k	k	fj—I \	/ k 

flx - H g -'	(\IIXI)(xi —Yi)( H	(xj,yj ER, kE N) 
j=I	j=I	j=I	1=1	 1=j+l 

and Lemma 2.1/(a), for arbitrary u,v E H 0 [a,b] we get 

Pu - PV IIHLa,b1 = 
^^ Yn 

	[[I(Di u)° 2 - [I(DJv)Z] 
11	j1	 j1	 L-la,b] 

[(f.i II D ' U II [ a,b] ) ll()' u ) a' j	(3.6) 
i=l j=l	1=1 

- (Dj V)aij 11H[a,b1 ( H IID'vIIta6i)]. 
I=j+I
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Because of Lemma 3.1/(c) we have for all u E B(uo,6) C H'[a,b] 

II D ' U IIH o labl	c	and	(D3u)a. - (D' v)°1 IlH 0 [a,b] 5 cilu - VIIHk+r[a,bl 

where in proving the second estimate we may take advantage of the elementary identity 

-	(x -
	

Xk_._1l	(x, y E R, k E N). 

Combining the last two estimates with (3.6) we obtain the desired property (3.5)1 

Lemma 3.5. If i E {1,. . .,k— 11 is fixed, then each differential operator P E 2k. 
maps Hk+[a,b] into H [ a , b] and is locally Lipschitz continuous. 

Proof. Let i E {1,.. . , k - 11 and P E Pk .. I be fixed. By the definition of the class 
Pu E H'[a,b) for each u E Hk[a,b]. In virtue of Lemma 3.2 there exists 

another differential operator Q E Pk—j+I with DPu = Qu for all u E C+ 1 [a, bj. Thus 
we have

Pu - PV IIH 1 + o a,bI	1 1 PU - PV IIH[a,b] + [D(Pu - PV)IIHcab1 
= I[ Pu - PV IIH O [ab] + 11QU - QvIIH.[3b] 

for all u, v E H'[a, b]. Applying Lemma 3.4 to P and Q for any uo E H[a, b] and 
any 6 > 0 we find some constants c> 0 and 6 > 0 such that, for all u,v E B(uo,6) C 
H a [a , b],

IlPu - PV I[Jf c. [ab)	c[[u - VIIHk_•+[a6] 
[Qu - QV IIH[ab]	c[[u - VIIHk_•++O[ab]. 

Observe that M = B(uo,6) C H k [a , b] implies MC B(uo,ö) C Hk_i+[a , b] for any 
j	1,... , k - 1. From the given estimates the desired local Lipschitz continuity of 
P : H° [a, b] - H' +` [a, b] immediately follows I 

Lemma 3.3 shows that Dk(f ou) can be written as a sum of products, where in 
the products the term (t) o u is one factor and in the other u(_,) is the highest 
derivative of u which occurs. Taking into account these auxiliary results we are now in 
a position to prove new properties of the Nemytskij operator in Lipk [a , b] and H a [a , b], 
respectively. 

4. The Nemytskij operator in Lipk[a,b] 

In this section we consider the autonomous Nemytskij operator F in Lip' [a, b] with 
k E N. The theorems below are analogous to those given in Section 2 for the space 
H[a,b] with a E (0, 11. Since H'[a,b] = Lip[a,b] = Lip°[a,b], the statements are also 
true for k = 0.
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Theorem 4.1. The autonomous Nemytskij operator F generated by I maps the 
space Lip'[a, b] Into itself if and only if I E	 10JR). 

Proof. 1. We show the sufficiency off E Lip(R). Let u E Lipk [a , b] be given. 
Obviously, fou E C k [a , b] and relation (3.4) holds with certain P1 E Pk-j+i . Since for 
i= 1,... ,k we have 

E Lip10 (R)	and	Lip ' I a , bj C Lipk_l[a,b] C Lip(a,bj 

from Theorem 2.1 we get f(1) 0 u E Lip[a, b] and from Lemma 3.4 also Pu E Lip[a, b]. 
Hence by formula (3.4) Dk(f 0 u) E Lip[a, b] follows which means f 0 u E Lip' [a, b]. 

2. Let now f : R -+ R be such that fou E Lip k[a,b] for all u E Lipk [a , b] . For 
arbitrary x0 E R and b = xo - a -	the linear function u0 defined by u0(t) =

t + b (t E [a, b]) is an element of Lipk [a , b] and therefore also (f o uo)(t) = f(t + c5). 
Hence f( . + ö) E C' [a, b], that means f E C'[xo -	xo +	Moreover, D lc (fouo ) =

1(k) 0 uo E Lip[a, b], i.e. there exists a constant L0 > 0 such that 

- f(uo(s)) < Loot - SI = LoIuo(t) — UO(S)	(t,s E [a,bl) 

which implies If( c)(x) - f(k)()1	Lox - I for all x,y E B(xo, 2-) C R. So we have 
f E Lipk [x o —	+ --] and consequently f E Lip(R)U 

Corollary 4.1. Each autonomous Nemytskij operator F acting in Lipk[a, b] is 
bounded. 

Theorem 4.2. The autonomous Nemytskij operator F generated by f maps the 
space Lip'[a, b] continuously into itself if and only if f E C'(R). 

Proof. 1. Firstly we assume f E C(R). Because of C(R) C Lip,(R) and 
Theorem 4.1, the Nemytskij operator F generated by I maps Lipc[a, b] into itself. To 
show its continuity let. the sequence (u, 2 ) C Lip!c [a , b] converge to u E Lip'[a,b]. By 
Lemma 3.1/(b) this implies 

u, -i u	in Lip'[a,b] for all z = 0,...,k— 1.	 (4.1)


Applying Lemma 3.3 we find 

II Fu n - FU IIL,p k labl	111 0 u, - f 0 uIILip[a,b] 
k 

+>IIDl(foun)DI(fou)I
Lip[a,b) 

111 0 u, — fo UIILIP[a,b]	
(4.2) 

k	i 
+ E E 11(f(j) 0 u)P1 u — (fe) 0 

1=1 j=1 

with certain P, 3 E P-i . Since by assumption f ) E C'(R) ( y = 0,...,k), Theorem 
2.2 implies J(J) 0 U — ftp ) 0 u in Lip[a, b], and since in virtue of (4.1) and Lemma 3.4
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Pu,, —i P,,u in Lip[a, b], we obtain Fu —i Fu in Lipk[a, b] which proves the continuity 
of F at the point u E Lipk[a,b]. 

2. Let now F E C(Lipk [a , b]). By Theorem 4.1 we have f E Lip(R) which implies 
D k f E Lipj0 (R), and it remains to show that D'f E C'(R). Like in the second part of 
the proof to Theorem 2.2, for each x 0 E IR there exists a sequence (x) C R converging 
to x0 and 1(k) differentiable at each x,,. Consider the functions u, E Lip k[a, b] for each 
n E Z defined by u(t) = t — e+x (t e (a, b], E (a, b)). Evidently, Dk (fou) = 
1(k) o u n and u,, - uo in Lip k[a, b] if n -	. Since F is continuous at u 0 , for arbitrary 
e > 0 there is an no	no(e) e N with Ii Fu - FUOIIL;Pk[a,bI < e for all n	no, and

therefore

- f( k)(u(t)) - f( k)(u(s)) + 1 (k) (u (.$))i < 
it — si	 - 

for all t,s E [a, b] and all n n0 . In particular, for s = we obtain 

k)(j - + x,,) - f( k)(x) - 

t -

f(k)(t - + x) - f(k)(xo)
E	(4.3) 

for all t E [a, b] and all n > n 0 . Supposing j(k) to be not differentiable at ZO we can 
find two zero sequences (Ta), (0,,) C R and two reell numbers L 1 ,L2 such that 

f(k)(x + Tm) - f( k)(x)	f(k)(x + Om) - f(k)(x) 
L 1 = urn	 < lim	 =L2. 

M-00	 TM	 m—.co 

If in estimate (4.3) we put t = + Tm, in sufficiently large, and if afterwards m - 
we find

f(k+1)(x) - Lii	E	(n > no)	 (4.4) 

and in the same way if(x,,)—L2i <C for all ii n0 . Thus we come to IL 1 —L2 i 5 C, 

which contradicts L 1 < L2 . Hence fM is differentiable at any point x 0 E R. The 
continuity of f(i) follows from (4.4) (see the proof of Theorem 2.2)1 

Theorem 4.3. The autonomous Nemytskij operator F generated by f is a locally 
Lipschitz continuous map from Lip k(a, b) into itself if and only if f E Lip'(R). 

Proof. 1. Firstly let us assume f E Lip(R). By formula (4.2), with u,, replaced 
by v, for all u,v E Lip c[a,b] 

il Ftz - Fv iiLjp k Qbl	f 0 U - f  ViiLip[a,b] 
k 

+ E E [ilPivIiLP[O,bliif	0 U - f(j) 0 VIiLip[a,6] 
=1 j=I 

+ iif	0 u iiLip[a,b]iI Pij u - PijviiLip[ab]] 

holds where P1 , E	 The desired local Lipschitz continuity of F : Lipk [a , b] - 
Lip* [a, b] follows now from Theorem 2.3/(a) applied to the Nemytskij operators F, F1, 

Fk generated by f, f',. .. , f, respectively, Lemma 3.4 and finally Lemma 3.1/(b).
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2. If, on the other hand, we assume F: Lip[a, b] —* Lip' [a, b) to be locally Lipschitz 
continuous, then due to Theorem 4.2 the generating function f belongs to C(R). So 
we have to show only that j(1) is locally Lipschitz continuous on R. To prove this for 
any x € R we define u by u 1 (t) = I - a + x (I E [a, b]). In particular, for fixed ZO € R 
we set u 0 = u 0 . Then II u - tL yIILjp k (a,b) = Ix - I for all x,y € R and hence, for any 
S > 0, Uz € B(uo,6) C Lip[a,b] provided Ix — xoI < S. So by our assumption there 
are two constants L0 > 0 and 5o > 0 such that II Fu - FU yIILjp k la,b)	Lox - vi for all 
x, y € B(xo, So) C R which because of D(f	) 

= f(k) a liz implies 

f(k)(j — a + x)	— a + y) —	— a + x) + f() (s - a + y)	Lox - vi i — s 

for all t,s E [a, b) and all x,y € B(xo,So) C R. For s = a this estimate gives 

f(k)(x + I — a) — f(k)(x) — f(k)( + i — a) — f(k)(y)	
L0 x — t 	 t  —, ^* :5

for all t € [a, b] and all x,y € B(xo,So) C R from which, if i —* a, we get I f(k+1) (x) — 
f(k+1)(y)1 <Loi x — vi for all x,y E B(xo,So) C R. This shows the claimed local 
Lipschitz continuity of f() on R I 

Theorem 4.4. The autonomous Nernytskij operator F generated by f is continu-
ously Fréchet differentiable in Lip /c [a, b] if and only if f E C 2 (R). Its Fréchet deriva-
tive F'(u) at u € Lip[a, b] is given by 

F'(u)v = (f' o u)v	 (4.5)


for all v € Lip' [a, b] 

Proof. That FE CI(LipIc[a,b]) implies f € C 2 (R) and the validity of (4.5) can 
be shown in the same way as in the proof of Theorem 2.4 for k = 0. So assuming 
conversely f € C 2 (R) we are going to show F € C I (Lipk [a , b]) and formula (4.5). 
Due to Theorem 4.2 the Nemytskij operator F1 defined by Flu fo u (u € Lip c [a , b]) 
belongs to C(Lip[a, b]). Hence for any u, v € Lipk [a , b] the function (r) = F, (u + Tv) 
maps continuously the interval [0,1] into Lipc[a, b] and thus is also integrable. Let 
u € Lip'[a,b] and e > 0 be fixed. Then there exists some 5> 0 such that 

II	I	 9 
(F1 (u + Tv) — Flu) dTh	f II'( + TV) — F1U IIL I k( b ] dT <C	(4.6) 

I Ia	 IILipk[a,b]	0 

for all V € B(0, 6) C Lipk[a, b]. The classical Lagrange formula (2.4) yields 

f(u(t) + v(i)) — f(u(t)) - f'(u(t))v(t) = v(i) / (f'(u(i) + TV(t))— f'(u(i)))dr
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for all t E [a, b] and all u,v E Lip '[a,b]. Since here the parameter integral is the same 
as the integral on the left-hand side of estimate (4.6), we can apply Lemma 3.1/(d). So 
taking advantage of (4.6) we get

	

II	I	 II 
F(u + v) - Fu - F1(U ) V IILi k[ b]	C II V IILip k [a,b]	(Ft (u + rv) -	u) drM 

110	 S	 IILipk[a,b] 

CEv,Pk[O] 

for all v E B(O,o) C Lip k [a , b] which means the Fréchet derivative of F at u is given by 
Fl u = f'o u E £(Lipk[a,b]). Since its continuity is obvious the theorem is proved I 

These results are quite satisfactory and in a certain sense final. By no means the 
same can be said concerning those of the next section. 

5. The Nemytskij operator in Hk[a,b] 

Now we come to the most interesting case, namely to H'[a, b] with (k, ) E N x (0, 1). 
Not very much papers are dealing with the Nemytskij operator in this general Holder 
space - (see J. Appell and P. P. Zabrejko [2: Section 8.3]). However, let us mention the 
introductory Section 1.3 of the monograph E. Wegert [26], which is devoted to non-
autonomous Nemytskij operators acting in H(1) (l, C R"), but also in Ck(fZ) and 
Sobolev spaces. Sufficient acting conditions combined with boundedness, continuity and 
differentiability conditions are given. Naturally, our sufficient conditions given below 
are sharper than those which one gets by specifying Wegert's results. 

Again we begin with an acting condition, which in this section will be the only 
necessary and sufficient condition. Note that Theorem 5.1 is not true for k = 0, however 
for a = 1 (compare with Theorem 2.1 and Theorem 4.1). 

Theorem 5.1. The autonomous Nemytskij operator F generated by f maps the 
space H[a, b], (k, ) E N x (0, 1), into itself if and only if f E H(R). 

Proof. 1. Let first f E H(1R). Since for any i = 1,. . . , k and any u E H[a, b] 
the derivative D'(fou) belongs to C[a,b], it remains to show Dk(f ou) E H'[a,b]. By 
Lemma 3.3

Dk(fou) _	 P1U	(u E H[a,b])	 (5.1) 

holds with certain differential operators P1 E Pk-+1 . Because of Lemma 3.1/(b) and 
Lemma 3.4 we have Pu E H a [a, b] for i = 1,... , k, and because of Theorem 2.1 we have 
f(i) ou E H[a, b] for i = 1,. . . ,k - I. Consider now 1(k) ou for any fixed u E H[a, b]. 
Choosing r > 0 s large that Iu(t)I < r for each t E [a, b], we find a constant L,. > 0 
such that	 S 

If( k)(x) - f(k)()1	L rI X - y I°	(x,y e [-r, r]), 

hence, by the mean value theorem,

LrIu(t) - U(S)I' .( LrII U 'II . [ab] I t -
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for all t,s E [a, b]. Thus we also have f(k) o u E H[a,b] and formula (5.1) yields 
D k (f o u) e H°[a,b] for eachu E H°[a,b], which shows that F generated by f E 
H'(R) maps H'[a, b) into itself. 

2. The proof of the necessity of f E H 0 (R) is almost the same as in Theorem 4.1 
(for a = 1) and therefore omitted I 

Corollary 5.1. Each autonomous Nemytskzj operator F acting in Ha[a, b], (k,a) 
E N x (0, 1), is bounded. 

We change over to continuity conditions for F in H°'[a, b]. Like before, continuity 
of F is not already implied by its acting in H 0 [a , b]. As a simple illustrating example 
in Hl+0[0, 1 1, with a E (0, 1), one may take the Nemytskijoperator F generated by the 
function I defined by

f(x)=fTI	ifx>0 
•	(0	ifx<0. 

Looking to what we have found concerning continuity in the foregoing sections, we 
could expect that the autonomous Nemytskij operator F generated by f is continuous 
in H 0 [a , b] if and only if f E Ck+I(R). But in the following Theorem 5.2, which 
is an improvement of the corresponding theorem announced in [11], we have proved 
a sufficient condition weaker than the inclusion I E V(R). Note, on the other 
hand, that this sufficient continuity criterion seems to be only a very little touch more 
restrictive than the necessary condition from Theorem 5.1. 

Theorem 5.2. The autonomous Nemytskij operator F generated by  maps the 
space H 1 (a, b], (k, a) E N x (0, 1), continuously into itself if, for any r > 0, there 
exists /3 e (a, 1] such that f E H[—r, r]. 

Proof. Since the assumption implies f E H,c (R) , in virtue of Theorem 5.1 the 
related Nemytskij operator F maps H k+0 [a, b] into itself. At first we prove the continu-
ity of this map in the case of  = 1. So let (u n ) be an arbitrary sequence in H'[a,b] 
converging to u 0 E H H [a , bj . We chooser 2 1 and no E N such that 

II u nIIH I +[a,b]	r	and	II u - U OIIH I + o [abj	1	• 

for each n 2 no. By assumption f E Lip[—r,r] and f E H[—r,r]. Let L and Lfi 
denote the Lipschitz and Holder constant, respectively. Then we have the estimate 

Il Fu - FuoIlHI+[o,6] 

= 111 0 Un — 1 0 U OIIC[a,b] + 11(1' o u)u — (f'o U0)t4IIHoab] 

Lju fl — U 0IIC(a,6] + 11110 U OIIH O [a b]II U - U'OIIH[a,b] 

+ r IIf' 0 Un - F 0 UOlIH[a,b]	
•	 (5.2)


CjUn - U 0IIH I + o [a,6) + rLIIu n - U0II1 6) + rh0 (f' 0 u, - jr' uo) 

C II U n - UoII+11 + rh0 (f' o u - f'o uo) 

for all n 2 n0 To show that the second term tends to zero provided n -	, for each 
n no we introduce	(t, s) defined by	 --	 - 

Ln(t, s) = f'(Un(t)) - f'(uo(t)) - f ' (Un(S)) + f'(Uo(s))	(t, s e [a, bj).
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Because off' E H'[—r,r] we have 

s) < Lfi ( I u n( t ) — uo(i)I + u.(s) - uO(s)I) 

	

2Lpu n — UoII+[ 0 b]	 (t,s E [a, b]).	(5.3)

< 2rLu, — UOIIHL+[abl 

On the other hand, again using that f E H[—r,rJ and additionally Lemma 3.1/(a), 
we find

< L,6 ( J u n (t) — un(s)I + Iuo(t) — uo(s)I) 
L (II u II [ab] + IItO IIC [ 6 ] ) It - 

SI ft (t, s e [a, b]).	(5.4)


<2rLIt — sI 

We put -y = a/3' which implies 7 e (0, 1), /3-y = a, and 0(1 --y) = 0 - a > 0. By (5.3) 
and (5.4) we obtain

s) =	s))1((t, s))
(t,s E [a,bJ). 

2r L II U n — U OII J.I l+o[ab] I t	si 

Hence for all n no we have the estimate 

	

ha(f' o u - f' o uo)	2rLfihIUn - UOIIHi+labl 

showing together with (5.2) that Fn — Fuo in H''[a,b] as claimed. 
Consider now the general case k > 2. Again let (Un) be a sequence in H'°[a,b) 

converging to uo E Hc[a,bj. Observe that this implies u, -+ uo in Lipk_2[a,b] and 
u, — u0 in H'[a,b]. Since by assumption f E C Ic_l (R) , Theorem 4.2 yields 

fou, —b fouo	in Lip 2 [a,b].	 (5.5) 

Furthermore, by assumption, for ny z = 1,. . . , k — 1 and r > 0 we can find 0 E (a, 1] 
with fO) e H'+[—r, r]. Thus, by what we have just proved for k = 1, 

ou,, —* f(s) ou0	in H''[a,b] for i = 1,...,k-1.	(5.6) 

Finally, because of Lemma 3.5, for any differential operator P, E Pk	(i = 1,. . . , k — 1)

we have

	

P1u —p P1 u 0	in H'°[a,b].	 (5.7) 
We estimate for any n E N now the norm of Fun — Fuo in Hk4a[a, b]: 

IIFun- FUOIIHk+[a,b] 

Ill 0 Un — f  tL oIILjp k_2 (a,6J + II Dk_l (f 0 Un — 1 0 uO)IIHI+n[a,bl 

	

Ill 0 Un - f  U0IILjp k_2 [a,bl	 (5.8) 

+	I(f) 0Un)Piun — (f(s) 0 UO)PiUOlIHl+[ab] 

where P1 E Pk .. (see Lemma 3.3). Because of (5.5) - (5.8) the proof is complete I
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The situation is similar in the case of local Lipschitz continuity and continuous 
Fréchet differentiability of F. Taking into account the results from the previous sections 
one could expect F to be locally Lipschitz continuous or continuously Fréchet differ- 
entiable in H°[a,bj if and only if the generating function I belongs to Lip(R) or 
C 2 (R), respectively. As it can be seen in the subsequent two theorems these condi-
tions are indeed sufficient. However, we could not verify their necessity. So, there are 
still differences between the sufficient and the necessary conditions. 

Theorem 5.3. 

(a) The autonomous Nemytskij operator F generated by f is a locally Lipschitz 
continuous map in H k [a , b] , (k, a) EN x (0, 1), if f E Lip1(R). 

(b) If conversely F is a locally Lipschitz continuous map in H' [a, b], (k, a) E 
N x (0, 1), then I E 

Proof. (a) First let k = 1. So we suppose f € Lip' JR). We fix an arbitrary 
element u 0 E H[a, b] and a number 6 > 0. Let r > 0 be so large that IUIIHI+c[a,b] r 
for all u E B(uo, 6) C H' + ' [a, b]. Let Lr denote the Lipschitz constant off with respect 
to the interval j—r,r]. Because of f' € LipJ0(R), Theorem 2.3 gives a constant L > 0 
such that 

If o u - f 0 v IIHlo,b] < Lu - vIIH[ob]	(u, V € B(uo, 6) C H' + '[a, b]). 

Then we have

Il Fu - FvIIHI+o[ob) 

= f 0 U - Jr 0 V IIc[a,b] + 11(1' 0 u)u' - (1' o v)v'IIHoo,b] 
< LrU - VIIC[a,b] + 11(1' 0 u )IlH[ab)II u ' - VIIHO[a,b] 

+ II V IIHja,bJIIf 0 U - f 0 VIIHO[a,bl 
< cu - VIIHI+[a,b] 

for all u,v € B(uo,6) C H°[a,b] and the statement is proved. 
Let now k 2 2. Again we take an arbitrary uo € H 0 [a , b) and an arbitrary 

number 6 > 0. Since the assumption f E Lip '(R) implies I E Lip 1 (R) and 
• , 
f 1) E Lip(R), by Theorem 4.3 and the assertion already proved for k = 1 

we find a constant c > 0 such that 

III 0 U - 10 V IILip k_2 [a,b] !^ c il u - VIILipk_2[ab] 

and
o U -	0 V IIH 1 +[a,b]	C lI U - VIlH+[a,b]	(i = 1,... , k - 1) 

for each u,v € B(uo,6) C H''(a,b]. By Lemma 3.5, without loss of generality with 
the same constant c, for any P1 € Pk—j (i = 1,..., k - 1) we have 

lI Pi u - PjVI j i+o a6	c il u - V IIH k + o [a,b)	(u,v € B(uo,6) C Hk[a,b]).
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Therefore from estimate (5.8) with u instead of u, and v instead of u 0 the assertion 
follows also in this case.	 . 

(b) If we suppose now F E. Lipi0 (H[a,b]), then by Theorem 5.1 we have f E 
C Ic (R) . So it is to show that j) E H/0 (R). By assumption, for any . uo E H'°'[a,b] 
there exist two constants L0 > 0 and 5 > 0 such that 

Fu — FV IIII k + n [ab] 5 Lou - VII Jqk+ [ab)	 (59) 

for all u,v E B(uo,50 ) C H k [a , b] . Firstly as u 0 we take uo(i) = t — a+xo (t E [a, b)) 
where xo E Ris arbitrarily fixed. Since the function u defined by u(t) = t—a+x (t E 
[a, b]) belongs to B(uo,60 ) C H[a,b] if XE B(xo ) 50 ) CR, from (5.9) we obtain 

f(k)(t — a + x) - f(k)(t - a + y)	Dk(f 0 u 1 — fo Uy )IIC F j 5 LOIX — I/I 

for all t E [a, b) and all x,y E B(xo,öo) C R which implies 

< Lox - I	(x,y E B(xo,60 ) C R), 

i.e. f(') E Lzpj0 (R). Suppose f	is not differentiable at x 0 . Then there are two zero 

sequences (r),(9) C Rand two constants L 1 >0 and L2 >0 with L 1 < L2 such that 

f(k)(x + h) - f(k)(± 
L i = liminf	

) 
= lim fo + r) - f(k)(x) 

h 
f(k)(x + h) — f( k)(x)	f(k)(xo + 9) — f(k)(x) 

L2 = lim sup	 = lim 
h—O	 h	 n—.	. .. On 

In (5.9) we take now u 0 defined by uo(t) = t — ' + xo (t E [a,bJ) with fixed e E (a, b). 
Furthermore, we define u, by u(t) = t - + xo + r,, (t 'E [a. b]). Let no = no(öo) E N 
so large that j Tn I < bo for all n no and hence u, E B(uo,8o) C H'[a,b]. Estimate 
(5.9) yields

In - FUOIIH k +[ab]	L0Tn	(n > no). 

In particular, we have 

	

h c (D k (fo Un — fouo)) <LOT	(ri >no), 

and hence	 .	.	. ..	.	.	. 

f(k)(t - e + x 0 ) — f( k)(t - + x0 + T) - f(k)(x) + f(xo + T) 
S	 <LOITnI (5.10) 

valid for all i E [a, b]. Because of E Lip, 0 (R) and the Rademacher Theorem 
(see, e.g., [28: p. 50]) there exists a further zero sequence, (h m ) C R such that f(k) is 
differentiable at all points xo + hm. Without loss of generality we may assume e.+ hm E 
[a, b] for all in? n0 . Hence substituting t '	+ hm into (5i0) for all n,rn ^ no we get 

f(k)(x + hm + r) - f(k)(x + hm)	f(k)(x + r) — f(k)(x) 

	

.	 < Loh. In	 5,	 'Tn	'..
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from which
f(k-f.I)(x + hm) - L 1 <LoIhm I	(m > no) 

follows. Consequently, for any e > 0 there exists an m0 = mo(e) no with 

if(k+1)( + hm) - Lii <e	(rn > mo). 

Since the same estimate is true with L 2 instead of L 1 , L 1 = L2 follows and hence 1(c) 
is differentiable at x0. 

It remains to show that f() E H(R) . Again let x 0 E IR be arbitrary but fixed, 
UO E H'°[a,b] be given by uo(t) = t — a+xo (t E [a, b]) and let L 0 >0 and 8o >0 
be two constants such that (5.9) holds. Let 51 = min{,b — a}. Then u definded by 
u(t) = t—a+x+A.(t E fa, b]) is an element of the ball B(uo,5o) C H k [a , b] provided 
x  B(xo,5 i ) C  and E B(0,8 1 ) CR. Since also v defined by v(t) = t — a + x (t E 
[a, b]) belongs to B(uo,5o) C H 0 [a , b] from.(5.9) we obtain 

f(k)(t — a + x + A) _f(k)(t — a + x) — f(k)(x + A) + f(k)(x)
<L0IAi 

it — ai	 — 

valid for all t E [a, b]. Let now y e B(xo,5i ) C R be another arbitrary element. Without 
loss of generality we may assume x < y and hence a < a + y — x < b. Substituting 

= a + y - x into the last estimate we find 

f(k)( + A) — f(k)() . f(k)(x + A) — f(k)(x) 
A	 A	

<Loiy — xi 

for all A E B(0,5 1 ) C R. If here A —* 0, we-obtain 

if() - f(k+1)(x)i	Loiy — xi	(x,y E B(xo,5 i ) CR) 

showing. that I	belongs-to H,(R). This completes the proof U 

Theorem 5.4. 
(a) The autonomous Nemytski3 operator F generated by f is a continuously Fréchet 

differentiable map in the space H'° [a, b], (k, c) E N x (0, 1), if I E C2(R). 
(b) If conversely F is, a continuously Fréchet differentiable map in H[a, b], 

(k, a) EN x (0, 1), then f E H'"(R). 

In both cases the Fréchet derivative at any point u E H'[a,b] is given by 

F'(u)v . (f' ou)v 

for all v € H!c40[a,b]. 

The proof of this theorem is nearly the same as the proofs of the analogous state-
ments in the previous sections and hence omitted.
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