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Abstract. The paper is devoted to the autonomous Nemytskij operator (superposition oper-
ator) in Hélder spaces H**°[a,b], (k,a) € Z4 x (0,1]. We study acting, continuity, Lipschitz
continuity, and Fréchet differentiability conditions. For k =0, a € (0,1] and k € N, a = 1 the
respective conditions are both necessary and sufficient. For k € N, a € (0,1) only the acting
condition is both necessary and sufficient; the other investigated properties are characterized
by necessary and sufficient conditions different from each other.
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1. Introduction

To describe the contents of this paper properly we start with introducing the function
spaces needed in the following.

Let [a,b] C R be a given bounded interval, o € (0,1] and hq : C[a,b] — R defined

by
ho(u) = sup {——'“(ft)__jfs)'

t#s,t,s€ [a,b]}.

Then u € Cfa, b] is said to be a-Hélder continuous on [a, ] if ha(u) < co. The set of all
such functions is called (classical) Holder space and denoted by H%[a,b]. Introducing
the norm

lulltrofa,b) = llullcla,b) + Ralu) (1.1)

the set H%[a,b] becomes a Banach space. In the case of a = 1 we write Lipa, b]
instead of H'[a, b]; the elements of Lip|a, ] are Lipschitz continuous functions on [a, ].
If further a natural number k € N is given, then a function u € C¥[a, b] is said to be
(k,a)-Hélder continuous on [a,b] if its k-th derivative u(¥) is an a-Hdlder continuous
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function. The set of all such functions is denoted by H**%[q,b]. When endowed with
the norm

nuuymla b= Zuu< Mty +ha<u<*’> (1.2)

1=0

it is also a Banach space. Again, in the ase of @ = 1 we use the notation Lip¥(a, b
instead of H*+![a, b]. By convention, H*%[a,d] = H"[a b] and Lip°[a,b] = Lip[a, b} so
that the space H**°[q, b] is defined for any pair (k,a) € Z4 x(0, 1], where Z; = {0}UN.

Now we turn to functions f = f(z) acting in R. For given o € (0,1] a function
f € C(R) is'said to be locally a-Holder continuous on R if for each zo € R there is a
positive number § such that f € H*[z¢ — §, 29 + 6]. This is equivalent to the condition
f € H®[—r,r] for all positive numbers r. The symbol HZ (R) denotes the set of all
locally. a-Hélder continuous functions defined on R. We write f e H,’:I"(R), where
again k > 1 is a natural number and a € (0, 1}, provided f € C*(R) and f¥) € HZ (R).
In the case of a = 1 we write Lipjoc(R) and Lipf, (R) instead of H} (R) and H,’;’l(R),
respectively.

The subject of our paper is the autonomous Nemytskij operator Fu = f o u, gen-
erated by a given function f : R — R, as a map of the Holder space H**[a, b],
(k,a) € Z4 x (0,1], into itself. There are given conditions to f ensuring F act-
ing in H**%[a,b], boundedness of F, its continuity, local Lipschitz continuity and
Fréchet differentiability, respectively. While for H%[a,b], a € (0,1], and Lip*[a, b},
k € N, all respective conditions are both necessary and sufficient, for H¥*+%[a, b] with
(k,a) € N x (0,1) this is only the case for the acting condition. Concerning the other
properties for these parameters we have always separate necessary and sufficient condi-
tions with a certain distinction between both.

The plan of the paper is as follows. In Section 2 we consider the case £k = 0,
a € (0,1), in Section 4 the case k € N, a = 1, and eventually in Section 5 the case
(k,a) € N x (0,1). Section 3 is devoted to some preliminaries for the subsequent
sections. Most of the results in Section 2 are known; the results in Sections 4 and 5
seem to be new. One of the purposes of this paper is to present a self-contained unified
and not too sophisticated theory of the autonomous Nemytskij operator in H*%([q, b].
Unfortunately, n Section 5 some questions remam open.

Dealing with nonlinear analysxs means at ﬁrst to study Nemytskij operators. We
were led to the problems considered in this paper in studying an optimal control problem,
in which the state equation is a nonlinear singular integral equation of Cauchy type.
Concernmg existence and uniqueness of solutions to the state equation we could refer
to L. v. Wolfersdorf [26]. However, we needed also a simple and convenient condition
ensuring e.g. differentiability of Nemytsjkij operators in Holder spaces. First results
suitable for our purposes can be found in M. Gdebel {8]. An application of these results
to the control problem just mentioned is given in M. Goebel and D. Qestreich [10]. Thé
material to be presented now is mainly based on F. Sachweh [21], which was written
under the auspices of the other author. We have announced our results in M. Goebel
and F. Sachweh [11], where the reader can find a summary in form of a table (with an
obvious misprint in the last row). '
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From the papers dealing explicitly with autonomous Nemytskij operators in Hélder
spaces we quote at the moment only M. Z. Berkolajko [4], P. Drabek [7] and M. Goebel
(8]. In case of a non-autonomous Nemytskij operator the generating function f depends
on t € [a,] and z € R. For such operators considered in a Holder space H[a,b] the
reader is referred to the papers R. Nugari (19, 20], R. Chiappinelli and R. Nugari [6], and
M. Goebel [9], and in H**[a,}] to T. Valent [24: Chapter II], E. Wegert [26: Section
1.3), and M. Lanza de Cristoforis [12]. Most of the quoted papers deal in spaces of
functions depending on several variables. A profound account of all relevant literature
for both autonomous and non-autonomous Nemytskij operators in different function
spaces until about 1988 can be found in the monograph J. Appell and P. P. Zabrejko
[2].

We finish this introductory section with some notations used throughout the whole
paper.' If X is a Banach space, the set of all continuous operators from X into itself is
denoted by C(X)‘and by C'(X) the subset of C(X), whose elements are continuously
Fréchet differentiable on X. Lip;oc(X) denotes the set of all locally Lipschitz continuous
operators acting in X and L(X) the set of all linear bounded operators acting in X.
The symbol B(z¢,6) C X stands for an open ball in X centered at T € X with radius
6 > 0. For any function f we denote its i-th derivative by D' f or f(¥). Finally, ¢ denotes
a generic constant.

2. The Nemytskij operator in He [a, b]

Before starting to consider autonomous Nemytskij operators F' generated by f:R—>R
in the Holder space H%[a,b] with a € (0, 1], we give two well-known properties of this
space in our first lemma.

Lemma 2.1.
(a) For any u,v € H?[a,b], uv € H°[a,b] and ||uv||go(ap) < [l Hofapllvll afay-

(b) For any B € (0,a), H%[a,b] C HP[a,b] with hg(u) < (b~ a)*Pha(u) for all
u € H%a,b]. - :

Our first theorem presents a necessary and sufficient acting condition proved by
M. Z. Berkolajko [4] for generalized Holder spaces. The proof of the necessity part
given below is an simplified adaption of P. Drabek [7]. It is an easy task to derive
a necessary and sufficient condition if acting of F is combined with its boundedness
as it was done e.g. by A. A. Babajev [3]. The subsequent corollary is an immediate
consequence of Theorem 2.1. . ' : '

1

Theorem 2.1. The autonomous Nemytskij operator F generated by f maps H*[a, b
into itself if and only if f € Lipi,c(R). ' ' ' '

Proof. It suffices to show the necessity of f € Lipjo.(R) provided F is acting in
Ha,b].

1. Let zo € R be arbitrarily fixed. The linear function uq defined by uo(t) =
t—a+zo— ""T“ (t € [a,8]) belongs to H?[a, b] and hence, by our assumption, there is
a constant Lo > 0 with : .

| f(uo()) = f(uo(s)| < Lolt —s|*  (t,5 €a, b)) -
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which implies
|f(z) = ()] < Lol —y|*  (z,y € B(o,%5%) CR).
Consequently, f € Hf (R) and the statement is already proved for & = 1.

2. Let o € (0,1). Assuming f ¢ Lip;,.(R) we can find a number ry > 0 and two
convergent sequences (Zn),(¥n) C [—T0,70], Tn # ya for all n € N, such that
|f(zn) = f(yn)l > nlzn ~yal  (n€N). (2.1)
Because of the first point of the proof, the left-hand side of (2.1) is bounded and so (z,)
and (yn) have the same limit, say z,. We put
b—a
onot+n+2
with ng € N so large that v, < 1 for all n € N. Then for every n € N thereisa k, € N
with =4, ,yx, € By and hence |2k, — yx.| < 29041 = ¥n for all n € N. We may assume
kn > km for n > m. By setting 6, = |zx, — yx,|"/® (n € N) we get another sequence
én C (0,1) with 6, < 7,. Now we choose a number ¢, € (a,a + 64;") and define
n—1
ta=ti+ Y (vi+6&) and sa=ta+8 (n€N).
=1
Obviously, (tn),(sn) C [a,b] and y;m < t, — t, for arbitrary m,n € N with n > m.
Since 0 < t < 1 implies t < t* and t > 1 implies t* > 1, we find v < (fn — tm)® and in
the same way also ym < (tn — sm)® and Ym < (Sp — sm)* for all m,n € N with n > m.
We introduce on M = {t,}neNU {Sn}nen a function u = u(t) by setting .

) zg, fort=t,
u =
yk, fort=s,

B, = B(zo,7n+1) C R, where v, = (n € N),

and claim

[u(t) — u(s)| < |t - s|® (t,s € M). (2.2)
Indeed, let m,n € N with n > m. Then we have

[u(tn) = u(tm)| = |2k, = Zhw| < Ynt1 + Tm41 < Tm < (En — tm)”
and, analogously,
. [u(tn) = u(sm)l < (tn — 5m)” and [u(sn) = u(sm)l < (sn = sm)°.
If m = n, then .
lu(tn) — u(sn)l = |2k, — Ykal = &7 = (50 — ta)°.

Thereby (2.2) is proved. Due to E. J. McShane [18] (compare also J.-E. Bjérk [5] and
W. Walter [24: p. 65]) u can be extented to [a,b] preserving the Holder condition (2.2).

This extension is again denoted by u. Then because of our assumption there exists a
positive constant L, such that

[f(u(®)) = f(u(s))] < Lult = s|*  (t,s € [a,b)).
Fort = t, and s = s, this results in .
|f(-73kn) = flyr ) € Ly|tn - sal® = L,y = Lulz, — Yk, |-

Taking advantage of (2.1) we come to Ly, > ky, for all n € N. Since this is impossible
the assertion is proved B
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Corollary 2.1. Each autonomous Nemytskij operator acting in H[a,b] is bounded.

Unfortunately, not each Nemytskij operator acting in H?|a,b] is continuous. As a
simple example one may take F generated by the function f, which is defined by f(z) =
|z| (z € R). Obviously, F maps H°[0, 1] into itself. But this map is not continuous. To
see this, take un defined by ua(t) =t* ~ e, (t € (0,1]), with (,) C (0,2) and €, — O.
Then u, € H%(0,1] and un, — ug in H®[0,1] as n — oo, where ug(t) = t* (t € [0,1]).
However, hq(f o upn — foug) > 2 for all n € N, such that Fu, — Fug in He0,1).

In the literature we can find also f defined by f(z) = min{z,1} (z € R) as another
example for a function generating a non-continuous Nemytskij operator in H<[0,1]. But
the given arguments are correct only for a = 1, i.e. in the space Lip[0, 1], and false for
o € (0,1) (see F. Sachweh [21: pp. 16 and 52 ~ 54]).

The continuity and Lipschitz continuity of an autonomous Nemytskij operator are
completely characterized in the next two theorems. Thereby, Theorem 2.3 shows that
there is no sense to assume F satisfies a (global) Lipschitz condition on H®[a,5]. Only
local Lipschitz continuity makes sense.

Theorem 2.2. The autonomous Nemytskij operator F generated by f maps the
space H%(a,b] continuously into itself if and only if f € C'(R).

Proof. 1. We begin with the sufficiency of the condition f € C!(R). Due to
Theorem 2.1 Fu = fou € H%[a,b] holds for all v € H%[a,b]. To show the continuity
of F': H%[a,b] — H®[a, ] let there be given a sequence (u,) C H®[a,b] converging to
ug € H%[a,b]. Since obviously fou, — foug in Cla,b] it remains to show that

ho(fous — foug) — 0. (2.3)
For any n € N we define

Ant, s) = H(@o®) = f(uo(s)) = f(un(t)) + f(un(s))

[t — s|*

(t,s € [a,b], t # 5).
Using the Lagrange formula
1
@~ ) =@=) [ fu+ra - (EyeR) (2.4)
, .
we may verify that

1 .
Dnlt,s) < ha(uo) / |f’ (ud(s) + 7(uo(t) — uo(s))) .
0

— f'(un(s) + T(un(t) - u,.(s))) dr

+ ha(uo — u,,)/ |f’ (un(s) + 7(un(t) ~ un('s)))] dr
0
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for all ¢t,s € [a,b] and all n € N. Since if n — oo the first integrand tends to zero
uniformly on {a,b] x [a,8] x [0,1] and since the second integrand is uniformly bounded
on the same set, we get (2.3).

2. Now we prove the necessity of f € C!(R). Again due to Theorem 2.1 we know
f € Lipi,c(R). Hence, both

(o) = gt L+ 0= e+ - 12)

€—0 § £
are ﬁmte for all z € R and, in virtue of the Rademacher Theorem (sec, eg., [28: p.
50]), Li(z) = La(z) = f'(z) for almost all z € R. Suppose there exists a point zo € R

at which f is not differentiable, i.e. Ly(z¢) < La(zo). We denote by (£,),(7:) C R two
zero sequences with

Lo = iSRG Io0) g ) gy S0 )= S

n : Mn

and by (6,) C R a further zero sequence such that f has in all points zo +6éna finite
derivative f'(zo + 6,). Without loss of generality, for all n € N we may assume £, > 0

orfy<0andn, >0o0r r],, < 0. First assuming &, > 0 for all n we consider u, deﬁned
by

and Lg(x) = lim sup
§—

ua(t) =(t - a)® +zo + 6,, (t € [a, b], n € N).
Obviously, u, € H%{a, b, and if n — oo, then, in H%[a,b], un — uo € H%[a, b] where ug
is defined by uo(t) = (t — a)® + zo (t € [a,b]). So, by our assumption, f ou, — f o ug
in H*{a,b]. Taking ¢ = L’(“—):L'(@—) we find a natural number ny = n(e) such that
ho(f oun — f oug) < e for all n > ny which implies

f((t=a)* + 2o+ 6n) — f((s — )" + 20 + 6n)

~f((t = @) +20) + f((s — @)° + o) | S et = 5|7

for all t,s € [a, b] and all n > ng. Substituting here t = a + {mo with ' m € N so large
that t € [a, b}, and s = a, we get

f($0+'5n +-§m)_f(-7-'0+6n) f(’w’o +§m)"’f(x0)

€m €m
for all n > ny and m sufficiently large. If in this mequalnty m — 0o we arrive at
|f'(zo + 6a )L (zo)| <e - (n>no). (2.5)

If £, < 0 for all n, the same arguments but with u,, defined by un(t) = =(b—t)*+20 46,
and later t = b — (—£,)"/, s = b lead to the same estimate (2.5). Completely in the
same way one can show that also |f'(zo + 6n) — L2(z0)| < € for all n > ny. So we have

La(zo) — Li(zo) < |La(z0) — f'(20 '_*'_61;)' + | f'(zo + 6n) ~ I_Jl(Io)l
.5 2¢e
< Lg(lo)—Ll(Io) _
for all n > n¢ which is a contradiction. Consequently, the generating function f has
at each point z € R a finite derivative. Because of (2.5) can now be verified for any

zo € R, any zero sequence (6,) C R, and any ¢ > 0, the continuity of f' at zq is also
proved, i.e. f € C!(R) as claimed
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In the proof of the next two theorems we make use of the following lemma. Its proof
is quite elementary and hence omitted (see (8}).

Lemma 2.2. Let h € C([a,b] x [0,1]) end a € (0,1] be given. If there exists a
positive constant L such that

|h(t,7) — h(s,7)| < L|t —s|® (t,s € [a,b],7 €(0,1]),

then for the parameter integral g(tv) = fol h(t,7)dr (t € [a,b])

1
g€ H%a,b] with ho(9) <L and  |iglluefey < /ilh(~;T)IIHo[a,b] dr.
- : S .

Theorem 2.3. If the eautonomous Nemyiskij operator F generated by f maps the
space H%[a,b] into itself, then:

(a) F is locally Lipschitz continuous if and only if f € Lip}, (R).

(b) F 13 (globally) Lipschitz continuvous if and only if there are two constants ¢;,cy €
R such that f(z) =1z + ¢, forallz € R. . .

Proof. (a)/1. Let f € Lip},.(R) and let F} denote the Nemytskij operator gener-
ated by the derivative f’. In virtue of Theorem 2.1 and Corollary 2.1 F| is a bounded
operator acting in H%[a, b]. Because of the Lagrange formula (2.4)

1
Fu—Fu=(u—v)/F|(v+T(u—-v))dT (u,v € H%a, b))
0
holds and by means of Lemma 2.2 and Lemma 2.1/(a) we get the estimation

. 1
|Fu — Follgea,s) < llu—vlleay / IFi(v + 7(u — v))Hefa,s) d7 (2.6)
0 .

for all u,v € H%[a, b] which gives the local Lipschitz continuity of F.

(a)/2. Assuming now F € Lipjoc(H%[a,b]), by Theorem 2.2 we have f € C'(R).
So it remains to show the local Lipschitz continuity of f'. Let zo € R be fixed and
uo € H%[a, b] defined by uo(t) = (t — a)* + z¢ (t € [a,b]). By our assumption, we find
two constants Lo > 0 and 8¢ > 0 such that

|Fu — Fo|lge(ap) < Lollu — vllgefas)  (u,v € B(uog,é0) C H[a, b}).

Clearly, for any z € B(z¢,60) C R the function u, defined by u,(t) = (t —a)® +z (t €
(a,b]) belongs to B(ug,b0) C H%[a,b]. So we get

| Fuz — Fuyllgofa,e) < Lolz =yl (z,y € B(zo,60) C R)
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and, consequently,

‘f((t—a)°+z)—f((t—a)°+y) - f((s—a)*+z) +f((s—a)"+y)’

< Lglz —
T < Lolz -yl

for all t,s € [a,b] and all z,y € B(zg,8) C R. For s = a we obtain eventually

fz+(t-0a)) - f(z) fly+(t-0a)) - f(y)
(t —a) (t—a)°

< Lo|z — y|

for all t € [a,b] and all z,y € B(z¢,8) C R. Letting t — a we come to

If'(z) = (I < Lolz —y|  (2,y € B(zo,60) C R)

which proves the desired property.

(b) Here we have to prove only that the (global) Lipschitz continuity of F in H%[a, b]
implies the linearity of the generating function f. In H%[a,b] let us take the norm
|l f7ea,8) = lu(@)] + ha(u) equivalent to the norm given in (1.1). Let 7,0 € [a,b] with
T > 0 and z,y,€,7 € R be fixed. Consider two functions u,v € H%[a, b] defined by

z fa<t<o
u(t) = f:i(t—a)+z fo<t<r
¢ fr<t<b
and
y fa<t<o
v(t) = Y;y(t—o)+y ifo<t<r
n ifr<t<b.
Then
[€—n—z+yl

I = liegey = 2 ~yl + ==

Since F is Lipschitz continuous in H?%{a, b], there exists a constant L > 0 such that
halfou=fou) < Lilu = vllpeten (w0 € Ho[a,B)).
Substituting here the functions u, v defined above we get -
7(2) = £() = F©) + f} < L(lz — ylIr ~ 01 + 1€ —n — = + y)
which, for y = z + h and = € + h with h € R different from zero, results in

f(:t-{-h)—f(-’l:)_f(f-{-h)— (6) <L|T—U|°
b R '

Since by Theorem 2.2 we know that f € C!(R), we obtain |f'(z) — f'(£)| < L|r — o|°.
Therefore f'(z) = f'(€) for all z,£ € R, which implies our assertion il
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Finally, we give a necessary and sufficient differentiability criterion.

Theorem 2.4. The autonomous Nemytskij operator F generated by f is contin-
uously Fréchet differentiable in H%[a,b] if and only if f € C?(R), where its Fréchet
derivative F'(u) at u € H%[a,b] is given by

F'luv = (f ou)v : (2.7)
for allv € H%[a,b].

Proof. 1. First assume f € C*(R). Again let F; denote the Nemytskij operator
generated by f’. Due to Theorem 2.2, we know that Fy; € C(H%[a,b]). Like (2.6) one
can verify that

[P+ ) = P = Aol g < Iollioie / IFs (a4 70) = Fyul|yoge ydr (28)

for all u,v € H%[a,b]. Let now u € H%[a, b] be fixed. Then for any ¢ > 0 there is 6 >0
such that :

| Fa(u + 7v) — Fl“”Ho[a,b)
for all v € B(0,6) C H*[a,b] and all 7 € [0, 1]). Hence, from (2.8)

“F(u +v)— Fu-— Fl(u)v|'H°[a,b] <ellvll e,y

for all v € B(0,6) C H%a,b]) follows. Since evidently the map v — F;(u)v is linear and
bounded in H[a, b}, we see that the operator F is Fréchet differentiable at u € H%[a, 8],
and its Fréchet derivative at u is given by Fju, i.e. relation (2.7) holds. Furthermore,
we have

[|F'(u) - F'(v)”C(H"[n b)) = < |[|Fiu- Flv”na[a,b] (v € H%a, b)),

showing the continuity of F' : H%[a,b] — E(H"’[a b)) at u € H%[a,b]. So we have
proved that F € C'(H%[a,b]).

2. Now we show that F' € C'(H[a, b]) 1mphes f € C*(R) and its Fréchet derivative
has the form (2.7). First, because of Theorem 2.2, we know that f € C!(R). To verify
(2.7) we fix an arbitrary u € H%[a,b]. Then for any € > 0 there is § > 0 such that

”F(u + 7v) — Fu— TFI(u)v”H"’[a,b] <efrllviinaia,p)

and, in particular,

f(u(t) + To(t) — f(u(?))

= (F'(u)v) (t)| < ellvliyora,y

. for all v € H?%[a,b], 0 # 7 € R with |7|||[v]|ga[s,s) < 6 and all ¢ € [a,b]. If in the last
inequality 7 — 0, we obtain

Lf' (u(®))u(t) — (F'(w)o)(t)] < € llvllmaay
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for all v € H%[a,b] and all t € [a,b] which implies the validity of (2.7). Putting there
v=1weget f'ou€ H?a,b) for all u € H%[a,b]. Furthermore,

If" ou— f ov|lgajas = [[F'(u)l = F'(v)1|| gofa e

(u,v € H[a, b]).
SNF'(w) = F'(0)llccrefa s
This means the Nemytskij operator generated by the function f' : R — R maps H%[a, b]
- continuously into itself. Again in virtue of Theorem 2.2 f' € C'(R) which completes
the proof B ’

We want to mention that particularly for Theorem 2.2 and Theorem 2.4 (but also
for Theorem 2.3/(a)) there are well-known criteria even for generalized Holder spaces
(see J. Appell and P. P. Zabrejko [2: Chapter 7)). Our proofs are independent of these
somehow sophisticated criteria. The sufficient parts of the thcorems just mentioned
were proved in M. Goebel [8], their necessary parts seem to be new. However, compare
P. Drébek (7] concerning Theorem 2.2, and R. Chiappinelli and R. Nugari (6] for the
case of non-autonomous Nemytskij operators. Theorem 2.3/(b) was first proved in J.
Matkowski [15] for @ = 1, in A. Matkowska {13] for « € (0,1) and rediscovered in
J. Appell, E. De Pascale and P. P. Zabrejko [1]. Further results concerning globally
Lipschitzian Nemytskij operators in different function spaces can be found in (14, 186,
17]. Locally Lipschitz continuous Nemytskij operators in spaces of bounded a-Holder
continuous functions defined on R were investigated by E. P. Sobolevskij [23, 24].

3. Some auxiliary results

The study of Fu = fouin H¥*%[a,b], (k,a) € Nx(0,1], first raises the question whether
or not fou belongs to H¥+%[q, b] if u is an element of the same space. In other words,
we need for the k-th derivative of the composed function fou a convenient formula, by
means of which we may easily answer this and other questions. Such a formula is given
below in Lemma 3.3 showing that we have to study also certain nonlinear differential
operators. At first, however, we give in Lemma 3.1 some further properties of Holder
and Lipschitz continuous functions required in the subsequent sections.

Lemma 3.1.

(a) The inclusion C'[a,b] C Lip|a,b] holds, where hi(u) = |[u'|l¢(a,s) for all u €
C'la,b]. '

(b) For any pairs (k,a),(I,8) € Z4 x (0,1) with I+ 8 < k + « the space HE+o[q, b]
is continuously embedded into H'*#(a, b). '

(c) There ezists a constant ¢ > 0 such that ||Diu||[.la[a,b] < cllullgr+ea,p) for each
u € H¥*ela,b] and i € {0,1,...,k}. ' N '

(d) For any u,v € H***[qa,b] we have uv € H*+2[a,b], and there ezists a constant
¢ > 0 such that ||uv|| gr+afq,y < cllull artaia,sllvlarvara,s) for allu,v'e Hk*e[a,b].

Proof. (a) Due to the mean value theorem, for any u € C*[a, b} and any s, € [a, b]
with s # t there is some 7 € [a, b] such that |u(t) — u(s)] = |u'(7)| |t — s|. Hence we have
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u € Lip[a,b] with h;(u) < ||u'||cja,5) To show the converse 1nequa.11ty let ¢o € [a,b] be
such that [u'(to)| = ||u'||c{a,5- Then

t t
() > lu(|(z))—u|()| (t € [a,B], t # to),
and if ¢ — to, we get h;(u) > |u'(to)| which proves the wanted equality.

(b) If I = k, then 8 < a and the statement follows via Lemma 2.1/(b). If I+ 1 < k,
the inclusion. H"+°[a b] C H'*P[q,b) is obvious, and because of Lemma 2.1/(b) and
property (a) for any u € H**+%[a,b] we have

I+1
il i+opa,8) = Z ID*ullcay) + ha(D'u) < ¢ Y D ullcpaz < C||U||H~+°(a 5

=0 =0

showing the continuity of this embedding.

(c) Let u € H*¥*%[a,b] be fixed. Because of (1.2) the statement is evident if i = k.
In the case of i < k we use Lemma 2.1/(b) and property (a) proved above to get

| D*u|| profa,5) < 1D ullcla ) + (b — @) ~*hy(D'u)

= [ID*ullcla by + (b= @) "D ulica

from which the statement follows.
(d) If u,v € H**%[a,b], then D¥~Ju, Div € H"’[a b (7 =0,...,k) and duc to the

Leibniz formula
k
k o .
D*(uv) =" (.)D.’f"uD’v (3.1)
— \J
j=
and Lemma 2.1/(a) we get D*(uv) € H%[a,b], which means uv € H¥*+°[a, b]. Further-
more, we have
k
luvllgevefas) < Nluvllmofa,s) + Z | D* ("U)“H«[a 8-
i=1
Taking advantage of (3.1), Lemma 2.1/(a) and statement (c) just proved we obtain

fuolleretosy < Tullneen + 373 (J) 1D~ uD3v) | ogay

i=1 j=0

< c(l + Z Z ( )) el sx+aa gy l10ll e +aga g

=1 j=0

where the constant c is the same as in statement (c) &
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Let Px (k € N) be the set of all differential operators P defined by
Pu = p(u',...,ul®) (u € C¥[a,d))

where p € C(R*) is a polynomial of the form

m

k
p(:rl,‘..,zk)=Zc.~<Hz?""> ((xl,...,:z:k)ERk) (3.2)

i=1

with m,c; € N, ai; € Z4 and a,x > 0 for at least one index 1.

We consider P € Py as a map defined on H**?[a, b]. To prepare the most important
Lemmas 3.3 - 3.5 we prove firstly the following one.

Lemma 3.2. For any P € Py there ezists Q € Piyy such that DPu = Qu for all
u € C*+l[a,b).

Proof. Firstly, for any k € N let a;,...,ax—; € Z4 and ax € N be given. Using
induction it can be shown that there exists Q € Pi4; such that

k .
D( H(Dfu)‘*f) =Qu  (ueCH[a)).

Then for an arbitrary P € Px generated by p € C(R¥) as given in (3.2) we have

m

DPu=Y" c;D( H(D"u)a‘j> (u € C**'a, b)) (3-3)

=1

where a;;x > 0 for at least one index 7. Since there exists Qi, € Pir41 with

k
D(H(D"u)“-'w‘) =Quu (e C*lia)

=1
the desired statement follows B

Lemma 3.3. For each f € C*(R) there are k operators P; € Px_i41 (i=1,...,k)
such that

ko
D*(fou)=> (fou)Pu (3.4)
i=1
for all u € C*[a,b}.
Proof. The assertion will be proved by induction. If f € C'(R) and u € C'[a, 8],

formula (3.4) is true because of D(f ou) = (f' o u)Pyu with P, € P, generated by
pi(z1) = z;. Assume for k € N the statement to be true with certain P; € Py_iz1 (2 =
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o k).. Then in virtue of Lemma 3.2 there are @.' € Pr_is2 with Dﬁ;u = qu for all
u€e CH"*2[qb] (i=1,...,k). If now f € C*¥*}(R) and u € C**![a,d], then

D**!(f ou) = D(D¥(f o u))

k
= Z D[(f o u)Pu]

= Z(f('“) ou)u'Piu+ Z(f(') ou)Qiu
i=1 i=1
k41

= Z(f(i) ou)Pu

i=1
where in the last equation we have put
P]'u = Qlu
P.'u u'ﬁ;_1u+é;u (1 =2,...,k)

Piyu =u' Pru.

Since P; € Px—iy2 (1 =1,...,k + 1), the statement is proved for k + 1 i

Lemma 3.4. Each differential operator P € Py maps H**°[a, b] into H%[a,b] and
18 locally Lipschitz continuous.

Proof. By the definition of P € Pi it is evident that Pu € H%[a,b] for each
u € H**%(a,b]. So if ug € H**%[a,b] and § > 0 are fixed, the statement follows after
showing that there is another constant ¢ = c(ug, 6) > 0 such that

|Pu — Pv|lgajas) < cllu — vl gr+oqay (3.5)

for all u,v € B(ug,6) C H***[a,b)]. Let P be generated by p € C(]R") as given in (3. 2)
Then using the identity

k k i, ko
Hzf‘Hyi=Z[(Hzl)(zj—yi)( H yl)] (zj,y; € R, k€ N)
j=1 j=1

j=1 =541

and Lemma 2.1/(a), for arbitrary u,v € H**%[a, b] we get

m

k k
e []‘[(Dfu)w - H(D’v)“"!’]
=1 Jj=1

i=1

|Pu — Pv||gefa,) =

He(a,b]

m k -1 :
S [( T 10wl ) D70 (36)

i=1 j=1 =1

A k .
— (DYv)%i ||H°[¢’b]< H IID‘vll‘}}i-[a,q)]-

I=j+1
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Because of Lemma 3.1/(c) we have for all u € B(ug,6) ¢ H*+“[a, b]
ID'ullpatasy S ¢ and  ||(D7u)*s ~ (DIv)s laga < cllt = vllrresaa,y

where in proving the second estimate we may take advantage of the elementary identity

=(@-y)) * Y (g,yeR, keN).

i=0

Combining the last two estimates with (3.6) we obtain the desired property (3.5) i

Lemma 3.5. Ifi€ {1,. — 1} 1is fized, then each differential opera.tor PeP_;
maps H*+%[a,b] into HH"”[a b] and 138 locally Lipschitz continuous.

Proof. Let i€ {1,...,k—1} and P € Px_; be fixed. By the definition of the class
Pi—i, Pu € H't%[a,b] for each u € H**%[a,b]. In virtue of Lemma 3.2 there exists
another differential operator @ € Pi_;4, with DPu = Qu for all u € C*~**![q,b]. Thus
we have

1Pu — Pollssaga,sy < [1Pu = Pollpges) + ID(Pu = Po)llsrofa)
' = ||Pu — Pv||pafa ) + [|Qu — Qu|| a[a,s)

for all u,v € H**%[q,b]. Applying Lemma 3.4 to P and Q for any uo € H**%[a, b] and
any 6 > 0 we find some constants ¢ > 0 and 5 > 0 such that, for all u,v € B(ug,4) C
Hk+a[a b]

|1Pu — Pollpyaga < cllu — v||H~—-'+o[a.b]

1Qu — QuliHafa,p) < cllu — v]|ga-iti4afap)-

Observe that M = B(uo,68) C H***[a,b] implies M C B(uo,8) C H*=i*2(q, ] for any
] = ,k — 1. From the given estimates the desired local Lipschitz continuity’ of
P: H"*‘"[a bl — H'*°[a, b] immediately follows il

Lemma 3.3 shows that D*(f ou) can be written as a sum of products, where in
the products the term f(") o u is one factor and in the other uw(¥=i+1) is the highest
derivative of u which occurs. Taking into account these auxiliary results we are now in
a position to prove new properties of the Nemytskij operator in Lip¥[a, b] and H**%(q, b],
respectively.

4. The Nemytskij operator in Lip*[a, b]

In this section we consider the autonomous Nemytskij operator F in Lip*[a,b] with
k € N. The theorems below are analogous to those given in Section 2 for the space
H®%[a,b] with a € (0,1]. Since H'[a,b] = sz[a b] = Lip°[a, b}, the statements are also
true for £ = 0.
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Theorem 4.1. The autonomous Nemytskij operator F generated by f maps the
space Lip*[a,b] into itself if and only if f € Lipf (R).

Proof. 1. We show the sufficiency of f € Lip¥ (R). Let u € Lip*[a, b] be given.
Obv1ously, fou € C*[a,b] and relation (3.4) holds with certain P; € Pi_;y,. Smce for
t=1,...,k we have

fD € Lipoe(R)  and  Lip*[a,b) C Lip*~*(a,b] C Lip|a, b]

from Theorem 2.1 we get f(*) o u € Lip|a,b] and from Lemma 3.4 also Piu € sz[a b].
Hence by formula (3.4) D*(f o u) € Lip|a, ] follows which means f ou € Lip* (a, b].

2. Let now f : R — R be such that f ou € Lip¥[a,b] for all u € Lip*[a,b]. For
arbitrary zp € R and § = z9 — a — b—}‘- the linear function ugo defined by ug(t) =
t+6 (t€ [a,b])is an element of Lip*(a,d] and therefore also (fo uo)(t) = f(t + §).
Hence f(-+6) € C*[a, b], that means f € C* (foup) =
f(") oug € Lip|a, b, i.e. there exists a constant Lo > 0 such that

| £ (uo(8)) = FP(uo(s))| < Lolt - s| = Loluo(t) ~ uo(s)|  (¢,s € [a,b])

which implies Ivf(")(z) — f®(y)| < Lo|z — y| for all z,y € B(zo, 2-2) C R. So we have
f b_"] and consequently f € Lipk (R) B

Corollary 4.1. Each autonomous Nemytskij operator F acting in Lip*[a,b] is
bounded.

Theorem 4.2. The autonomous Nemytskij operator F generated by f maps the
space Lip*(a,b] continuously into itself if and only if f € C*(R).

Proof. 1. Firstly we assume f € C¥*!(R). Because of C"“(R) C Lipf,(R) and
Theorem 4.1, the Nemytskij operator F generated by f maps Lip*{a, b} into itself. To

show its continuity let. the sequence (u,) C Lip*[a, b converge to u € Lip*{a,b].
Lemma 3.1/(b) this implies A

Uy — u in Lip‘[a,b] forall :=0,...,k—1. (4.1)
Applying Lemma 3.3 we find

|Fun — Fullipt(a,e) < If 0 tn = f 0 ul Lipa,y

+ Z"D'(foun)_ D (fou)”Llp[a b}
i=1
<1700 = f ol +

+ Z Z ”(f(]) ° u")P'Ju" - (f(J) ° u)P'Ju”Llp[a ]

=1 j=1

with certain P;; € Pi_;4,. Since by assumption f(’) € CI(R) (7 =0,...,k), Theorem
2.2 implies fU) oup — £ o u in Lip[a, b], and since in virtue of (4.1) and Lemma 3.4

B
i
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Pijun — Pijuin Lip[a, b}, we obtain Fu, — Fu in Lip*(a, b] which proves the continuity
of F at the point u € Lip¥(a, b). ,

2. Let now F € C(Lip*(a,d]). By Theorem 4.1 we have f € Lipf _(R) which implies
D* f € Lipi,c(R), and it remains to show that D*f € C!(R). Like in the second part of
the proof to Theorem 2.2, for each zo € R there exists a sequence (z,) C R converging
to zo and f(") differentiable at each z,,. Consider the functions u, € Lip"[a, b] for each
n € Zy defined by un(t) =t — €+ 2z, (¢ € [a,b],€ € (a,b)). Evidently, D¥(fou,) =
f® ou, and up — ug in Lip* (a,b] if n — oo. Since F is continuous at ug, for arbitrary
€ > 0 there is an ng = no(e) € N with ||[Fu, — Fugl|ipr[a,s) < € for all n > ng, and

therefore
|F B (un(t)) = FE (o)) = F8 (uals)) + FP (uo(s))] <e
|t — si -

for all ¢,s € [a,b] and all n > ng. In particular, for s = £ we obtain

SO =€+ 20) = fBan) D= +20) = fPa0)| _
t—¢ t—¢ =

(4.3)

!

for all t € {a,b} and all n > no. Supposing f(*¥) to be not differentiable at zo we can
find two zero sequences (7,),(6r) C R and two reell numbers L;, Lz such that

(k) _ (k) (k) — §(k)
L1= hm f (1,'0+Tm) f (Io) < llm f ($0+0m) f (1:0) =L

m—o0 Tm m—oo Gm

If in estimate (4.3) we put t = £ + 7, m sufficiently large, and if afterwards m — oo,
we find
|f("+l)(zn) -L)|<e¢ (n 2 no) (4.4)

and in the same way |f*+1(z,)~ L,| < ¢ for all n > ng. Thus we come to |L; — Lo| < ¢,
which contradicts L; < L,. Hence f(¥ is differentiable at any point zo € R. The
continuity of f**1) follows from (4.4) (see the proof of Theorem 2.2) B

.Theorem 4.3. The autonomous Nemytskij operator F generated by f is a locally
Lipschitz continuous map from Lip*[a,b] into itself if and only if f € Lz'pfotl(lR).

Proof. 1. Firstly let us assume f € Lipf:;l(lR). By formula (4.2), with u,, replaced
by v, for all u,v € Lip*{a, b] .
|Fu = Fol[Liptja,s) S [If o u = fovlLipa,p)
ko
+ 33 [1Povllipte sl fP 0w = £9 0 0] ipga
i=1 j=1

+ 19 0wl pipga gl Piju — Pfjvllup[a,b]]

holds where Pij € Pi_j4+1. The desired local Lipschitz continuity of F : Lip* [a,b] —

Lip*[a, b follows now from Theorem 2.3/(a) applied to the Nemytskij operators F, Fy,
..., Fi generated by f, f',..., f¥)| respectively, Lemma 3.4 and finally Lemma 3.1/(b).
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2. If, on the other hand, we assume F : Lip*[a,b] — Lip*[a, b} to belocally Lipschitz
continuous, then due to Theorem 4.2 the generating function f belongs to C¥*+!(R). So
we have to show only that f(**+1) is locally Lipschitz continuous on R. To prove this for
any z € R we define u, by u,(t) =t —a+z (¢ € [a,b]). In particular, for fixed z, € R
we set up = ug,. Then |Ju; — uy||Lipria,) = |2 — y| for all z,y € R and hence, for any
§ >0, uz € B(ug,8) C Lip*[a,b] provided |z — zo| < 6. So by our assumption there
are two constants Lo > 0 and & > 0 such that ||Fuz — Fuy||Lips(a,5) < Lojz — y| for all
z,y € B(z0,60) C R which because of D*¥(f ou;) = f*) o u, implies

fBt-a+2)- fOt-aty)- fPs—at+z)+ D -aty)

< Lolz -
t s < Lolz -yl

for all t,s € [a,b] and all z,y € B(z¢,80) C R. For s = a this estimate gives .

<L -
t—a t—a - OII yl

Lt = ) S st/
for all t € [a,b] and all z,y € B(zg,60) C R from which, if ¢ — a, we get |f*k+V)(z) —
FEFD(y)| < Lo|z — y| for all z,y € B(zo,8) C R. This shows the claimed local
Lipschitz continuity of f*+1) on R B

Theorem 4.4. The autonomous Nemytskij operator F generated by f is continu-
ously Fréchet differentiable in Lip*[a,b] if and only if f € C¥*?(R). Its Fréchet deriva-
tive F'(u) at u € Lip*[a,b] is given by

F'(u)v = (f'oulv (4.5)

for all v € Lip*[a, b)

Proof. That F € C'(Lip*{a,b]) implies f € C¥*?(R) and the validity of (4.5) can
be shown in the same way as in the proof of Theorem 2.4 for ¥ = 0. So assuming
conversely f € C¥*?(R) we are going to show F € C'(Lip*(a,b]) and formula (4.5).
Due to Theorem 4.2 the Nemytskij operator F; defined by Fiu = f'ou (u € Lip*|a, b))
belongs to C(Lip*[a,b]). Hence for any u,v € Lip¥[a, b] the function ¢(r) = Fy(u + Tv)
maps continuously the interval [0,1] into Lip*[a,b] and thus is also integrable. Let
u € Lip*[a,b] and € > 0 be fixed. Then there exists some § > 0 such that

1
. < /“Fl(u+TU)_Flu“Lip"(u,b]dT <e (4.6)

1 .
/(Fl(u + 71v) — Fiu)dr
0 Lip*|a,b) 0

for all v € B(0,6) C Lip*[a,b]. The classical Lagrange formula (2.4) yields

Flu(t) + v(t)) — f(u(t)) = f'(u(®)v(t) = v(t) / (f'(u(t) + To(2)) = f'(u(t))dr
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for all t € [a,b] and all u,v € Lip*[a,b]. Since here the parameter integral is the same
as the integral on-the left hand side of estimate (4.6), we can apply Lemma 3.1/(d). So
taking advantage of (4. 6) we get ,

1
”F(u + ‘U) — Fu - Fl(u)v||L,‘pk[a,b] < C”v“Lip?[a,b] / (Fl(u + Tv) - Elu) dr
‘ 0 : Lip*(a,b]
< cellvll Lipt(ab)

for all v € B(0,6) C Lip*|[a, b] which means the Fréchet derivative of F at u is given by
Fiu = f' ou € L(Lip*[a,b]). Since its continuity is obvious the theorem is proved B

These results are quite satisfactory and in a certain sense final. By no means the
same can be said concerning those of the next section.

5. The Nemytskij operator in H*+%[a, b]

Now we come to the most interesting case, namely to H*%{a, b] with (k,a) € Nx (0, 1).
Not very much papers are dealing with the Nemytskij operator in this general Holder
space’(see J. Appell and P. P. Zabrejko [2: Section 8.3]). However, let us mention the
introductory Section 1.3 of the monograph E. Wegert {26], which is devoted to non-
autonomous Nemytskij operators acting in H¥*+2(Q) (€ C R™), but also in C*(R2) and
Sobolev spaces. Sufficient acting conditions combined with boundedness, continuity and
differentiability conditions are given. Naturally, our sufficient conditions given below
are sharper than those which one gets by specifying Wegert’s results.

Again we begin with an acting condition, which in this section will be the only
necessary and sufficient condition. Note that Theorem 5.1 is not true for k = 0, however
for @ = 1 (compare with Theorem 2.1 and Theorem 4.1).

Theorem 5.1. The autonomous Nemytskij operator F generated by f maps the
space H**%[a,b], (k,a) € N x (0,1), into itself if and only if f € HE**(R).

loc

Proof. 1. Let first f € HEY®(R). Sincefor any i = 1,...,k and any u € H*+%(a, b]

the derivative D*(f o u) belongs to Cla, b], it remains to show D¥*(fou) € H*(a,b]. By
Lemma 3.3

. .
D¥(fou) = Z (f(i) o u) Piu (v € H¥*[a, b)) (5.1)

=1
holds with certain differential operators P; € Px_it+;. Because of Lemma 3.1/(b) and
Lemma 3.4 we have Piu € H%[a,b] for i = 1,..., k, and because of Theorem 2.1 we have
fWoue Ho[a,blfori=1,...,k—1. Consider now f(¥) ou for any fixed u € Hk+o[q b).

Choosing 7 > 0 so large that |u(t)] < r for each t € [a,}], we find a constant L, > 0
such that

1f® (@)~ FOW) < Lolz ~yl°  (z,y € [=r7]),

hence, by the mean value theorem,

PP () - O] < Lelu(t) - u(s)|* < Le||u'l[a,plt — sI®
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for all t,s € [a,b]. Thus we also have f(¥) o u € H%[a,b] and formula (5.1) yields
D*(fo u) € H®%[a,b] for each u € H**%[q, b], which shows that F generated by f €
HEY2(R) maps H*+2[q, b} into itself.

loc

2. The proof of the necessity of f € H,’:t"(IR) is almost the same as in Theorem 4.1
(for @ = 1) and therefore omitted B :

Corollary 5.1. Each autonomous Nemytskij operator F actmg in H*+|q, b] (k, @)
€ N x (0,1), is bounded. -

We change over to continuity conditions for F in H**o[a, b]. Like before, confinuity
of F is not already implied by its acting in H**%[a, b]. As a simple illustrating example
in H'*2[0, 1}, with « € (0,1), one may take the Nemytskij operator F' generated by the

function f defined by
= ifz>0
f(x): Ta 1':r->
: - {0 ifz <0.

Looking to what we have found concerning continuity in the foregoing sections, we
could expect that the autonomous Nemytskij operator F generated by f is continuous
in H¥*2[a,b] if and only if f € C**!(R). .But in the following Theorem 5.2, which
is an improvement of the corresponding theorem announced in [11], we have proved
a sufficient condition weaker than the inclusion f € V*+!(R). Note, on the other
hand, that this sufficient continuity criterion seems to be only a very little touch more
restrictive than the necessary condition-from Theorem 5.1. "

Theorem 5.2. The autonomous Nemyiskij operator F generated by f maps the
space H*¥*%(a, b], (k a) € N x(0,1), contmuously mto itself if, for anyr > 0, there
ezzsis B € (a,1] such that f € H**F[—r 1],

Proof. Since the assumption implies f € Hk+°(lR), in virtue of Theorem 5.1 the

loc
related Nemytskij operator F' maps H**%(a, b] into itself. At first we prove the continu-

ity of this map in the case of 'k = 1. So let (un) be an arbitrary sequence in H'*%[a, b]
converging to uo € H'**[a,b]. We choose r > 1 and ng € N such that

"un”H‘+°[a,b] S T and ||u,, - U()“Hli»o[a,b] S 1

for each n > ng. By assumption f € Lip[~r,r] and f' € HP[~r,r]. Let L and Lg
denote the Lipschitz and Hoélder constant, respectively. Then we have the estimate
[1Fun — Fuollgr+e(a b
= ||f oun — fouollclas + I(f 0 un)uy = (f 0 uo)ugllHofa,p)
< Lilun'= uollcia,s) + 1f' © uolltefa,s)llun — ugll ea,y
+rllf oun = f ougllyeqay _ (5.2)

< cllun — uoll pr+efas) + rLpllun — uoug{a‘b] +rha(f 0 un — f' 0 up)
< cllun — u0||f{,+°[a'b] +rho(f' oup — f' oup)

for all n > ng. To show that the second term tends to zero provided n — oo, for each
n > ng we introduce A, (¢, s) defined by

An(t,s) = |f'(un(t)) = f'(u0(t)) = f'(un(s)) + f'(uo(s))|  (t,s € [a,b)).
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Because of f' € HP[~r,r] we have
An(t,s) < Lg (Jun(t) — uo(t)|® + lua(s) = uo(s)|?) .
< 2Lgllun — ol 1 4oga - (tselab).  (53)

< 2rP Lgllun — uollfpirafq

On the other hand, again using that f' € H?[—r,r] and additionally Lemma 3.1/(a),
we find .
An(t,5) < L (lun(t) = un(s)? + [uo(t) — uo(s)I?)
S Lp(lunliay + ol )t =P (Lselab).  (5.4)
< 2P Lgjt — s|# '

We put v = af~! which implies v € (0,1), 8y = a, and f(1 —7) = B —a > 0. By (5.3)
and (5.4) we obtain
An(t,s) = (An(t,5))' 77(An(t, 5))7

- (t,s € [a,b]).
< 2P Lgllun — “0”1111:«-[“,5]“ =S

IO
Hence for all n > no we have the estimate
ha(f' 0 un — ' 0uo) < 2r” Lyllun — uollfi (s 4

showing together with (5.2) that Fu, — Fuq in H'*%[a, b] as claimed.

" Consider now the general case k > 2. Again let (u,) be a sequence in H¥*%{a, b]
converging to ug € H**%[a,b]. Observe that this implies un — uo in Lip*~2[a,d] and
un — up in H'*%{a,b]. Since by assumption fe C*~!(R), Theorem 4.2 yields

fou, — foug in Lip*~%[a,b]. (5.5)

Furthermore, by assumption, for any : = 1,...,k—1and r >0 we can find 8 € (o, 1]
with f() € H'*#[—r r]. Thus, by what we have just proved for k = 1,

fDoun— fDous  in H'™*[a,b] for i=1,...,k—1. (5.6)

Finally, because of Lemma 3.5, for any differential operator P; € Px—; (i =1,...,k—1)
we have

Piup, — Piug in H'*%(a,b)]. . (5.7
We estimate for any n € N now the norm of Fu, — Fug in H¥*%[q, b]:
| Fun — Fuo|l gr+afa,p)
SIIf oun — foug|lLipt-23a,p) + ID*71(f 0 tn — f 0 uo)l| Hr+afay

< |If o un = f o uollLipt-2a ) (5.8)
k-1

21U 0 un)Pratn = (£ 0 o) Poso 1

=1

where P; € P_; (see Lemma 3.3). Because of (5.5) - (5.8) the proof is complete B
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The situation is similar in the case of local Lipschitz continuity and continuous
Fréchet differentiability of F. Taking into account the results from the previous sections
one could expect F' to be locally Lipschitz continuous or continuously Fréchet differ-
entiable in H*¥+[a, ] if and only if the generating function f belongs to Lip;‘otl(R) or
C*+2(R), respectively. As it can be seen in the subsequent two theorems these condi-
tions are indeed sufficient. However, we could not verify their necessity. So, there are
still differences between the sufficient and the necessary conditions.

Theorem 5.3.

(a) The autonomous Nemytskij operator F generated I;y f 1s e locally Lipschitz
continuous map in H**%[qa,b], (k,a) € Nx (0,1), if f € Lipf:;l(lR).

(b) If conversely F is a locally Lipschitz continuous map in H5*%[q,b], (k,a) €
N x (0,1), then f € HEFDT(R). -

loc

Proof. (a) First let k = 1. So we suppose f € Lip} (R). We fix an arbitrary
element uo € H'*[a, b] and a number § > 0. Let r > 0 be so large that [|u||g1+afa,s) < T
for all u € B(uo,8) C H'*%[a,b]. Let L, denote the Lipschitz constant of f with respect
to the interval [—r,7]. Because of f' € Lip},(R), Theorem 2.3 gives a constant L > 0
such that :

If' 0 = f' 0 vllporan) < Ll — vllatasy  (u,v € Bluo,8) C H'**[a, ).
Then we have

|Fu — Fo|lgi+efa,p)
=|fou—foulcan +I(f ou)u' = (f ov)v'|[He(a,p)
- S Lyllu = vllcia,p + I 0 ullgefa,pllu’ — vl eja,y
+ ' ooyl f ou—fo vl Hea,b)
< cfju — vl[gr+aga,y

for all u,v € B(uo,8) C H'*%[a,b] and the statement is proved.

Let now k > 2. Again we take an arbitrary ug € H**%[qa,b] and an arbitrary
number § > 0. Since the assumption f € Lipfotl(R) implies f € Lip;‘o_c‘(R) and
o f%Y ¢ Lip?,.(R), by Theorem 4.3 and the assertion already proved for k = 1
we find a constant ¢ > 0 such that

“f ou—fo v”Lip“"[a,b] < c“u - v"Lip""[a,b]

and ' _ .
1FD 0= fD 0 vllmrsaan Scllu = vlliseten (=10, k=1)

for each u,v € B(uo,6) C H*+%[q,b]. By Lemma 3.5, without loss of generality with
the same constant ¢, for any P; € Px_; (i=1,...,k —1) we have

|Piv = Pl giseja sy < cllu = vllgesagay  (u,v € B(ug,8) C H**[q, b]).
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Therefore from estimate (5.8) with u instead of u, and v instead of uo the assertlon
follows also in this case. . : .

(b) If we suppose now F € sz,oc(HH"’[a b)), then by Theorem 5.1 we have f G
C"(IR) So it is to show that f(") € H/t*(R). By assumption, for any up € H"“’{a b)
there exist two constants Lo > 0 and §, > 0 such that

| Fu = Fo|lgxtafap < Lollu - vllasseay (5.9)
for all u,v € B(uo,é0) C H***(a,b]. Firstly as uo we take uo(t) = t—a+x(; (t € [a, b))
where zo € R is arbitrarily fixed. Since the function u, defined by u,(t) = t—a+z (t €
[a,8]) belongs to B(uo,éo) C H¥+o[q, blifr € B(zo,éo) CR, from (5. 9) wé obtain
A0t = 0t 2) = FOt - at )] [ DS oue = Fouy)lgpey < Loz — 3]
for all t € [a,b] and all z,y € B(zo,ég) C R which 1mplles
lf(k)(l) )l < Lolz -yl (=, ye 3(30,50) CR),

ie. f(") € szluc(R) Supposc f(") is not. dxﬁ'erentlable at Zo. Then there are two zero
sequences (T, ),(6n) C R and two constants L, > 0 and L, > 0 with L, < L, such that

B a0 + )= fP(a0) . fBao +7) = P (o)

h n—oo Tn

L, =liminf
h—0

(5) - f®) (k) R (o
L, = limsup fP(zo + h}? [ (=) = lim F5 N (zo + 9;) v f (:1:0).
h—0 n—00 - .. N

In (5.9) we take now ug defined by wuo(t) =t —€ + zo (t € (@,b]) with fixed £ € (a,b).
Furthermore, we define un by un(t) =t — € + 2o + 7. (t € [a,8]). Let ng = no(do) € N
so large that |7,| < 8o for all n > ng and hence u, € B(ug,8) C H***[a,b). Estimate
(5.9) yields '
|Fun — Fuollyr+afas) < LolTal  (n 2 no).

In particular, we have
ho(DM(foun - fouo) < Lolral ~ (n2mo) .
and hence :‘ \
FO =€+ z0) = [t — €+ 20+ 70) — f(")(zo) + f(")(zo + )
[t —¢l* '

valid for all ¢t € [a,b). Because of f*) € Lip;,(R) and the Rademacher Theorem
(see, e.g., [28: p. 50]) there exists a further zero sequence (hm) C R such that f(¥) is
differentiable at all points zo + hy,. Without loss of generality we may assume € +hp, €
[a, b] for all m > ng. Hence substituting t'= € + h,, into (5.10) forall n,m > no we get

S Lo |Tn| (510)

fPz0 + hm +10) = fO(z0 + hm)  fR(z0 + ) = FF) (o) |

Tn . o ) " Tp

S LOlhmlay
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from which
|f(k+l)(Io + hp) = L] £ Lolhm|® (m > ny)

follows.- Consequently, for any € > 0 there exists an mg = mo(e) > ng with
|f(k+l)(.'to+hm)—L1|S€ (mZmo)

Since the same estimate is true with L, instead of L;, L; = L, follows and hence f(")
is differentiable at zo.

It remains to show that f(**!) € H2 (R). Again let zo € R be arbitrary but ﬁxed
ug € H**°[a,b] be given by ug(t) =t —a+ 2o (t € [a,b]) and let Lo > 0 and §5 > 0
be two constants such that (5.9) holds. Let §; = min{%2,b — a}. Then u definded by
u(t) =t—a+z+A.(t € [a,b]) is an element of the ball B(ug, ) C H¥*%[a, b] provided
z € B(zo,6,) C Rand A € B(0,6,) C R. Since also v defined by v(t) =t —a+z (t €
[a, b)) belongs to B(ug, &) C H**%[a,b] from (5.9) we obtain

SOt —a+z+8) =[Ot —atz) - [Pz +8)+ [N (z)

|t - al

< LolA|

valid for all ¢t € [a, b]. Let now y € B(z,6y) C R be another arbiirary element. Without
loss of generality we may assume z < y and hence @ < a +y — z < b. Substituting
t=a+y—zinto the last estimate we find’

f(")(y + A) f"‘)(y) f("’(r + A) f®(z)

< Lo
A A ly — z|*

for all A € B(0,6,) C R. If here A — 0, we.obta.in

|fE+ D () = f("“)(m)l < Loly —z| (2,9 € B(z0,61) CR)

showing that f(**1) belongs-to HZ (R). This completes the proof .
Theorem 5.4.

(a) The autonomous Ncmytskt] operator F generated by f s a contmuously Fréchet
differentiable map in the space H**°(a,b), (k,a) € N x (0,1), if f € C**2(R).

(b) If conversely F is a continuously Fréchet differentiable map in H"+°[a b,
(k,a) € N x (0,1), then f € HEYV*(R).

~In both cases the Fréchet derivative at any point u € H¥*%[a,b] is given by
Fl(u)v =(f' ou)v

for allv € H¥*2[q, b].

The proof of this theorem is nearly the same as the proofs of the analogous state-
ments in the previous sections and hence omltted



228 M. Goebel and F. Sachweh
References

(1] Appell, J., De Pascale, E. and P. P. Zabrejko: An application of B. N. Sadovskij’s fized
point principle to nonlinear singular equations. Z. Anal. Anw. 6 (1987), 193 - 208.

(2] Appell, J. and P. P. Zabrejko: Nonlinear Superposition Operators. Cambridge: University
’ Press 1990.

(3] Babajev, A. A.: On the structure of a certain nonlinear operator and its applxcatton (in
Russian). Azerbajdzh. Gos. Univ. Uchen. Zapiski (1961)4, 13 - 16.

(4] Berkolajko, M. Z.: On a nonlinear operator acting in generalized Hélder spaces (in Rus-
sian). Voronezh. Gos. Univ., Trudy Sem. Funk. Anal. (1969)12, 96 - 104. :

(5] Bjork, J.-E.: On eztensions of szschttz functions Arklv Math 7 (1968), No. 37, 513 -
515.

(6] Chiappinelli, R. and R. Nugari: The Nemitskii operator in Hélder spaces: Some necessary
and sufficient conditions. J. Lond. Math. Soc. (II. Ser.) 51 (1995), 365 - 372.

(7] Drabek, P.: Continuity of Nemytskij’s operator in Hélder spaces. Comm. Math. Univ.
Carolinae 16 (1975), 37 - 57.

(8] Goebel, M.: On Fréchet-differentiability of Nemytskij operators acting in Holder spaces.
Glasgow Math. J. 33 (1991), 1 - 5.

(9] Goebel, M.: Continuity and Fréchet-differentiability of Nemytskij operators in Holder
spaces. Monatsh. Math. 113 (1992), 107 - 119. .

(10] Goebel, M. and D. QOestreich: Optimal control of a nonlinear singular integral cq;zation
arising in electrochemical machining. Z. Anal. Anw. 10 (1991), 73 - 82.

[11] M. Goebel and F. Sachweh: The autonomous Nemytskij operator in Hélder spaces. Nonlin.
Anal., Theory, Methods & Applications 30 (1997), No. 1, 513-519.

{12] Lanza de Cristoforis, M.: Higher order differentiability properties of the composition and
of the inversion operator. Indag. Math. (N.S.) 5 (1994), 457 - 482.

[13] Matkowska, A.: On characterization of Lipschitzian operators of substitution in the class

of Holder’s functions. Zeszyty Naukowe Politechniki Lodzkiej 17 (1984), 81 - 85.

[14] Matkowska, A., Matkowski, J. and N. Merentes: Remark on globally Lipschitzian compo-
sion operators. Demonstr. Math. 28 (1995), 171 - 175.

[15] Matkowski, J.: Functional equations and Nemyiskii operators. Funkcialaj Ekvacioj 25
(1982), 127 - 132.

{16] Matkowski, J.: On Nemytskii operator. Math. Japonica 33 (1988), 81 - 86.

[17] Matkowski, J.: Lipschitzian composition operators in some function spaces. Nonlin. Anal.:

Theory, Methods & Appl. 30 (1997), 719 - 726.

(18] McShane, E. J.: Eztension of range of functions. Bull. Am. Math. Soc. 40 (1934), 837
- 842. '

(19} Nugari, R.: Continuity and differentiability properties of the Nemytskij operator in Hélder
spaces. Glasgow Math. J. 30 (1988), 59 - 65.

[20] Nugari, R.: Further remarks on the Nemitskii operator in Hélder spaces. Comm. Math.
Univ. Carolinae 34 (1993), 89 - 95.

[21] Sachweh, F.: Der Nemytskijoperator in Holderrdumen. Diplomarbeit. Halle: Martin-
Luther-Universitat Ha.lle Wittenberg 1995.

22) Sobolevskij, E. P.: The superposmon operator in Hélder spaces (in Russian). Unpublished
p
paper. Dep. VINITI No. 3765-84, Moscow 1984.



On the Autonomous Nemytskij Operator in Holder Spaces 229

(23] Sobolevskij, E. P.: The superpositon operator in Hélder spaces (in Russian). Unpublished
paper. Dep. VINITI No. 8802-V85, Moscow 1985.

[24] Valent, T.: Boundary Value Problems of Finite Elasticity. New York - Berlin - Heidelberg:
Springer-Verlag 1988.

{25]) Walter, W.: Analysis II. Berlin — Heidelberg: Springer-Verlag 1990.

[26] Wegert, E.: Nonlinear Boundary Value Problems for Holomorphic Functions and Singular
Integral Equations (Mathematical Research: Vol. 65). Berlin: Akademie-Verlag 1992.

[27) von Wolfersdorf, L.: On the theory of nonlinear singular integral equations of Cauchy type.
Math. Meth. Appl. Sci. 7 (1985), 493 - 517.

(28] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded‘
Vartation. New York — Berlin — Heidelberg: Springer-Verlag 1989.

Received 27.05.1998



