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Abstract. After an outline of W. Feller's inversion of the (later so called) Feller potential 
operators and the presentation of the semigroups thus generated, we interpret the two-level 
difference scheme resulting from the Grünwald-Letnikov discretization of fractional derivatives 
as a random walk model discrete in space and time. We show that by properly scaled transition 
to vanishing space and time steps this model converges to the continuous Markov process that 
we view as a generalized diffusion process. By re-interpretation of the proof we get a discrete 
probability distribution that lies in the domain of attraction of the corresponding stable Levy 
distribution. By letting only the time-step tend to zero we get a random walk model discrete 
in space but continuous in time. Finally, we present a random walk model for the time-
parametrized Cauchy probability density. 
Keywords: Stable probability distributions, Riesz-Feller potentials, pseudo-differential equa-

tions, Markov processes, random walks 
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1. Introduction 
Let

12—a i
0 < a <2	and	II	a	if0<a<1 

 fl<a<2 
(9 real) and denote by p0 (x; 9) for x E R the stable probability density whose charac-
teristic function (Fourier transform) is 

j30 (ic; 9)	exp ( -	 ( E R)	 (1.2) 
(see, e.g., [41, [17], [19] for the general theory of stable probability distributions). In 
particular we recommend [4], Feller's parametrization being close to ours. For a generic 
function f on R we denote by f its Fourier transform 

Ie'K x f (x) dx	(kER)	 (1.3) 
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+00 
and we then have, in the case of f If(")I dic < 00, 

+00 

1(x) = -'- I e-'--!(.)d,,	°(x E R). 2ir j 
-00 

For i > 0 we rescale Pa by the similarity variable x 	to obtain 

9a (x,t;9)	tpa(xt*;9)	(x ER, i >0).	 (1.4) 

This function g 0 ( . , t;O) again is a stable probability density, and by interpreting x 
as space and t as time variable we have in g a description of a Markov process that 
can be considered as a generalized diffusion process. In fact, we have in 

x2 92(x,t;0)=t 2exp__ 

the classical Gauss process and in 

	

91(x,t;0)	
7r X2 +t2' 

the Cauchy process. For a few other pairs (a, 0) leading to elementary or well-investi-
gated special functions, see [19]. A general representation of all stable probability 
densities in terms of Fox H functions has been only recently achieved (see [181). The 
Fourier transform of g,, being

= exp ( - ( K E R) (1.5) 

we recognize ga (x,t;O) as the fundamental solution (Green function for the Cauchy 
problem) of the pseudo-differential equation 

ôu(x, t)
=Du(x,t)	(xER,t>0)	 (1.6) 

where the pseudo-differential operator .D has the symbol	,c)! For initial

values

	

u(x,0)=f(x)	(xER,JEL 1 (R))	 (1.7)

we then have as solution to (1.6) 

u(x,t) =Jga (x -,t;O)f(e)d	 ( 1.8) 

and for all t > 0 then 

	

u(-, t) E C00 flL 1 (R)	and	f u (x, t) dx =Jf(x)dx.
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William Feller in his pioneering paper [ 3] has shown that the pseudo-differential operator 
can be viewed as the operator inverse to the Feller potential operator (the name 

"Feller potential" is used in [161) which is a linear combination of two Weyl integrals. 
Honouring both Levy and Feller for their essential contributions [11], [12) and [3] we 
call the process described by (1.6) Levy-Feller diffusion. 

We now give, in our notation, a formal account of the essentials of Feller's theory 
(for more details see [8]). With the Weyl integrals 

	

I	 S 

(Iço)(x) =	J (x - e)°()de 1

(xER)	(1.9) 

(Io)(x) =

 

r(a) J ( - x)()d 
J I 

and (for 0 < a < 2 but a 54 1) the coefficients 

_	(a;	S_
	- 9))	 sin	

(1.10)
((a + 9)) - C+ 9) =_________ c_=c_	= sin(a7r)	'	 sin(air) 

and (by passing to the limit a = 2)

(1.11) 

the Feller potentials are given as 

(I°)(x) = c_(a, 9)(Ijp)(x) + c+(a, O)(Iço)(x).	 (1.12) 

Note that in accordance with [16] we omit the singular case a = 1. 
Feller [3] has shown the operator I to possess the semigroup property 

II=I°'	for 0<a,/3<1 with a+8<1, 

and so analytic continuation to negative exponents can he justified to obtain the oper-
ator

D	—I = —{c+(a,9)I;° +c_(a,9)I:'}	 (1.13) 

for 0 < a 2 but a 54 1, the parameter 9 restricted as in (1.1), with (see [16)) 

-	d2 2- 
{±I0

if0<a< dx
o ifl<a<2. 

1
(1.14) 

From [3], equating -	to Feller's parameter S, we take the symbol of the pseudo-2a 

differential operator D as	=—Jr J ' e 'In particular, we have D = 
but D
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For the rest of this paper we always keep in mind the distinction of the following 
two cases:	 .	. 

(a) 0 < & < 1 and 1 91 :5 a. 
(b) 1<a <2 and 101< 2—a 

Henceforth, for ease of notation, we shall omit the arguments of the coefficients c = 
c+(a,0) and c_ = c_(a,0). We have 

(>0 in the case (a) 
1<0 in the case (b) 

and

c++c— —  
Or 

COS

	
{ > 0 in the case (a)	

(1.16) air cos	<0 in the case (b). 

The reader is asked not to worry about the foregoing purely formal description of Feller's 
considerations. It will merely serve us as a motivation for constructing a difference 
scheme via the Grünwald-Letnikov discretization of fractional derivatives, a difference 
scheme which by interpretation as a random walk model will be shown to converge (in 
a sense to be specified in Section 3). 

2. Random walks, discrete in space and time 

In this section we define a random variable Y assuming only integers as values, its 
probability distribution depending on three parameters a, 0 and p. By aid of this 
random variable we define a random walk on an equidistant grid {jh lj E Z} with a 
space-step h > 0. We show that after introduction of a time-step r > 0 this random 
walk admits an interpretation as an explicit difference scheme for the Cauchy problem 
(1.6) - (1.7), namely for

ôu(x,t) =D(x,t) (x R,t >0) 
&(2.1) 

u(x,0) - AX). 

In the next section we shall show that the probability distribution of the discrete random 
variable Y belongs to the domain of attraction of the Levy distribution with the param-
eters a and 9, proceeding in a way which simultaneously proves "convergence" of the 
random walk (if r = - 0) to the corresponding Levy-Feller diffusion characterized 
by (1.4). 

Let Y be a random variable assuming its values in Z, P(Y = k) = Pk for k E Z, 
with probabilities Pk defined as follows. With a parameter ,u, restricted by 

air {	
2

	

 

cos 97r	 in the case (a) 
-1-

(2.2) air I 1 Icos -_ --i in the case (b) 
a cos--
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put in the case (a)
P0 = 1 - p(c+ + c_) 

Pk =(_1)i.tc+()
	

(2.3) 

P-k = (—l)zc_ () (k e N) 

and in the case (b) 

pol+,ia(c+*c_) 

P1 = —[+() +c_] 
Ce 

Pk =(_1)c+(kl),

= _[_() +c+] . .	- 

P-k (_1)c_(k	) 
(k > 2).

(2.4) 

One sees that all Pk ^! 0, and by rearrangement it turns out that 

Pk = 1 - (c + c_)	(-1) () = 1 —0. 
kEZ	 j=0 

Remark 2.1. It is worthwhile here to observe the fact which will also be useful 
in Section 3 that for all a > 0 the series > k _o(- 1 ) k ( ka ) z k for (1 - z) a converges 
absolutely and uniforrnly 'on the closed unit disk I i	1, due to the asymptotics ()I '-.-
r(a + 'for k - , valid for non-integer a > 0. This asymptotics 
can be deduced by use of the reflection formula for the gamma function and Stirling's 
asymptotics. 

We obtain a random walk on the grid { jh l j E Z} starting at the point 0, by defining 
random variables

S = hY + hI'2 +... + hY,,	(n E N)	 (2.5) 
with the Y2 as independent identically distributed random variables, all having the same 
probability distribution as the random variable Y. 

Let us write our random walk in an alternative way. Discretizing the space variable 
x and the time variable t by grid points x 3 = Jh and instants t,, = nr, with h > 0, T> 
0, j E 7Z, n E No and denoting by y, (1,,) the probability of sojourn of the random walker 
in point x 2 at instant I,,, the recursion Sn+1 = S,, + hY,,+ 1 (following from (2.5)) means 

7J(i,,+ i ) =	pkyj_k(t,,)	(j E 7L, fl E N0 ),	 (2.6) 
kEZ 

and the random walker starting, at point xo = 0 means y(0) = 1 and y3 (0) = 0. for 
j. 0. However, in the recursion scheme (2.6) it is legitimate to use a more general 
initial sojourn probability distribution {y3 (0)j E Z}. There is yet another possible 
interpretation of (2.6), namely as a redistribution scheme of an extensive quantity (e.g. 
mass, charge, or may be probability), y,(t,,) being imagined as a clump of this extensive 
quantity, sitting in point x j at instant I,,. Then (2.6) is a conservative and non-negativity
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preserving redistribution scheme. In fact, from all Pk ^! 0 and E kCZ Pk	1 it follows

immediately for all n E N that

=	y(0)	if	<c 
JEZ	 jEZ	 jEZ 

	

all y,(t) ^! 0	if all y(0) > 0. 

Such redistribution schemes have been shown to be useful for discretization of diffusion 
processes modelled by second order linear parabolic differential equations (see, e.g., [6], 
[7], [9]) as they discretely imitate essential properties of the continuous process. 

To come nearer to the Cauchy problem (2.1) we relate the time step T to the space 
step h by the scaling relation

	

T =	 (2.7)


and remark that the y(t) are then intended as approximations to 

r+4 

J 
zj —. 

which, if u( . , i) is continuous, is also hu(x,, ta). It is again a matter of rearrangement 
to show that (2.6) is equivalent to the explicit difference scheme 

= hDo°Yj(in)	 (2.8) 
T 

where (in analogy to (1.13)) hD = —{c h I + c hL°} with the Grünwald-
Letnikov discretization (see [16]) of the fractional derivatives in the form 

h	(_1)k()yjk	in the case (a) 
hIYj =	

ko	
(2.9) 

h	>I(_i)k()yj±lk	in the case (b). 

Notice the shift of index in the case (b) which among other things has the effect that 
in the special case a = 2 (the classical diffusion equation) we obtain the standard 
symmetric three-point difference scheme. For more details and discussions see [8]. 

Instead of trying to work out a convergence proof for the difference scheme (2.8), 
thereby using the Lax-Richtmyer theory of consistency, stability and convergence (in 
effect the Lax equivalence theorem, see [5] or [141) we prefer to present in the next 
section a proof in the true spirit of random walks. We leave the numerical analysis 
aspect to a forthcoming paper.	 .



Approximation of Levy-Feller Diffusion	237 

3. Convergence and domain of attraction 
We will show that for fixed t ni- > 0 the discrete distribution of the sojourn proba-
bilities y(t) (j e Z) with initial condition y(0) = ^jo (Kronecker symbol) converges 
completely to the probability distribution with density 

ga (x,t;9)	tp(xt;9)	(x E JR)	 (3.1) 

as n —* +00. Let us remind that this probability distribution has the characteristic 
function

t; 9) = fga(x, t; 9) e"' dx = exp ( — t II e''	).	(3.2) 

To avoid confusion of language one meets in probability theory let us agree to use the 
terminology adopted in [10]. From this source we take Definitions 3.1 - 3.4, Remark 3.1 
and Theorem 3.1. 

Definition 3.1. Let (F) be a sequence of uniformly bounded, non-decreasing 
right-continuous functions defined on R. We say that F converges weakly to a bounded 
non-decreasing right-continuous function F on JR if F(x) — F(s) at all continuity 
points of F. In this case we write Fn +F. 

Definition 3.2. Let (F) be as in Definition 3.1. Then (F) is said to converge 
completely to F if 

(i) F-4F and 
(ii) F(00) — F(00) as n — 00. 

In this case we write F-+F. 

Theorem 3.1 (Continuity theorem). Let (F) be a sequence of probability dis-
tribution functions, and let (pn) be the sequence of the corresponding characteristic 
functions,

() =fe c ' dF(r)	(te E JR). 

Then (F)converges completely to a probability distribution function F if and only if 
— a(ic) for all c E JR as n —* co, where i() is continuous at c = 0. In this case 

the limit function cp is the characteristic function of the limit distribution function F, 

() =fe' dF(x)	(r. E R). 

Definition 3.3. In the cases where the functions F and F are probability distri-
bution functions such that F-+F, let X and X be random variables corresponding to 
F and F, respectively. Then we say that X,, converges in law to X. 

Definition 3.4. Let (X) be a sequence of independent identically distributed 
random variables with common probability distribution function F. Suppose there
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exist sequences (an) and (bn) of constants, with b > 0, such that the sequence of sums 
b Xk—a converges in law to some random variable with probability distribution 
function G. Then we say that F is attracted to G. The set of all probability distribution 
functions attracted to G is called the domain of attraction of the distribution function 
G.

Remark 3.1. A stable probability distribution is characterized by having a domain 
of attraction. 

Let us now state, with the notations of Sections 1 and 2, our 

Theorem 3.2. Let the independent identically distributed random variables Y1 , Y2, 
Y3 ,... have the common probability distribution function F of the random variable Y 
with P(Y = k) = Pk, k E Z, and Pk given by (2.3), (2.4), respectively. Let X(t) with 

> 0 be the random variable with probability density ga (x, t; 9) and let G(, t ) 9) be the 
corresponding distribution function, 

Ga(x,t;9) =J g,t;9)d. 

Then F is attracted by Ga( . ,t ) 9), indeed: forn —* no the distribution function of the 
random variable

(3.3) 

converges completely to G 0 ( . , t; 9), the distribution function of the random variable X(t). 

Proof. Using the scaling relation (2.7), namely r = pho , and the substitution 
= nr of time, we get

h = (t/(n))*,	 (3.4) 

and comparing (3.3) and (2.5) we see that X,, = S,, the random variable taking values 
in the grid {jhlj E 7L} at the fixed instant t, = nr = t. In view of Theorem 3.1 
and the fact that (ic, t; 9) is continuous at ic = 0, it only remains to prove that the 
characteristic function of the sojourn probabilities yj(tn), namely the function 

t; h) =	y,(t) e'',	with tn = t,	 (3.5)

jEz 

tends for all icE R (as h —* 0) to ü0(,c,t;9) = exp (- t i c e'(5""). Let us calculate 
(c, t; h) for ease of notation via the generating functions 

and	 (3.6) 
jEZ	 JEZ 

of the transition probabilities and the sojourn probabilities. The series in (3.6) converge 
absolutely and uniformly on the periphery J zJ --* 1 of the unit circle, representing there 
a continuous function, and due to the fact that the random walk occurs on the grid 
{jhi, E 7L} change to. characteristic functions j3(c) and (ic,tn) is accomplished via
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= e 1'' (ic E R). Using the binomial series for (1 - z), absolutely convergent on 
Izi = 1 if a > 0 (see Remark 2.1), we readily verify the identities 

(z)
	p{c+(1 — z) + c_(1 — z_}	in the case (a)

(3.7)


	

- 1 - {c+z(1 - z) + c_z(1 — z')}	in the case (b). 

From the discrete convolution (2.6) we deduce (z, t) = (z, 0) ((z)), and the special 
initial condition y(0) = jO for j E Z gives (z,0)	1, hence 

	

(z,t) = ((z))'.	 (3.8) 
In view of (3.4), (3.8) and the fixation t = t,, = nr we have to show that, with z = e"",


((z))' —* exp (-	)) =	t; 9) 

as n —	. More clearly, using (2.7) and t = t, = nr, we have to show that the function 

t; h) = ((e""))	(# E IR)
	

(3.9) 

has the property
lirn Q(K, t; h) =	(ic, t; 9).	 (3.10) 

Let us first treat the case (a): 0< a <land 1 91 a. Then ic =IKI sign , and 

= 1 — 1L{c+(1 — z11cIhsign x )° + c_(1 —	zklhsIgn 

We see that j3(e'°") = 1, whereas we can get the result for ic < 0 by complex conjugation 
of that for , > 0. So, for notational ease, we treat in detail the case r, > 0. In this case 

j5(e1ch) = 1 - {c+(1 —e sch) + c_(1 — e")}	 (3.11)


and for small h by Taylor 

(1 — e") = (—ikh + O(h2))° 
= (_00 ( K h)a (1 + O(h))' 

= e(,ch)a + o(ha+l) 

and
0 — etc)0 = e' f (kh) + O(hc). 

Inserting this into (3.7) we find 

= 1—	h{c^ei!P +c_e!t} + O(h') 

By use of (1.10) for c and c_ and the complex'omple represntation of sin	a straight- 
forward calculation yields for (fixed) r. > 0 

= 1 -	h''e'	+ O(h'') = 1 - ,1 1 k 1 l 'e'i + O(h''),
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for t < 0 by complex conjugation 

= 1 - ,2 1, Ih0 e_ t + 0(h") 

So, finally, for all ic e

ji(e") = 1—	 + 0(h')	 (3.12) 

and by (3.9)

log (k, t; h) = -	 +0(h"+1)} 

= _tI,cIc i( s	PC) 12' + 0(h), 

hence, as desired, (3.10). 
In the case (b): 1 <a < 2 and 1 91 2 - a, we have by (3.7) 

= 1 - i{c+e'(1 -	+ c_e"(1 - 

and in comparison to the case (a) we have because of et P( h = 1 + 0(h) within {. . .} the 
additional asymptotic term 

0(h)(1 -	+ 0(h)(1 -	= 0(h'),


hence again (3.12) for all c E R, and again we arrive at (3.10) U 

It is instructive to take a look at the very special case a = 2 and 9 = 0 (the classical 
diffusion equation Uj = u 1 ). In this case 

Az) = 1 + 12{ - 2 + 

= 1 +- e	}2 = 1— 4psin2 ?Ch 
2 

and one finds ((e'))	- exp(—ti 2 ) as h - 0. 

4. A random walk model, discrete in space, continuous in time 
Consider the difference scheme (2.8) which is equivalent to the redistribution scheme (or 
random walk model) (2.6) with the coefficients given by (2.3) or (2.4), respectively. By 
sending the parameter i - 0 (letting the time step T tend to 0) we obtain an infinite 
system of ordinary differential equations 

= h' ;y1(i)	
(j e Z)	 (4.1) 

y (0 )	given	J
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describing a time-continuous redistribution scheme over the grid {yh j E Z} in time 
i 2 0 of the form

y(t) = ;qkYj_k(t)	(j E Z).	 (4.2) 
kEZ 

Interpreting y3 (t) as a clump of an extensive quantity sitting in point x = J  at instant

we have, for (4.2) to describe such a redistribution scheme, the balancing conditions 

qo <0 

q 20 (0 k E Z) }	
(4.3) 

	

qk = 0.	 (4.4) 
kEZ 

In analogy to our redistribution scheme (2.6) of Section 2 system (4.2) also is conserva-
tive and non-negativity preserving. In fact, it can be shown (we leave this as an exercise 
to the reader) that system (4.2) under conditions (4.3) - (4.4) is uniquely solvable if 

	

i I(°)I <oo	 (4.5) 
)Ez 

and that then E,EZ I y ( t )I < 00 for all t > 0. It can further be shown that then 

y(t)=0,	hence	y(t)Ey(0) 
JEZ	 jEZ	JEZ 

for all t > 0. If furthermore yj(0) > 0 (j E Z), then y1 (t) 2 0 (j E Z) for all I > 0. 
The interpretation of (4.2) with (4.3) and (4.4) as a redistribution scheme means: 

lqolyj (t) is the rate of outflow from the point x 3 = jh being transferred to other points, 
and this must equal the sum of the rates q k y(t), received by the points Xj+k (k 54 0). 

Using in (4.1) again the Grünwald-Letnikov discretization (2.9) we find the following. 
In the case (a) 0 < a < 1 and 101 <a:

) 
qo = -h -"(c+ + c_) = -h° 

cos-
cos 

qk = h_a(_1)Ic+() (k EN) 

q-k = h_(_1)k+1c_() (kEN). j 
In the case (b) 1 <a<2 and 101<2—a:

	

cos	 'I 
qo = h(c+ + c_)cx = -ah-a  

IcosI 

qi = -h [+ () + c_], q_j = -h° [_ () + c+] I 

	

qk = (_1)kh_aC^(k	) (k 22)	1 

	

q-k = (_l)kh_a c_(k	) (k 22).	.	J

(4.6) 

(4.7)
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By playing again with infinite sums of binomial coefficients it is readily verified that 
(4.3) and (4.4) are fulfilled. 

For solving system (4.2) with initial values y (0 ) (j E Z) with >, I(°)I < _ and 
qk given by (4.6) - (4.7), we apply the method of generating functions. The series 

	

q(z)=r >qkzk	and	(z, t) = >Yk(t)Z k	 (4.8) 

	

kEZ	 kEZ 

converge absolutely and uniformly on the periphery Izi = 1 of the unit circle, and system 
(4.2) is then (with Izi = 1) equivalent to 

	

ô(z,t) =
	y(t)zi =	(kYi_k(t)	, 

at

	

JEZ	 jEZ kEZ 

hence we have the z-parameterized ordinary differential equation problem 

O(z, t)

at

= (z)(z, t) (t 20, 1.1	

1)I (z, O) = >Yk(0)zk. 

kEZ  

The solution is (z, t) = (z,0) et( z ) , or simply 

(z, t) = t(z)	 .	(4.9) 

in the special case y(0) bj o , for j E Z which means (z, 0) 
By inspection (using the binomial series) we see that 

-	I —h {c+ (1 - z) + c_(1 - z)}	in' the case (a) 
q(z) =

I —h{c+z'(1 - z)' + c_z(1 _z_1)a} in the case (b). 

Changing to characteristic functions via z = e' 	(n E R), we take from our calculations 
of Section 3 for small h

=	 + 0(h). 

Then with (4.9) we get for (K,t;h) := (e",t) in analogy to (3.10) the limit relation 


	

lim (K t; h) = exp ( - tIicIe''" 
sc)!t) =	( #c, t; 9)	(c e R). 

h—O 

We have ' interpreted (4.2) as a time-continuous redistribution scheme. We can 
interpret it probabilistically as a random walk model discrete in space (over the grid 
{ jhlj E 7L}), but continuous in time. At any instant i of time the random walker can 
jump to another grid point. After arriving at a point Xm he will remain sitting there 
for a random time interval whose length is exponentially distributed. More precisely:
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when we know that at instant t he is sitting at point Xm, then the conditional sojourn 
probabilities for sitting at points x j are = *5mj (j E 7L) and (4.2) gives by 
re-conditioning the equation

= —lqoIim(t), 

for the time interval [t*, i+i) of sojourn at Xm. Its solution is iim(t) = 1 - _ lqol(t_i) 
(t > 1), from which we deduce that the time i the wanderer remains sitting at any pbint 
Xm is exponentially distributed with parameter Iqo I. Hence, the random walker, after 
arriving at point Xm sits there for a random time interval of length t and then jumps 
to another point x 3 in instant t = t + i. The conditional probability of jumping to the 
point x3 (with j 54 ni) is then given as 1fff. For general information on time-continuous 
discrete Markov processes we refer the reader to [15). It should finally be remarkedthat 
the conditional density iim(t) (t > t) can also be obtained in the limit of r - 0 from 
the conditional geometric probability distribution relevant in the random walk model 
(2.6) with the transition probabilities of (2.3) - (2.4) and the scaling condition (2.7). 

We can now state a theorem analogous to Theorem 3.2, namely 
• Theorem 4.1. Let a random walker start in point 0 at instant t = 0 and jump 

over the grid points j h (j E Z) with h > 0, the probabilities y 3 (t) of sojourn in point 
jh at instant t 2 0 evolving according to (4.2) with y2 (0) = jO• Then for fixed t > 
o the distribution function G0 ( . , t; 9; h) given as Gc,(x, t; 9; h) =	y(t) converges 

kh<x - 
completely to Ga(•,t;9) as h — * 0.	- 

5. A random walk model for the Cauchy process 
For completeness we present a random walk model, discrete in space and time, for 
the omitted case c = 1, namely for the Cauchy process (ci = 1 and 9 = 0). This 
model cannot be obtained via the Grünwald-Letnikov approach, neither directly nor by 
a passage to the limit ci	1. We have, with the notations of Sections 1 - 3 the process 

1	t
=t 

22	
-1 P( 	(x E R,t>0) 

with the Cauchy probability density

7r(x 2 + 1)	
(xER). 

The corresponding characteristic functions are 

	

Pi(-; 0) = e N	and	t; 0) 

Let Y be a random variable assuming its values in Z with P(Y = k) = Pk for k E 7L 
defined as follows. With a parameter it restricted to 0 < it	put 

= 1--
-	r	 (5.1)It
	

54Pk	
7rIkI(jkI+1)	

(0kZ).
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Then all Pk ^: 0 and >kEZPk = 1. Indeed, 
C-0	00 

k(k+l) ——Ti) 
=1. 

Proceeding as in Sections 2 and 3 we produce a random walk on the grid {jhlj E Z}, 
with h > 0, letting the walker start in point 0 at instant 0. We define 

S =hYi+hY2+...+hy	(nN) 
where the Yk are independent identically distributed random variables all having their 
distribution common with the random variable Y. By allowing the walker to jump in 
instants t,. = nr (r > 0, n E N) and using S, as the random variable assuming values 
in the grid { .yhj E 7Z} we have a random walk. We relate the steps h and r of space 
and time by r = ph and again define generating functions 

ji(z) = > pi z3	and	(z, t,,) =	yj(tn)z	 (5.2) 
iEZ	 JEZ 

with y j (tn) as probability of sojourn in point x 3 = jh at instant t, = nr. Then 
(z, t) = ((z))72, and in view of our aim is to show that for all tc E R and 

t > 0 the limit relation
—* e_ t II	as h — 0	 (5.3) 

holds. This limit relation then implies that the distribution of the random variable 
Y lies in the domain of attraction of the Cauchy distribution, more precisely that the 
distribution of the random variable 

x=L{Y1+Y2+...+Y} 
Lfl 

converges completely to the Cauchy distribution C 1 (., t; 0) with 

Gi(x,t;0)=f 

Let us prove (5.3). We observe that the series E jcz pj z3 converges absolutely and 
uniformly on the periphery 1z  = 1 of the unit circle, hence represents there a continuous 
function so that the following calculations are legitimate. In fact, 

00	zk 

	

k(k+ 1) 
= 1— (1— z 1 )log(1 — z)	for Izi	1. 

We tacitly take the limit 1 for z = 1. Then 
(z) = 1— {(i — z')log(l — z) + (1— z)log(1 — z ' )}.	(5.4) 

Passing to the characteristic functionvia z = e	(K E R) we get 

= 1—	{(1 —cos(kh))logll — e"I —sin(ich) arctan 1
	} 

Using lim.+, arctan u = ± we obtain for h —+ 0 the asymptotics 

= 1— 22 
{l K I h + o(Iic l h)} =1 - ikI h + o(h) 

7r	2 

which implies (5.3).
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6. Concluding remarks 

It is instructive to observe that in view of Theorem 3.1 our proof of Theorem 3.2 can 
be re-interpreted as a proof of existence of Levy's stable distributions (for a 5A 1). In 
fact, assuming to be ignorant of these we can find them as limiting distributions by 
sending n - in (3.3). And gratis (the discrete probabilities being all non-negative 
cannot become negative in the limit) we get that the limiting densities are everywhere 
non-negative, for all values of the parameter a between 0 and 2, with omission of the 
value 1. For this we actually need neither the theory of the inversion of the Feller 
potentials nor the method of positive-definite functions. Thus we have an alternative 
way of solving a problem that surmounted Cauchy's capabilities [2] who had considered 
the functions exp(—IKI°) as candidates of cosine transforms of probability densities but 
could only prove them to have this property in the special cases a = land a = 2. Levy 
in [11], (12] introduced the whole scale of stable densities, Bochner in [1] has given an 
elegant proof for the full range 0 < a 2 that the inverse Fourier transforms of the 
functions exp(_I,cI o ) are non-negative, hence probability densities. He used the theory 
of positive-definite functions that we can avoid. A well readable account of Bochner's 
method can be looked up in [13]. 
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