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Abstract. We propose a one-dimensional model for the vorticity equation involving viscos-
ity. Complex methods are utilzed in order to study finite time blow-up of the solutions. In 
particular, it is shown that the blow-up time depends monotoneously on the viscosity. 
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1. Introduction 
Physical arguments (e.g. Frisch [7: p. 115]) and numerical computations (e.g. Grauer 
and Sideris [8]) strongly suggest that finite time singularities develop in three-dimension-
al inviscid incompressible flow. The equations governing such a flow are the Euler 
equations

	

ut+(u.V)u+Vp=0	 (1) 

	

V•u=0	 (2) 

for the velocity u = u(x,t) and the pressure p = p(x,t) on R3 x R+. A basic question 
is if smooth solutions of initial value problems for (1) - (2) do exist for all time. Beale, 
Kato and Majdã [1] have proved the following. Suppose the initial velocity field 

u(x,0)=uo(x)	 (3) 

is smooth. Then there exists a global smooth solution if and only if the vorticity 
= V x u satisfies f ' II w ( . , t )II dt < _-- for every T>0. Further, they showed that 

if a solution which is initially smooth loses its regularity at some later time, then the 
maximum vorticity necessarily grows without bound as the critical time approaches. 
Thus the formation of singularities in Euler equations depends on vorticity production 
or vortex stretching. 

A. Wegert: TU Bergakademie, Fak. Math. & Inform., D-09596 Freiberg 
A. S. Vasudeva Murthy: TIFR Centre, Indian Inst. Sci., Bangalore 560 012, India 

ISSN 0232-2064 / $ 2.50 ® Heldermann Verlag Berlin



184	E. Wegert and A. S. Vasudeva Murthy 

The interest in these possible singularities, as pointed out by Caflisch [2] in 1993, is 
of physical, numerical and mathematical nature: physical because singularity formation 
may signify the onset of turbulence and may be a primary mechanism of energy transfer 
from large to small scales, numerical because special methods to solve Euler equations 
would be required for tackling this singularity formation, mathematical because singu-
larities in Euler equations would prevent an establishment of global existence theorems 
for equations (1) and (2). 

The need to understand the precise mechanism of formation of singularities in finite 
time has led to some model problems that mimic the Euler equations. These models 
should not only be simpler than (1) and (2) but also possess some of their important 
features. 

In this direction Constantin et al. [4] proposed a very simple model for the vorticity 
equation. We shall briefly explain the motivation for their proposal. With w := V x u, 
the vorticity, the Euler equations (1) and (2) can be written in the form 

	

wt+(u.V)c=(w.V)u.	 (4) 

The initial condition u(x,O) = u 0 (x) is transformed into 

w(x,O)=w(x)	 (5) 

where wo = V x u 0 . Now u can be written in terms of w by the Biot-Savart formula 

P 
u(x, t) = — 1 j — 3 x w(y, t)dy.	 (6)

Y1  

By substituting (6) into (4) the latter equation is reduced to 

wg+(u . V)w=(Dw)w	 (7) 

where Dw is the symmetric part of the matrix Vu expressed in terms of w. The operator 
w —* Dwis a strongly singular integral operator. The explicit formula for D is not of 
interest here, but some properties are worth noting. 

In two space dimensions, (Dw) w = 0 which implies conservation of vorticity. In 
three dimensions, D is a convolution operator with a (matrix) kernel homogeneous of 
order-3 and vanishing mean value on the unit sphere. Constantin et al. [4] made the 
remarkable observation that in one space dimension there is only one such operator, the 
Hilbert transform

	

Hw(x) = P .V.	 dy. 
7r	fco X — Y 

By replacing the convective derivative Wj +(u . V)w by the partial derivative w t and Dw 
by the Hilbert transform Hw, Constantin et al. [4] arrive at a simple one-dimensional 
analogue of (4) and (5):

	

Wt =.wHw	 (8) 

	

w(x,0)=wo(x).	 (9)
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In this model the "velocity" is determined from the vorticity by 

u(x,t) =f w(y,t)dy.	 (10) 

Problem (8) -.(9) is explicity solvable and its solution is given by 

t)
4o (x) 

w(x, =

	

(2— tHwo(x)) 2 + t2w(x)	 (11) 

From this formula it is clear that the solution w blows up in a finite time T0 if and only 
if there exists an x 0 such that w0 (x0 ) = 0 and Hwo(xo) > 0. Constantin ctal. [4] also 
showed that if x0 is a simple zero of wo, then for 1 < p < 00 

foo"O

+	

foo

+oo 
urn	 w(x,t)I"dx = 00	and	lim	 Iu(x,t)I"dx < M" <00. i—.T0 	 t—.T0 

Thus the model vorticity equation (8) seemed to possess the most important feature 
of (4): finite time blow-up of vorticity with velocity remaining bounded. Now (8) - 
(9) with its explicit solution (11) is a challenging test problem for numerical methods 
designed to detect blow-up; this has been demonstrated by Stewart and Gevcci [12] in 
1992. 

The first attempt to extend the model problem (8) - (9) to include viscous effects 
was made by Schochet [11], who considered the problem 

	

on RxR+	 (12) 
w(x,0) = w0 (x).	 (13) 

The solution to problem (12) - ( 13) was explicity constructed by Schochet, who found 
that it blows up at time T with

T<T0,	 (14) 

where T0 is the blow-up time for e 0. In other words, adding diffusion makes the 
solution less regular! Clearly this is unsatisfactory, especially in view of the result by 
Constantian [3], which says that if the solution to the Euler equation is smooth, then 
the solutions to the slightly viscous Navier-Stokes equations with the same initial data 
are also smooth. Hence the simple model (12) lost most of its interest. 

Improvements were suggested by Dc Gregorio [5, 6] who kept the convective deriva-
tive on the left-hand side and studied the equation wt + UW = H + uw with 
viscosity ii > ü. Note that De Gregorio defines the velocity u as a primitive of Hw and 
not of w. 

In the present paper we return to the Constantin et al., model (8) and introduce 
an alternative additive (non-local) diffusion term which results in an one-dimensional 
problem with an explicit solution. In contrast to Schochet's model, the inequality in 
(14) is now reversed, and thus the drawback mentioned above is removed.
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2. A viscous model with a non-local diffusion term 

In this section we derive heuristically a proposal for including viscous effects to (8). 
In connection with investigations of water wave phenomenons like sharp crests and 
breaking of waves Whitham [14] studied the problem 

Uj = uu 1 on R x	 (15) 
u(x,0)	u 0 (x).	 (16) 

It is well known that solutions to problem (15) - (16) lose regularity in finite time no 
matter how smooth u0 is. On the other hand, if we add viscosity to (15), 

Uj = UU 1 + llUr,	 (17) 

then a global smooth solution exists for all time. Now Whitham asked the question if 
there exists a viscosity term which, when added to (15), influences the solution so that 
it loses regularity in finite time. He conjectured that 

Uj = uu 1 - K * u	 (18) 

with the convolution kernel K having the Fourier transform K() = tan h has 
the desired property. This conjecture has been completely settled by Naumkin and 
Shishmarëv [10] in 1991. 

In a similar vein we ask the analogous question for the Constantin-Lax-Majda model: 
What is an appropriate viscosity term that when added to (8) will make the solution 
blow up at a finite time T > T0 ? Because of (14) it cannot be 

Constantin et al. [4] have shown that the blow up of (11) is different from the blow 
up of u where u is a solution to problem (15) - (16). Note that u satisfies along the 
characteristics

(Ur)j = (u)2	 (19) 
-(x,0) = (uO(x))x	 (20) 

and hence it blows up in finite time. In other words, the equation Uj = uu is not a good 
model for the breakdown of smooth solutions to (1) and (2) but Wt = wHo., is a better 
model. Arguing analogously one feels that —EHu would be a reasonable "viscosity" 
compared to Eu 1 . So we propose 

wi = wHw - -HL,),, on IR x IR+	 (21) 
w(x,0)=o(x)	S	 (22) 

as the viscous analogue of (8) - (9). Note that —EHw ., is indeed a dissipative term 
as can be checked by solving the linear part of (21) using Fourier transform. Such a 
dissipative term has also been considered by Matsuno [9] in 1992.
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3. Global existence versus finite time blow-up 

In the following we shall consider the periodic version of (21) - (22). More precisely, 
we assume that the velocity is 27r-periodic in x, which implies periodicity of the initial 
function w0 and the solution w (with respect to the space-variable x), as well as 

	

Iwo(x) dx = 0	and	f w(x, t) dx = 0.	 (23) 

In order to determine the exact solution we introduce the complex-valued functions 

w(x,t)= Hw(x,t)+zw(x,t)	and	wo(x)= Hwo (x) + i wo (x) 

where H acts with respect to x. The functions w0 and w( . , t) extend from the real 
axis to (periodic) bounded holomorphic functions in the lower half-plane C_ and tend 
uniformly to zero as Imz - — 00. Using the identities (recall (23)) 

2H(wH) =(Hw) 2 —w2 

H 2 = —w 

Hw1 = (Hw)1 

a straightforward calculation shows that problem (21) - (22) is transformed to the initial 
problem

Wt + j EW 1 = w 2 on R x	 (24) 
w(x,0) = w0(x).	 (25)


Lemma 1. The unique solution of problem (24) - (25) is given by 

w(x,t)= 2w0(x—iet) 
2—two(x—iEt) (26) 

Proof. Along the characteristics (24) is transformed into an ordinary differential 
equation. With W(i) = w(t,x + jet) we get W'(t) = W2 

- 2 W(o)	2 w(O,z)	
. This equation has the 

- 

	

solution W(t) - 2—i w(o) - 2—t- (Oz)' which	
2

gives the desired result I 

The last lemma provides us with a simple criterion for blow-up. 

Lemma 2. The solution to problem (21) - (22) blows up at (xo,to) if and only if 
wo(x - jeto) = -. 

Proof. The solution to problem (21) - (22) is given by w(x,t) = Imw(x,t). With 
z := x - jet we get from (26)

w(x, t) = Im 2w0 (z)
2— two(z)
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The function w0 is holomorphic in the lower half plane and hence the solution cannot 
blow up if the denominator 2 — two(z) does not vanish. Conversely, let z0 = xo - i&t0 
be such that wo(zo)	I. Since w0 is holomorphic, by Taylor series w0(z) w0 ( z0 ) + to 

(z — zo ) m g(z) where g is a holomorphic function with g(zo) = wm)(zo)/m!	0 and

hence

w(x,t)=Im	4 + 2t 0 (z - zo)mg(z) 

2(t 0 — t) - it0 (z — zo)mg(z) 

If g(zo) V R then for I = to and x — 

w(x,io) -.-' — (x 
4 

— x o )mt	g(zo) 

If g(zo) E R\ {0}, then for x —* x 0 and I = to - t g(zo)(x — 

4 
(x, 1)	Im t2 o g(zo) ((x —	— (z — Zo)m 

8 
t 4 0 g(zo) 2 me (x — Xo)2m_I 

Therefore, in both cases, the solution w(x,t) is unbounded in any neighborhood of 
(xo, t) I 

The following technical lemma will serve to estimate the blow-up time. 

Lemma 3. Let wo be a 27r-periodic Hälder-continuous function with 

p2r 
/ wo(x)dx = 0.	 (27) 

Jo 

Then w 0 satisfies the estimate 

Iwo(z)I < M e— JIM zI	(z EC_) 

where M = maxX E	o(x) + i Hwo(x)I. 

Proof. The function ( = f(z) = exp(—iz) maps the half-strip {z e C_ : 0 < 
Rez < 27r} onto the punctured unit disk ID = {( E C: 0 < ( < 11. The trans-
planted function iiio(() = wo(f'() is holomorphic in ID and has a continuous exten-
sion onto the unit circle. Since the mean value along the boundary vanishes we have 
lim( _o i2 0 (() = 0. Consequently, by Schwarz' lemma, 

I i (()I :5 max Iwol KI	M I(I 

which together with ( =	yields the assertion I
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We denote by T( 0 ) the time of the first blow up, 

T(wo) = inf {t >0: wo(x - jet)	for some x E R}. 

If the set on the right-hand side is empty, T( 0 ) := 
In all what follows we assume that the initial function w0 is not a constant. In order 

to study the dependence of the blow-up time T(wo) on e and Wa we consider the images 
of the closed lower half-planes 

C5 :={zEC_: Imz—y),	(y>0) 

under the mapping w0 . More precisely, R := W O (C) U {0}. 

Lemma 4. Let wçj satisfy the assumptions of Lemma S. Then the origin lies in the 
interior of all sets R, and R contracts to 0 as y - +cx. The sets R form a strictly 
nested family,

R2 C intR 1 if Y2 > I/i > 0.	 (28) 

The blow-up time T(w0 ) is characterized by 

T(w0 ) = inf{t >0: 2/i E R, t j.	 (29) 

Proof. First of all we note that R,, is the image of the closed disk D := {z E 
C: jzj < exp(—y)} under the mapping üo (see proof of Lemma 3). The first assertion 
follows from @o(0) = 0 and Lemma 3. 

The second assertion is a consequence of the open mapping principle for holomorphic 
functions. 

In order to prove the third assertion, we recall that the solution blows up at time I 
if and only if 2/i = wo(x - jet) for some x E IL 

Since the R are nested and R0 is bounded, the point 2/i lies outside R, t for 
sufficiently small t. More precisely, there is no blow-up for all t with I < T := inf It E 
R+: 2/t E 

On the other hand, a continuity argument shows that 2/t E R,j if t = T. It follows 
that 2/I = wo(x - iy) for some x and some y ^: Et. Now y > ci would imply that 
2/i E mt R, t and hence 2/i E R 1 for some t <T, which is impossible by the definition 
of T. Consequently y = ci U 

It has already been mentioned that To(wo) is finite if and only if there exists an 
x 0 such that w0 (x0 ) = 0 and Hwo(xo) > 0. The next result shows that the solution 
necessarily blows up for e = 0 if the mean value of WQ vanishes, which is always the case 
for periodic velocity. 

f
Theorem 1. Let Wa be a non-constant Holder-continuous 27r-periodic function. If 
wo(x)dx = 0 then To(Wo) is finite. 

Proof. Since R0 is a compact set, the point f lies outside Ho if I is sufficiently 
small. The origin is an interior point of Ro and hence 2/i belongs to R0 if I is large. 
Lemma 4 proves the assertion I
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The next theorem shows that the viscous term increases the blow-up time and even 
prevents blow-up if e is sufficiently large. 

Theorem 2. Let wo satisfy the assumptions of Theorem 1. 
(1) The blow-up time T(wo) is a monotoneously increasing function of C. In par-

ticular, if 0 < e (5, then To(wo) < T(wo) < T6(wo). 
(ii) For each initial function wo there exists a positive e. such that T(wo) = + 

if

(iii) For all c > 0 and C E R there exists a constant T. = T.(e, C) such that for all 
WO with Holder norm ii woiia :5 C either T(o) < T. or T(wo) = +. 

Moral. What survived sufficiently long will persist forever. 

Proof of Theorem 2. (i) If e <(5,then R6t C intRt for all t and hence the point 
(which lies outside R,, for small t) meets the domain R, t at an earlier time than R6. 

(ii) According to Lemma 3 the intersection of R, t with the real axis is contained 
in the interval {x E R : lxi < Mexp(—et)}, and hence the solution cannot blow up if 

> Mexp(—et) for all t > 0. The latter condition is satisfied for all sufficiently large 
E.

(iii) By what was said above, the blow-up time (if it is finite) is subject to - 
T. 

 

Mexp(—cT) which gives an upper bound for T I

Example. For the initial function wo(x) = cosx we get w0 (x) = Hwo(x)+iwo(x) = 
sin  + i cosx which has the analytical extension wo(z) = i exp(—iz) onto C_. Thus 
the solution w is the imaginary part of 

2w0 (x—iEt) --	 2 
w(x,t) - 

- 2— two(x - iet) - t + 2i exp(i x) exp(et) 

The blow-up time T is determined by the condition i exp(ix)exp(eT) = -, which 
splits into

exp(eT) = -	and	exp(ix) = i.
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The solution blows up if and only if 0 < e	e, the blow-up time satisfies 2 T	2e. 
The figures show the behaviour of the solution for e = 0.21 > le (left, no blow-up) 

and	0.17 < e (right, blow-up at T	3.845). 
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