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Abstract. There are many problems in mechanics and physics, the mathematical models of 
which are some boUndary value problems for nonlinear elliptic systems of first and second order 
equations in multiply connected domains including infinity. In this paper, we discuss oblique 
derivative problems for systems of second order equations. 
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1. Formulation of the problems 

Let D be an (N + 1)-connected domain in C including infinity, with boundary r = 
U 0 I', E C (0 < a < 1). Without loss of generality we may assume that D is 
a circular domain in {z E C Izi > 1}, whose boundary consists of N + 1 circles 
rO =rN+l = { z ec:IzI=1} and ri={zec:Iz_z 2 I=y} (j=1,...,N),where 
z j E C are given points, 0 < -yj E R are given constants (see, e.g., [2, 3]). 

We consider the nonlinear elliptic system of second order equations in complex form 

Wzz = F(z, w, w 2 , Th Z, Wzz, zz) 

F = Q 1 w, + Q2iiJz + Aiw;+ A 2 iiY + A 3 W + A4 
=	 () = 1,2) 

A, = A(z, to, w,i5) (jz= 1, 2,3,4). 

Suppose that (1.1) satisfies the followingcônditions (C) 1 - ( C)3: 

)i Q, (z, w, w.,	, U, V) and A ( z, w, w., 17) are continuous in w, w., 07 E C for

almost every z E D and all U, V E C, and Q, = 0 and A, = 0 for z V D. 
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(C) 2 Q(z,w,w 2 ,i,U,V) and A(z,w,w,iiJ) are measurable in z ED for all con-
tinuously differentiable functions w = w(z) on D and all measurable functions 
U, V E L 0,2 (), and satisfy 

Lp, 2 [Aj(z,w,wz,wz),] < k3 _ i	(j = 1,...,4)	(1.2) 

in which Po and p with 2 < P0 < p and k3 (j = 0, 1, 2,3) are non-negative 
constants. 

(C) 3 System (1.1) satisfies for any functions w E C'() and constants	E

C (j = 1,2) the uniform ellipticity condition 

F(z, w, w, i3• , U', v') - F ( Z ) w, Wz , TZ, U 2 , v2)
(1.3) 

q i IU' - U 2 1+ q2IV' - V21 

for almost every point z E D, where qi 2 0 and q 2 0 are constants with 
q i + q < 1. 

Now we formulate the oblique derivative problem, i.e. the Poincaré boundary value 
problem as follows (compare [5]). 

Problem (P). In the domain D, find a solution w = w(z) of system (1.1), which 
is continuously differentiable on D and satisfies the boundary condition 

Re[\.i(z)w:+aii(z)w] =a,2(z)l	(	)	 ( 14)

Re[w+ a2i( z )w] —_a22(z)J 

where A 3 'with I.\ 3 (z)I = 1 and a	(j,k = 1,2) are known functions, which satisfy the 

conditions

	

c[,r] 5Ic0 ,	C,4aj,r] < Ic,, . Ca[a, 2 ,17]	k4	(1.5) 

in which a with	a < 1 and k0 , k 1 , k4 are non-negative constants. 

Denote
K,, = —L j . argA(z)	(j = 1, 2).	 (1.6) 

[K 1 , K2 1 is calledthe index of Problem (F). When K1 <0 and K2 <0, then Problem (P) 
may not be solvable. Further, when K, 2 0. and K2 2 0, then the solution of Problem 
(P) is not necessarily unique. Hence we consider the well-posedness of Problem (P) with 
modified boundary conditions (see [1, 4]). 

Problem (Q) . Find a continuous solution [w, U, V] of the complex system 

U = F(z,w,U,V,U,V)

	 I F=Q,U+Q2 V+A,U+A2 V-fA3 w+A4	 (1.7) 

vz=Uz  
satisfying the boundary condition 

Re [ j (z)U(z) + aji (z)w(z)] = a 2 (z) + h(z)	(j = 1,2; z E F)	(1.8)
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and the relation 

W(Z) =_ f [ d(+	d_(mZm)d(] +CO	 (1.9) 

where U1 = U, U2 = V and dm are appropriate real constants such that the function 
determined by the integral in (1.9) is single-valued in D, and the undetermined functions 
hj are of the form 

h, (z) = 

ifzEF (K,	N) 

fk=1,...,N—K 
ifzEFk

) 0K<N 
(k=N—K+1,...,N+1 

ifZEFk
) 0K<N 

=1,...,N 
ifzerk

( Kj	) < 0

(0 

hk 

0 

hi,.

- K, —1 

hjçj +Re	'h 
Tfl

ifzer0 (K3<O),

(1.10) 
Here hk and	are unknown real constants to be determined appropriately. In

addition, for K, ^: 0 (j = 1,2) the solution w is assumed to satisfy the point conditions 

Im[Aj(ak)U. (ak) + ajl w (ak)} = bk (j	1,2; k E .J) ) 

.f {1,...,2K —N+1}	if Kj ? N	 (1.11) 

'{N—K+1,...,N+1} if0<K<N	J 
where ak E I',. (k = 1,... , N) and ak E r0 (k = N + 1,... , 2K - N + 1 1 with K3 2 
N for j = 1,2) are distinct points and b3 k are all real constants satisfying the conditions 

IbI < k5	 (1.12) 
j=12; kEJ1 

with a non-negative constant k5 such that Icol	k5. 

Problem (Q)o. This is a special case of Problem (Q), namely with A4 = 0, a = 0, 
bik = 0 (j	1,2; k E .J) and co = 0. 

In order to prove the uniqueness of solutions for Problem (Q), we need to add the 
condition that for any functions Uj , V 1 , w l E C() (j = 1,2) with U1 , V.1 E L0,2() 
the equality

F(z,w',U',V', U', Vzi ''—F(z,w2 ,U 2 ,V2 U' V'' z Z' Z 
/	 (1.13)


=A, (U —U 2 )+A2 (V' —V2 )+A3 (w' —w2) 

holds in almost every point z E D, where L 02 [A,] <	(j = 1,2,3). 



196	H. Begehr and G. C. Wen 

2. A priori estimates for solutions of problem (Q) 

In oder to prove the solvability of Problem (Q), we need to give some estimates of its 
solutions. 

Theorem 2.1. Suppose that Conditions (C) 1 - (C)3 hold and the constants q 2 and 
k,, k2 in (1.2), (1.3) and (1.5) are small enough. Then any solution [w,U,V] of Problem 
(Q) satisfies the estimates 

L 1 =L(U) =C U, 15]+ L 02[l U l+I U I,] :5M1 }

	
(2.1) 

L 2 = L(V) !^ M1 

and
S = S(w) = C'[w,] + L 0,2[ w2I + IwI +	< M2	(2.2) 

where 0 = min(a.1 -	po with 2 < P0 < p, M1 = M(qo,po,k,,K,D) (j 
PO 

1,2; k = (...... , k5 )) are non-negative constants and K = (K 1 , K2). 

Proof. Let the solution [w, U, V] of Problem (Q) be substituted into system (1.7), 
the boundary conditions (1.8) and (1.11), and relation (1.9). It is clear that (1.7) and 
(1.8) can be rewritten in the form 

U—Q1U—A1U=A	1 
A=Q2 V+A2 V+A3 w+A4	in D	 (2.3) 

U-=vz	 . J 

and

Re[Aj (z)U3 (z)] = r (z) + h3(z)	 1 

	

with r(z) = a32 (z) - Re[i(z)w(z)]	(j = 1,2; k E Jj; z E )	(2.4)

Im[.\,(ak)U(ak)] = Sjk 

with Sjk = b1 k - IflhtAj(ak)(ak)] 

where A and r, 5Jk satisfy the inequalities 

L 0,2 [A,D]	q2 L 0,2 [V,D) + L0,2(A2,D]C[V,1 

+ Lp0,21A3,1C [w,] + L 0,2 [A4 ,1	 (2.5) 

q2 L2 + k 1 L2 + k2 S1 + k3 

and

Cft,rj <Ca [aji ,r]C[w,r] + C[a 2 ,f] k 1 S1 +	

} ( 
= 1,2; k € J) (2.6) 

Isiki < k, S, + Ic5
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in which Si = C[w,ib]. In accordance with the estimates on Problem B for (2.3) in [4], 
we obtain

M3 [(q2 + k 1 )L2 + k2 S1 + k3 + 2k 1 S 1 + k4 + k5]
(2.7) 

= M3 [(q2 + k 1 )L2 + (k2 + 2k 1 )S1 + k3 + k4 + k5  

where M3 = M3 (q , po, k, y, K, D). Moreover, noting that V is a solution of the modified 
Riemann-Hilbert problem for U = V, we have 

	

L 2 <M3 [ L 1 +2k 1 51 +k4 +k5 ].	 (2.8) 

In addition, from (1.9) it can be derived that 

	

Si = C[w,I <k5 +M4[C(U,D)± C(V,T)] <k5	+M4 (L 1 +L2 )	(2.9) 

where M4 = M4 (D). Combining (2.7) - (2.9), it is derived that 

L2 <M3 {M3 [(q2 + k 1 )L2 + (k2 + 2k 1 )(k5 + M4 (L 1 + L 2 )) + k3 + k4 + k5] 

+ 2k 1 (k5 + M4 (L 1 + L2 )) + k4 + k5}
(2.10) 

<M3 {(q2 + k)M3 L 2 + (k2 + 2k 1 )(1 + M3 )M4 (L 1 + L2) 

+ k5 (k2 + 2k 1 )(1 + M3 ) + ( k3 + k4 + k5 )(1 + M3)}. 

Provided that the constants q2 and k , k2 are sufficiently small, for instance, when 

M3 [(q2 +k i )M3 +(k2 +2k 1 )(1+M3 )M4 J <, 

we thus have

L 2 <2M3 [(k2 + 2k 1 )(1 + M3)M4L1

(2.11) 

= M5 L 1 + M6. 

Substituting (2.11) and (2.9) into (2.7), it can be obtained that 

Li M3 [(q2 + k 1 )(M5 L 1 + M6 ) + ( k2 + 2k)M4 (L 1 + L2) 

+k5(k2+2k1)+k3+k4+k5] 

	

• <M3{[(q2+ki)M5+(k2+2kI)M(1+M5)]Li 
S	 (2.12) 

+ (q2.+ k 1 )M6 + ( k2 + 2k 1 )M4 M6 + k5 (k2 + 2k 1 ) + k3 + k4 + k5}.
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Moreover, choose q 2 and k 1 , k2 small enough such that 

M3[(q2+ki)M5 +(k2 +2k 1 )(i+M5 )M4 ] <. 

Then it can be concluded that 
Li<2M3[(q2+ki)M6+(k2+2k1)M4M6+ks(k2+2k1)+k3+k4+k5]	

(213) 
=M7 

and
L2 <M5 M7 +M6 _<M1 =max(M7 , M5 M7 +M6 ).	 (2.14) 

Furthermore, from (1.9) it follows that (2.2) holds U 
From Theorem 2.1 we can derive the following result. 
Theorem 2.2. Under the conditions of Theorem 2.1, any solution [w, U, V] of 

Problem (Q) satisfies the estimates

= L(U) 5M8k 

	

L 2 = L(V) M8k	
(2.15) 

and

	

S = S(w) < M9 k	 (2.16) 
where k=k3 +k4 +k5 and Mj =M(qo,po,ko,,K,D) (j=8,9). 

Proof. If k = 0, i.e. k3 = k4 = k5 = 0, the estimates in (2.15) can be derived by 
Theorem 3.1 below. If k > 0, it is clear that the system of functions [w, U, V'J = 
[, -,	is a solution of the boundary value problem

A4

 I 
k.	 (2.17) 

v: = u.  
Re[Aj(z)U(z)+aji(z)w*(z)]	 (z Er)	(2.18) 

	

=	 (2.19) zak 
where  = 1,2 and k E J2, and

CO w(z) = -
	

[
U() d( -	k((Zm) d( + V(() d] + .	(2.20) 

From (1.2), (1.5) and (1.12) we see that 

<i,	c[r]	i	 iIi. 
•j1,2; kEJ1 

On the basis of the estimates in Theorem 2.1, we obtain for the solution [w', U, V] of 
the boundary value' problem (2.17) - (2.20) the estimate 

L(U) < M8 ,	L(V) <M8 ,	S(w) < M9 .	 (2.21) 
From the above estimates it immediately follows that estimates (2.15) and (2.16) hold I
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Remark. Through the mapping z = z(() = the complex equation (1.1) can be 
reduced to the form 

= G(z,w,w(,,w,ti(()	- 

G = Q 1 w + Q2(( + A i w + A2 + A 3 w + 
A4 } (z E = ((D))	(2.22) 

in which

A	-- (j=3,4)	((€ñ) -	A	_	(j 1 .2.	,2)	and	
= I(I 

and ( = ( ( z) = I . By Condition (C), the above coefficients satisfy the conditions 

1Q1 I + 1Q21	qo (( E b)	and	L,2[A3,D]	k	(j = 1,2,3,4).	(2.23) 

If the function w is a solution of the complex equation (1.1) with Condition (C) in D, 
then w(z) = wfz)] = w[j is a solution of the complex equation (2.22) in D. Noting 
that w = I(I4w , and w,, = (4 w(C, we see that if w(z) E W 04 (D) (2 < Po S p), 
then w[z()J E W, 0 (D). The inverse result is also true. 

Moreover, denoting U(z) = U I z )] = U(s), we have U = —( 2 U and U = —(2Uc, 
and we see that if U(z) E W, 02 (D) (2 <P0 < p), then U[z)] E W 0 (D). The inverse 
result is also true. - 

If f(z) E L 0,2 (D), then 

1	 ____ Tf = --	f -- d,, _ if	d = 5(0) - s(I) 
7r	z	7r b2C(1_(z)	 z	

(2.24) 
1 f 

S(z)=--	---da(,	j(()=2	
J 

	

If
5(_z	 (2 

This shows that f(z) E L 0 (D). Hence

ML,0[f(z),Dj 

ã[s(o) - s(),b]	ML0[j(z),ñ]	
(2.25) 

in which a = 1 - and M M(po). Thus by using the method of continuity and the Po 
contracting mapping principle, we can prove that there exist the solutions i = Tf and 

= Tg e W, 0,2 (D) of 

=Q 1 i4'+A 1 b+A, A=Q2 V+A2 V+A3 w+A4	(2.26) 

= Qici'z + A 1	 (2.27)


in D. Moreover, we can also find the solution x(z) = + Th of the equation 

W =QW or h(z)=Q(z) 1  - +Hh].	 (2.28)
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It is clear that _ 9V1 E L ,2 (), and then h(z) E L 0,2 (D). Due to the fact that the 
function x() = z + S(0) - S(z) z + S(0) - T[h] is a solution of 

Q(z)z2
in D 

12[1 + Fl/i] 

where h(() =	the above function x() is a homeomorphism in D. Obviously, x(z)

is also a homeomorphism in D. 

From Theorem 2.1 we see that the solution w = w(z) satisfies the estimate 

U(z),V(z) O(IzI ! ) as z - 00	and	I JU(z) dz + Vd] = 0 

where F = {z E C Izi = R}. Herein I? is a sufficiently large number. Hence w is in 
continuously differentiable. 

3. Solvability of boundary value problems 

On the basis of proper a priori estimates nonlinear problems are often solved by the 
Leray-Schauder technique. This method is extensively used in [2, 3] for different prob-
lems. In this way here the solvability of problems (P) and (Q) are discussed. 

Theorem 3.1. If Conditions (C) 1 - ( C) 3 and (1.13) hold, and the constants q2 and 
k 1 , k2 in (1.2), (1.3) and (1.5) are small enough, then the solution [w,U,V] of Problem 
(Q) is unique. 

Proof. Denote by [w2 ,U 3 ,V'j (j = 1,2) two solutions of Problem (Q) and substi-
tute them into (1.7)- (1,9) and (1.11). Then [w,U,V] = [w' —w 2 ,U' - U 2 , VI - 
is a solution of the homogeneous boundary value problem 

UiQiUz+2Vz+AiU+A2V+Aw}	
(3.1)


vz = U. 

Re[7(z)U3 (z) + aji (z)w(z)J = h(z)	(z E F)	 (3.2) 

	

Im[7U(z) + aji (z)w(z)]	= 0	(j = 1,2; k E J)	(3.3) 
zak 

Z	 N d- 
z-

1	 m=1	- zm) 
d( +	d]	 (3.4) 

the coefficients of which satisfy conditions (1.7) -(1.9) and (1.11), but k3 = k4 =k5 = 0. 
On the basis of Theorem 2.2, provided q2 and k 1 , k2 are sufficiently small, we can derive 
that U = V = w = 0 on D. i.e. w 1 = w2,U' = U2 and V' = V2 on DI
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In the following, we use the foregoing estimates of solutions and the Leray-Schauder 
theorem to prove the solvability of Problem (Q) for the nonlinear elliptic system. 

Theorem 3.2. Suppose that the conditions of Theorem 2.1 are satisfyed. Then 
Problem (Q) is solvable. 

Proof. First of all, we assume that F(z,w,U,V,U,V) = 0 from (1.7) in the 
neighbourhood D of the boundary r, namely 

	

u; = tF(z,w,U,V U:, V:) 
1	(0 t	1).	 (3.5)


Vi* =t  

We introduce the Banach space 

B = W 0,2 (D) x W 02 (D) x C'()	(2 <P0 p). 

Denote by BM the set of triples of continuous functions w = [w, U, V] satisfying the 
inequalities

L(U) = Cp[U,j + L 0,2[I U I + J U,I,] < M10 

L(V) < M10	 (3.6) 
C'[w(z),] < M11 

where M10 = M1 + 1 and M11 = M2 + 1, with /3 and M I , M2 being non-negative 
constants as stated in (2.1) and (2.2). It is evident that BM is a bounded open set in 
B.

Next, we arbitrarily select a system of functions w = [w, U, V] E BM and substi-
tute it into the appropriate positions of (1.7) - (1.9) and (1.11), and then consider the 
boundary value problem (Q)' with parameter t E 10, 1]

D	 (3.7)

= tLT 

Re [) j (z)U(z) + ta i (z)w(z)] = a)2 (z) + hi (z)	(z E 1')	(3.8) 

IM [77U(z) + ta31 (z)w(z)] 
z= 0 : 

= b3 k	(j = 1,2; k E .J)	(3.9) 

w(z)	J [
	

m 1 

U *(()	 dmzm	____ 

	

- 
N	

jd(+	d(	 (3.10) 
0

	

(((zm)	 (2 

where w, U, V are known functions as stated before. Noting that Problem (Q)' consists 
of two modified Riemann-Hilbert boundary value problems for elliptic complex equa-
tions of first order and applying [4: Theorem 3.2], there exist the solution U, V E 
W, 2 (D) (2 <p0 <p). From (3.10), the single-valued function w on D is determined. 
Denote by w = [w,U,V] = T(w,t) (0 t 1) this mapping from w onto w. Ac-
cording to Theorem 2.1, if w = [w, U, V] = T(w, t), then w = [w, U, V] satisfies estimates
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(2.1) and (2.2), consequently w E B M . Setting B0 = BM x [0, 1(, we shall verify that 
the mapping w = T(w, ) satisfies the three conditions of the Leray-Schauder theorem: 

(1) When t = 0, by Theorem 2.1, it is evident that w = T(w,t) E BM. 

(2) As stated before, the solution w = [w, U, V] of the functional equation W = 
T(, t) satisfies estimates (2.1) and (2.2) which shows that w = T(c,t) does not have a 
solution w = [w, U, V] on the boundary OBM = BM \ BM. 

(3) w = T(w, t) continuously maps the Banach space B into itself, and is completely 
continuous on BM. Besides, for w E BM, T(w,t) is uniformly continuous with respect 
to i.

In fact, let us choose any sequence {W}nEN = {(w,,, U,,, Vfl]}flEN C BM . By Theo-
rem 2. 1, it is not difficult to see that w = [w,,U,,,V,,] = T(,,,t) (0 < t < 1) satisfies 
the estimates

	

L(U,) M12 ,	L(V,,) < M12 ,	S(w,) < M13	 (3.11) 

where M, = M(qo,po,k,oK,D,M) (j = 12,13). Hence there can be selected sub-
sequences of {w},{U,} and {V,}, which uniformly converge to w,U and V' on 
and {U}, {U,} and	{V,} in D weakly converge to U, U and Tv, V, re-

spectively. For convenience, denote by the same symbols as before these subsequences. 
From	= T(w,,,t) and w = T(wo,t) (0< t < 1) we obtain 

— u = t{F(z,w n ,U V U V '1 n, n, nz, ,tZ/

(zD) 
c = F(z,wn,Un,V,,,U z ,V z ) —F(z,wo,Uo,Vo,Ug,V) I 

J
(3.12) 

Re	— U) + ta,i(z)(w,, — wo)J = h3 (z)	(z E 1')	(3.13) 

IM {j(U, — U) + ta3i (w,, — wo)]	= b3 k	(j = 1,2; k E J)	(3.14) 
Z=Gk 

	

Un*
Z	 N 

— Ui  dmz,r	I w(z)_w(z)_f [(2  m=1 

— + fl	VO.]d. (2 

It is not difficult to see that c,, —* 0 for almost every point z E D as n — cc. Hence we 
can prove that L 0 [e,,, D1 —* 0 for n — cc as follows: Choosing two arbitrary sufficiently 
small positive constants e 1 and e2, there exist a subset D. CD and a sufficiently large 
positive integer N such that measD < e l and Ic,,I <2 on D \ D. for n > N. By the 

(3.15)
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Holder and Minkowski inequalities we have 

L0,2[c,i]	Lpo,[cn, D.] + Lp0,2[c,T \ D] 
< Lp , 2 [cn ,D.]Lp22 [1,D.] +e2L 0,2(1,\ D.1

(n > N) 
i4 e V' + 

=E 

where p2 = 2 < P0 <P1 <P2 < oo and M14 is a non-negative constant. On the 
basis of Theorem 2.2, it can be derived that 

L(UTh - U0) 

L(V—V0 )	—p0	(n—oo). 
S(w - WO) 

Because of the completeness of the Banach space B, there exists a system of functions 
wo = [wo, U0 , V0 ] E B such that

- U0) 

L(V—Vo)	—+0	(n—co). 
S(w - Wa) 

This shows the complete continuity of f = T(, t) (0 < i 1)on . By a similar 
method we can also prove that w = T(, t) continuously maps B M into B and T(,i) 
is uniformly continuous with respect to t for w E B. 

Hence by the Leray-Schauder theorem, we see that the functional equation w = 
T(w,t) (0 < t < 1) with t	1, i.e. Problem (Q) has a solution. 

Finally, we can eliminate the assumption of F(z,w, U, V, LT , V) 0 in D and 
prove the solvability of Problem (Q) for the general nonlinear elliptic system (1.7) in 
D. This completes the proof I 

Theorem 3.3. Under the same conditions as in Theorem 3.2, the result of solv-
ability of Problem (P) for the complex equation is as follows: 

(1) If Is, = Ar arg .\ (z) ^! N (ri E N), then Problem (P) has 2N solvability 
conditions, and the general solution depends on 2(K1 + K2 - 2N + 2) arbitrary real 
constants. 

(2) 110 < K < N (j = 1, 2), the total number of solvability conditions of Problem 
(P) is not greater than 4N - K 1 - K, and the general solution depends on K 1 + K2 + 4 
arbitrary real constants. 

(3) If K, < 0 () = 1, 2), then Problem (P) has 4N - 2K1 - 2K2 - 2 solvability 
conditions, and the general solution depends on two real constants. 

We can also write solvability conditions of Problem (P) in other cases. 

Proof. We only discuss the case 0 <K, < N (j = 1, 2). Let the solution (w, U, VI 
of Problem (Q) be substituted into (1.7) - (1.9) and (1.11). The functions h, (j = 1,2)
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and the complex constants dm (m = 1,. .. , N) are then determined; If the functions 
and the constants are equal to zero, namely 

h3 (z) = h3 k (j = 1....,N—K3)	when 0< K, <N (j = 1,2)	(3.16) 

and
dmO	(m_-1,...,N),	 (3.17) 

then w = U(z) and U7, = V(z), and w is a solution of Problem (P). Hence when 
0 < K3 < N (j = 1, 2), Problem (P) has 4N - K 1 - K2 solvability conditions. In 
addition, the real constants b,k (k = N - K3 + 1,... , N + 1; j = 1,2) in (1.11) and the 
complex constant co in (1.9) may be arbitrary. This shows that the general solution of 
Problem (P) (0 < K3 < N; j = 1,2) depends on K1 +K2 +4 arbitrary real constants I 
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