
Zeitschrift für Analysis und ihre Anwendungen

Journal for Analysis and its Applications


Volume 18 (1999), No. 2, 267-286 

Stability Rates 
for Linear Ill-Posed Problems 

with Compact and Non-Compact Operators 

B. Hofmann and G. Fleischer


Dedicated to Prof. L. von Wolfersdorf on the occasion of his retirement 

Abstract. In this paper we deal with the 'strength' of ill-posedness for ill-posed linear operator 
equations Ax = y in Hilbert spaces, where we distinguish according to M. Z. .Nashed the ill-
posedness of type I if A is not compact, but we have R(A) R(A) for the range R(A) of A, 
and the ill-posedness of type II for compact operators A. From our considerations it seems 
to follow that-the problems with non-compact operators A are not ingeneral 'less' ill-posed 
than the problems with compact operators. We motivate this statement by comparing the 
approximation and stability behaviour of discrete least-squares solutions and the growth rate of 
Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed 
by B. Hofmann and U. Tautenhahn are derived from the decay rate of the non-increasing 
sequence of singular values of A. Since singular values do not exist for non-compact operators 
A, we introduce stability rates in order to have a common measure for the compact and non-
compact cases. Properties of these rates are illustrated by means of convolution equations in 
the compact case and by means of equations with multiplication operators in thenon-compact 
case. Moreover,using increasing rearrangements of multiplier functions specific measures of ill-
posedness called ill-posedness rates are considered for multiplication* operators. In this context, 
the character of sufficient conditions providing convergence rates of Tikhonov regularization 
are compared-for compact operators and multiplication . operators. 
Keywords: Linear ill-posed problems, compact and non-compact linear operators in Hubert 

spaces, discrete least-squares method, stability rates, singular values, convolution 
and multiplication operators, Galerkin matrices, condition numbers, increasing 
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1. Introduction 

Let A e £(X, Y) be a bounded linear operator between two infinite dimensional separable 
Hubert spaces X and Y with trivial null spaces N(A) {O}and N(A*) {0) of the 
operator A and its adjoint A, i.e., A is injective and R(A) = Y for the closure R(A) 
in Y of the range R(A) of the operator A. We denote by (.,.) and . inner product 
and norm in the Hubert spaces, respectively. In view of the injectivity of A the inverse 
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operator A — ' : R(A) c Y -. X exists. If the norm symbol II II is used for operators 
IIBzII B E £(X, Y), then we mean the spectral norm II B II = SupzEX\{O} -jj -

According to the concept of M. Z. Nashed [15] a linear operator equation 

Ax=y	(xEX,yEY)	 (1.1) 

is called ill-posed if
R(A) 54 R(A), (1.2) 

i.e., if the operator A has a non-closed range. Then one has to be very careful in solving 
the operator equation (1.1) numerically, since as a consequence of (1.2) the inverse A' 
is an unbounded linear operator (cf., e.g., [5: Proposition 2.4]). Following [15] we have 
to distinguish two alternative situations of ill-posed linear operator equations (1.1): 

Definition 1.1. We call the linear operator equation (1.1) ill-posed of type I if A 
is not compact, but if we have R(A) 54 R(A). On the other hand, we call equation (1.1) 
ill-posed of type II, if the operator A is compact. 

If A is a compact linear operator, then condition (1.2) is automatically satisfied. 
On the other hand, if (1.1) is ill-posed of type I, then the range R(A) contains a closed 
infinite dimensional subspace. 

M. Z. Nashed wrote in [15: p. 55] that "... in Hilbert spaces, an equation involv-
ing a bounded non-compact operator with non-closed range is 'less' ill-posed than an 
equation with a compact operator with infinite dimensional range. In comparison with 
least-squares or generalized inverse problems for m x n matrices, one may say that for 
operators, with non-closed range the case of a non-compact operator corresponds to the 
full-rank case for matrices, while the case of a (non-degenerate) compact operator is the 
infinite dimensional analog of the rank-deficient case for matrices." Hence by Nashed's 
opinion an equation (1.1) ill-posed of type I is in general 'less' ill-posed than an equa-
tion (1.1) which is ill-posed of type II. In this paper we will critically reflect this opinion 
by comparing the approximation and stability behaviour of discretized solutions for ill-
posed equations of both types. For stability considerations in Section 2 we introduce 
stability rates characterizing the asymptotic stability behaviour of discrete least-squares 
solutions to equation (1.1). From that stability point of view non-compact operators A 
do not lead in general to 'less' ill-posed situations than compact operators. 

On the other hand, G. Vainikko repeatedly mentioned in his papers on linear ill-
posed problems of type I (cf., e.g., [191) the additional difficulties arising from the non-
compactness of the linear operator in the process of discretization and regularization. 
The reason for such additional difficulties seems to be the approximation gap between 
a non-compact operator A with dim(R(A)) = no and approximate operators A N with 
finite-dimensional range dim(R(A N )) = N. This gap is a consequence of the following 
well-known lemmas (cf: [12: p. 18 - 19]):  

Lemma 1.2. Let the sequence of compact linear operators B n E £(X, Y) be norm 
convergent to a linear operator B E r(X,Y), that is, JIB - B II -i 0 as n - no. Then 
B is compact. 

Lemma 1.3 Let BE £(X,Y) bea bounded linear operator with finite-dimensional 
range R(B). Then B is compact.
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We are going to formulate a corollary of both lemmas which characterizes the ap-
proximation gap immediately. Throughout this paper let denote by {w}2.. 1 a com-
plete orthonorrnal system in the Hilbert space X. Moreover, let X N = span (w 1 , ..., wN) 
designate the N-dimensional subspace of X spanned over the first N elements of the 
orthonormal system under consideration. In this context, our investigations partially 
depend on the chosen orthonormal system. However, such an approach seems to be 
justified, since the practical treatment of linear inverse problems always requires a con-
centration to specific bases as polynomials, splines or wavelets. 

Based on the operator A introduced with infinite dimensional range R(A) we define 
operators AN with N-dimensional range R(A N ) = AXN by the formula 

N 

AN  = E (x,w)Aw( 
x

=	(x,w)w E x).	(1.3) 

If A is non-compact, then by Lemma 1.2 and Lemma 1.3 we obtain liminf ll A—A NII > 0 
and hence:	

N-oo 

Corollary 1.4. Let the operator A E £(X, Y) be non-compact. Then there exists 
a constant E > 0 such that IIA N - All > e for all positive integers N. 

As a consequence of Corollary 1.4 also in Section 2 we will mention some approxi-
mation drawback of ill-posed equations of type I (A non-compact) compared to ill-posed 
equations of type II with respect to discrete least-squares solutions of equation (1.1). 
Since both stability and approximation are factors influencing the solution behaviour of 
discrete least-squares solutions, both aspects are to be considered for characterizing the 
total kind of ill-posedness of a problem (1.1). Summarizing the observed phenomena we 
cannot find strict arguments that non-compact operators behave a better' than compact 
ones. 

It seems to be difficult to compare ill-posed problems of type I and type II based on 
common ill-posedness measures. At all, ill-posedness measures for equations (1.1). are 
extensively studied in the literature only for compact operators A. For such operators 
various authors (cf., e.g., [5: p. 401, [7], [8: p. 8], [9: p. 31] and [21]) have considered a 
degree of ill-posedness u = 1i(A) using the well-defined singular system 
(cf. [1: p. 63]) of the compact operator A, where 

	

s i (A) 2 S2 (A) 2 ... 2 s(A) 2 ... - 0	as ri - : 2 

is the ordered sequence of positive singular values, {u(A)).. 1 and {(A)} 1 are 
complete orthonormal systems of eigenelements in X and Y, respectively, satisfying 

	

Aft, = snin	(n 2 1). 

Note that Poincaré's max-min principle for the n-th singular value yields the formula 


	

Il Ax Il	.	il Ax il	ii Au ii s(A) = max mm	= mm	=	 (1.4) T	zET\{O} li x il	zET\{O}	l x ii	iinII
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where the maximum which was taken over all n-dimensional subspaces T of X is 
attained for the eigenspace T = span (it 1,...,u). 

In particular, the degree of ill-posedness is derived from the decay rate of the non-
increasing sequence {s(A)} 1 of singular values of the operator A. If, for example, 
A is an integral operator with a kernel arising from the Green function of a differential 
equation problem, we frequently have a proportionality 

s a(A) n as n - : * (1.5) 

where it = ,u(A) > 0 can be characterized as the degree of ill-posedness. Then there is 
a one-to-one correspondence between the decay rate 4u > 0 of the singular values and 
the associated growth rate

1
N"	as N—	 (1.6) 

.SN(A) 

of the condition numbers 

-	si(A)
= cond(A N ) = IINII2 lIN 112	 (1.7) 

KN(A) - sN(A) 

where IIN 12 denotes the spectral norm of the matrix 

_AN = ((Au, ))'''= diag(s j (A), ...,SN(A)).	 (1.8) 

Since the smallest singular value o ' of a non-singular Galerkin matrix 

	

= ((Au, Vj))':''N	 (1.9) 

arising in the discretization process of (1.1) using a Galerkin method (cf., e.g., [11: 
p.68]) with N-dimensional subspaces generated by orthonormal systems {u}.. 1 in X 
and {v}.. 1 in Y is not greater than SN(A) (cf. [221), the growth rate of k  for N - 
is minimal with respect to the growth rate of all condition numbers 

K N = cond(AN) = IINII2 hAN 112	 (1.10) 

of such Galerkiri matrices AN. For a general discussion of the condition numbers of 
discretized ill-posed operator equations, we refer to [18] (see also [131). 

In the recent paper [10] it was recommended to measure the ill-posedness of equation 
(1.1) with a compact operator A by an interval of ill-posedness 

= Iliminf - Ins. (A) lim sup ,	_ins(A)1 c [o,]	(1.11) 
Inn	 inn 

evaluating by the left end and by the right end of the interval the slowest and the fastest 
decay rate to zero of subsequences of {s(A)} 1 , respectively. Namely, a single number 

(A) E [0, oc] alone cannot always characterize the decay rates and associated condition
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number rates sufficiently complete, in particular if no conditions (1.5) and consequently 
(1.6) are satisfied. 

For non-compact operators A singular values do not exist. The sequence 

s(A) = sup min 11
Ax 

> 0	(n > 1)	 (1.12) T zET\(O} JJXJJ 

as a generalization of (1.4) is also not, helpful in the non-compact case, because this 
sequence is constant for sufficiently large integers n and so has no decay rate. Therefore 
we will use stability rates motivated by the discrete least-squares method in Section 2 
for comparing the stability behaviour of ill-posed problems in the compact and in the 
non-compact case. Least-squares solutions restricted to finite-dimensional spaces play 
a fundamental role in the process of the numerical solution of an equation (1.1) (cf. 
[131). Even though or just because of the fact that discrete least-squares solutions 
do not converge in general to the exact solution if the discretization dimension tends 
to infinity, this approach yields more insight for distinguishing the compact and the 
non-cmpact case than an unconditionally convergent regularization method. 

In Section 3 the compact case is studied by considering a family of convolution 
equations in the space X = Y = L2 (0, 1), whereas in Section 4 multiplication operators 
in the same space form an example for the non-compact case. Some discussions on 
condition numbers of Galerkin matrices for both cases in Section 5 complete the paper. 

2. Stability and approximation of discrete least squares 

In this section we deal with discrete least-squares solutions of the linear operator equa-
tion (1.1), where we denote by x E X the uniquely determined solution of (1.1) for a 
given right-hand side y = Ax E Y. The symbol y6 designates a perturbed right-hand 
side with

!J-Y6II6	 (2.1) 
for a noise level 6 > 0. Using N-dimensional subspaces X N = span(w i , ... , wN) as 
introduced in Section 1 we can consider discrete least-squares solutions xN solving the 
discrepancy minimization problem with exact right-hand side y 

II Az - y - min	subject to z E XN,	 (2.2) 

and moreover elements 4 solving the corresponding problem with a noisy right-hand 
side y6,

llAz —y -  min subject to z E XN . ( 2.3) 
Both elements XN = RNY and 4 = RNY6 are uniquely determined in XN, since A is 
irijective. The linear discretized solution operator RN E £(Y, X) on a fixed level N is 
bounded. For all integers N.we introduce the positive number 

m	 =	max	1kM .	( 2.4) =	 m N(XN) =  
( Z E X N\f o )	 zEXN,JIAzIkI
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Because of
(ARNY6,AZN) = (y6,A zN)	for all ZN E XN 

we have IIARNY6II < IIM and hence II RNI 7N. In the well-posed case we would 
have 7N < 11 A ' <00 with YN uniformly bounded by a finite constant. Reflecting the 
ill-posed case, however, such a constant does not exist. 

Lemma 2.1. If the linear operator equation (1.1) i3 ill-posed, then we have, for all 
orthonormal systems {w0 }. 1 generating the spaces XN, the limit condition 

lim YN = 00.	 (2.5) 
00 

Proof. Since the operator A is unbounded, we have a sequence { zk}1 C X 
with II ZkII = 1 for all k and

IIAZkII as k-400.	 (2.6) 
IkkII 

If the limit condition (2.5) was injured, then we would have a constant e > 0 and a 
sequence of dimensions Ni -* oc as i -4 00 with Il Az il ^: ez for all z E XN,. Now for 
all positive integers i and k the N-dimensional approximations 

Ni 

z' =(zk,wj)wj 

Of Zk satisfy II Az 'II ^ EZ' and with lim_. 00 z' = Zk the inequality II AzkII 2 eIIZkII. 
This, however, contradicts the limit condition (2.6) I 

Now we consider the error of discrete least-squares solutions. We obtain from the 
triangle inequality

11X - x li	YN 5 + II X N - x li .	 (2.7) 

On the one hand, the first term -YN6 in (2.7) is a 'stability term' and expresses the noise 
influence in the solution. Here YN acts as a stability factor. The greater the value YN 
gets for fixed N, the more instable is the solution process of (1.1) on this discretization 
level. By formula (1.4) we have for all integers N and A compact 

-YN > (sv(A))	and	7N = ( s N( A))' if and only if XN = TN.	(2.8) 

On the other hand, the second term il x N - 4 in (2.7) is an 'approximation term'. In 
order to get convergence

as 6 - 0	 (2.9)

two requirements should be satisfied. First N(6) should be chosen such that 

- 0	as 6 - 0	 (2.10)

and secondly we should have

urn 11XN - x li = 0	 (2.11)
N-00 
for arbitrary solutions x E X. 

Under the assumptions stated above we find in the literature the following conver-
gence proposition for discrete least-squares solutions (cf. 111: Theorem 3.101 and [14: 
Satz 4.5.6]).
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Proposition 2.2. If there exists a constant c > 0, independent of N, such that 
min fllX - Z N11 + YNII A ( X - ZN)ii}	c4	for all x E X,	(2.12)
ZNEXN 

then we have a constant Z > 0 with 

	

li z - x vii ^ 7N 8 +	min li x - ZNii	for all z E X.	(2.13)

z EXr' 

If (2.12) is satisfied, we have convergence (2.9) for arbitrary solutions x E X of 
equation (1.1) whenever we choose N(5) according to (2.10). Namely, by our choice of 
XN the term minZNExN li x - zNIf tends to zero with N - 00 for all x E X. However, 
this convergence is not uniform. Therefore we cannot obtain convergence rates from 
formula (2.13). By formula (2.12) Proposition 2.2 gives a sufficient condition for RN to 
be a regularizer characterized by 11RNA11 < const < oo for all integers N and implying 
the convergence condition (2.11) for all x E X. Even if (2.12) is only sufficient and not 
necessary for the regularizing property, its discussion may help to distinguish typical 
situations of equation (1.1). 

Theorem 2.3. Condition (2.12) of Proposition 2.2 is always satisfied if the linear 
operator equation (1.1) is well-posed. If equation (1.1) is ill-posed of type II (A compact), 
then (2.12) can be ensured by an appropriate choice of the orthonormal system {w}1 
generating the finite- dimensionalsubspaces XN. If equation (1.1) is ill-posed of type I 
(A non-compact), then (2.12) is never satisfied. 

Proof. In the well-posed case we have YN ii A	and for all x e X 
min OX - ZN ii + YN 11 A ( x - ZN )ii }	li x il + 7N ii Ax iI	(1 + h A il ii A ' ii) l x ii . ZNEXN 

For ill-posed problems of type II (A compact) we can choose the orthonormal system 
{w} 1 generating XN by using the eigensystem {u} 1 . Then we have for all z E X 

min {ii x - Z Nii + YNII A ( X - ZN)ii} ZNEXN

(X, U -)un ^^	
SN

 + ---	sn(x,un)vn 
nN+1	 nrN+1 

< (i+--tJ-)11x1	- 
SN 

< 
For ill-posed problems of type I (A non-compact) condition (2.12) is always injured. 
Because of Lemma 2.1 (2.12) requires a limit condition 

min ZNExN ii A ( x - ZN)hi lim	sup	 = 0. 
N— rEX\{O}	 iixhi 

This, however, contradicts the assertion of Corollary 1.4. Namely, we can write 
minZ N ExN ii A ( x - ZN)ii	 ii(AN — A)xii sup	 = sup	 = 11kv - A ll	> 0 

zX\{O} 	 zEX\{O}	lxii 

where AN. is the linear operator with N-dimensional range which is defined for an 
orthogonal decomposition X = XN ED X with XN = AAXN as follows: For 
XN +	with XN E XN and x E X we set A N X = AXNI
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For linear ill-posed problems (1.1) with non-compact operators A, Theorem 2.3 
indicates some drawback concerning the convergence of discrete least-squares solutions. 
At least in this sense, linear ill-posed problems of type II are 'less' ill-posed than ill-posed 
problems of type I. However, up to now it is an open question for the authors whether 
there exist in the case of non-compact A orthonormal systems {w} 1 generating the 
finite-dimensional spaces XN such that RN is still a regularizer. This question is related 
to the evaluation of the gap between sufficiency and necessity of (2.12) with respect to 
the limit condition (2.11). 

In the paper [13], J. Lin et al. also discussed properties of discrete least-squares 
solutions of equation (1.1). As an optimal choice of XN they considered a situation 
such that, for arbitrarily given e > 0, inequalities of the form 

	

Il Az il	 ll.f.iI <E	 (2.14) mm ->E and	sup 

	

ZEXN\{O} II z II	 zEX\{O} IIzII 

can be satisfied where X' is the infinite-dimensional orthogonal complement of XN. 
The first inequality of (2.14) is to stabilize the discrete least-squares solutions. In our 
setting this condition corresponds to YN . The second inequality of (2.14), however, 
is an approximation requirement. From Corollary 1.4 we can easily derive that for 
sufficently small values c > 0 such an inequality can never hold for ill-posed problems 
(1.1) of type I with non-compact operator A. In the compact case, (2.14) is obviously 
fulfilled if we choose XN = TN = span (ft I ,...,ÜN) and N such that 

S N+m( A ) < C <_ SN(A). 

To evaluate the stability term -YN6 of inequality (2.7) for compact and non-compact 
operators A in a unified manner we compare growth rates of 7N for N - 00. 

Definition 2.4. Let the linear operator equation (1.1) be ill-posed. We call ii > 0 
a stability rate of (1.1) if we have an orthonormal system {w} 1 in X generating 
subspaces XN = span(w l ,..., wN) such that, for	= TN(XN) defined by formula 
(2.4),

= O(N U )	as N -+ oo.	 (2.15) 

If we consider a family of ill-posed problems (1.1) with a uniform stability rate 
v > 0, then for any such problem there is an appropriate choice of an orthonormal 
system {w} 1 in X generating XN such that the stability term 7N6 in (2.7) can be 
bounded by CN5 with a constant C > 0 independent of N. 

Let denote by 

A - B	=r	3K > 0 Il Ax i] K II BX II for all x E X	(2.16) 

a semi-ordering between injective linear operators in £(X, Y) with infinite dimensional 
range. Then by definition of _YN we immediately obtain 

Proposition 2.5. Let B E £(X, Y) be an injective operator with infinite dimen-
sional range and

Bx=y	(xEX,yEY)	 (2.17)
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an ill-posed linear operator equation. If A -< B and v > 0 is a stability rate of equation 
(1.1), then ii is also a stability rate of equation (2.17). 

In the next two sections we analyze stability rates for selected classes of compact 
and non-compact operators A more in detail. 

3. Ill-posed equations with compact convolution operators 
Here we consider in the spaces X = Y = L2 (0, 1) the class of linear convolution equations 

[Ax](s) = I k(s - t)x(t)dt = y(s)	(0 s< 1)	 (3.1) 

where we assume for the kernel k of the convolution operator A 

k E L 2 (0, 1)	and	sup{s : k = 0 a.e. in [O,s]} = 0.	(3.2) 

Hence the convolution operator A E £(L2(O,1),L2(0,1)) from (3.1) with a kernel k 
satisfying (3.2) is a Hilbert-Schmidt operator and therefore compact. Moreover, it is 
injective due to Titchmarsh's theorem (cf., e.g., [2: p. 138]). That means, (3.1) is as an 
operator equation (1.1) in the space X = Y = L2 (0, 1) ill-posed of type II. Convolution 
equations occur in practice in problems of indirect measurements when the values x(i) of 
a physical quantity depending on time t cannot be measured directly, but by means of a 
convolution product with a measuring tool function k, where for fixed t only values x(T) 
of the past 0 T t influence the convolution result. Ill-posed convolution equations, 
for example, we also find in the identification of memory kernels in heat conduction and 
viscoelasticity (cf. for general considerations L. von Wolfersdoz-f and J. Janno [23]). 

From formula (2.8) we directly obtain the following 

Lemma 3.1. An equation (1.1), which is ill-posed of type II, possesses a stability 
rate v > 0 if and only if we have a constant C > 0 such that, for all integers n, 

s(A) 2 Cn'.	 (3.3) 

If, on the other hand, there are constants u > 0 and C > 0 such that, for all integers n, 

s(A)	Ori,	 (3.4)


then we have ii 2 i whenever v > 0 is a stability rate of equation (1.1). 

Because we have with respect to 7N a well-defined optimal orthonormal system 
{ w} 1 for a compact operator A (see formula (2.8)), we make use of it Lemma 3.1. 
It should be mentioned that in applications the computation of such optimal singular 
systems may be rather expensive. 

By considering the interval of ill-posedness (1.11) introduced in [101 formula (3.3) 
yields (A) ii. In the compact case the stability rate v in the sense of Definition 2.4 
is a majorant of the right end of the interval of ill-posedness. Unfortunately, given
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smoothness assumptions on a Hubert-Schmidt kernel of an integral equation, as for 
example in the following proposition, can only help to find inequalities (3.4) and hence 
conditions of the form y(A) > i yielding lower bounds for the left end of interval of 
ill-posedness. 

For Fredhoim integral operators with quadratically integrable kernel we have a well-
known connection between the kernel smoothness and the decay rate of the singular 
values which is due to S. H. Chang (cf., e.g., [4: Satz 8.51 or [22]): 

Proposition 3.2. Consider with kernel ic E L 2 ((0, 1)2) the Fredholrn integral equa-
tion

[Ax](s) = / ic(s,t)x(t)dt = y(s)	(0 < s < 1). 

if
OK 82K 
-,	,...,.	are continuous in .s for a. a. t 
Os Os 2	Os 

and

3 
O',c(s, 

t) = / g(r, t) dT + h(t)	where g E L2 ((0, 1)2) and h E L'(0, 1), 
38'

0 

then we have for the ordered singular values sn of A 

s = o(n')	as fl -4 oo. 

Provided that the kernel function k = k(t) (0 t < 1) of the convolution equation 
(3.1) for some positive integer I is (1— 1)-times continuously differentiable on the closed 
interval [0, 1], belongs to the Sobolev space H'(0, 1) possessing quadratically integrable 
generalized derivatives up to the 1-tb order and is 'fiat' enough in a neighbourhood of 

= 0, then lower bounds for the stability rate can be formulated. 
From Lemma 3.1 and Proposition 3.2 we immediately obtain the following 

Corollary 3.3. Let v > 0 be a stability rate for the convolution equation (3.1) 
subject to (3.2). Then we have in any case v > . If, moreover, we have an integer 
1>0 with

k E H'(0, 1) fl C'' [0,1]	and	k(0)	k'(0) = ... = 0 1 (0) = 0,	(3.5) 

then v > 1+	If (3.5) is valid for arbitrarily large integers I, then (3.1) has no stability 

rate ii < oo. 

Deriving stability rates v > 0, whenever they exist for a given kernel k of the 
convolution equations (31), requires to estimate the fastest decay rate of a subsequence 
{s,} 1 (A) of corresponding singular values. This is explicitly. possible only for specific 
examples.
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Example 3.4. If we consider the family k(t) = t'.1 (J. < r < oo) of kernels in 
equation (3.1), then we know from [201 that we have for the associated singular values 
s(A)	-r as n -* oo. Hence the convolution equation 

.9 

(Arx](s)- I (s -

	

x(t)dt	y(s)	(0	s	1)	(3.6) -	r(r) 
0 

with the fractional integral operator Ar has a minimal stability rate ii = r. 

Considering this example and the 'flatness' discussion of the function k = k(t) at 
= 0 in the context of Corollary 3.3 one could conjecture that convolution kernels


	

satisfying for a constant C > 0 and an exponent	ii	an inequality 

k(t) ^! ãt — '	(0	t	1)	 (3.7) 

lead to equations (3.1) with stability rates v. Unfortunately, this is not true. We will see, 
however, in the next section that for non-compact multiplication operators an assertion 
of similar type holds (cf. Theorem 4.4). 

At the end of this section we consider for the compact operator A from (3.1) and 
exact right-hand sides y = Ax convergence rates of Tikhonov regularization. For the 
minimizer

= (AA + aI)_IA*y 

of the extremal problem 

	

II Az - y[[ 2 + a II z !1 2 - mm,	subject to z E X 

we have for 0 < i < 1 (cf. [16]) 

	

II x - x li = O(a')	as a - 0	 (3.8)


if and only if

	

(x, t2) 2 = 0 ((s(A)) 47 )	as n -	.	 (3.9) 

If ii > 0 is a stability rate of (3.1), then 

	

= 0(n 4 )	as n	 (3.10) 

is sufficient for (3.9) and hence for the convergence rate (3.8) of Tikhonov regularization, 
where (3.10) is a decay condition for the Fourier components of x with respect to the 
eigenelements ü, inrelation to negative powers of n. The strength of condition (3.10) 
for x obviously grows with ii. In this sense, the set of elements x ensuring a rate (3.8) 
is the 'bigger' the smaller the value v .can be verified. Note that a condition (3.10) and 
consequently a rate condition (3.8) is not automatically satisfied if the solution element 
X is smooth enough, for example if x E L°°(0, 1) or if x E C°°(0, 1).
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4. Ill-posed equations with multiplication operators 

In this section we consider in the spaces X = Y = L2 (0, 1) the class of equations 

[A-](s) = W (s) . x(s) = y(s)	(0	s < 1)	 (4.1) 

with a multiplication operator A (see also (61) generated by a real muliplier function W, 
where we assume 

V e L(0, 1),	çQ(s) 2 0 (0 <s < 1),	meas{s cc(s) = 01 = 0.	(4.2) 

The operator A E £(L 2 (0, 1), L 2 (0, 1)) from (4.1) subject to (4.2) is a self-adjoint in-
jective bounded linear operator. Furthermore, let the essential infimum of cc vanish, 
i.e.,

cssinf cc( s ) = 0.	 (4.3) 

In view of the following proposition, (4.1) subject to (4.2) and (4.3) is for X = Y = 
L 2 (0, 1) an operator equation (1.1) ill-posed of type I. 

Proposition 4.1. The multiplication operator A E £(L 2 (0, 1), L 2 (0, 1)) defined in 
(4.1) with a multiplier function c satisfying (4.2) is not compact. Moreover, we have a 
non-closed range R(A) 34 R(A) if and only if condition (4.3) is fulfilled. 

Proof. Following [17] the spectrum of the linear multiplication operator A coincides 
with the essential range of the real function cc E L'(0, 1). This essential range is the 
set-theoretical complement (with respect to R) of the union of all open sets G C R with 
mcas(c' (G)) = 0. Now, no real value A of the spectrum of A can be an eigenvalue with 
finite multiplicity. Namely, A can only be an eigenvalue at all, if the pre-image (P({A}) 
has a positive measure. However, on this set the function cc( s ) - A vanishes and we can 
find an infinite orthogonal system of functions with support in this set forming the 
eigcnfunctions according to the cigenvalue A. If a linear operator is compact, then it 
has a discrete spectrum and all non-zero eigenvalues have finite multiplicity. Therefore, a 
compact multiplication operator could only have 0 in its spectrum and so in its essential 
range. Consequently, p has to vanish almost everywhere. This however contradicts 
(4.2). If and only if (4.3) is satisfied, the value 0 belongs to the (continuous) spectrum 
of the multiplication operator A. Then the inverse operator A 1 is not bounded and 
the range R(A) is not closed if and only if we have (4.3) I 

Multiplication operators occur, for example, as Frchet derivatives of Nemytski op-
erators. On the other hand, Nemytski operators play an important role as the nonlinear 
part in the decomposition of Hammerstein equations into an ill-posed linear Fredhoim 
integral equation as the outer equation and a non-linear inner equation of Nemytski 
type. 

The 'strength' of ill-posedness for such multiplication operators is essentially char-
acterized by the behaviour of the increasing rearrangement of cc in a neighbourhood 
of s = 0. For cc E Lco(0, 1) we define the increasing rearrangement 

	

= sup{t d(t) :^_ s}	(0 <s < 1),
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a non-decreasing and right-continuous function, by using the distribution function 

dçp (t) = meas{s E (0,1): 0 5 ç(s)	t}. 

Note that (4.3) is equivalent to (0) = 0. From (4.2), however, we find (s) > 0 for 
S >0. 

Definition 4.2. We call i> 0 an ill-posedness rate of equation (4.1) if we have a 
constant K > 0 such that

(s) ^! Ks 1'	(0 < s < 1).	 (4.4) 

As we will see for the multiplication operators under consideration there are close 
connections between the ill-posedness rate I and the stability rate ii of Definition 2.4. 
First the following theorem indicates an analogous behaviour of I and ii with respect 
to the semi-ordering (2.16). 

Theorem 4.3. Let A 1 and A 2 satisfying A 1 -< A2 according to the semi-ordering 
(2.16) denote two multiplication operators with the multiplier functions 'pi and P2, re-
spectively, subject to (4.2) and (4.3). If I > 0 is an ill-posedness rate corresponding to 
A 1 , then this value i is also an ill-posedness rate corresponding to A2. 

Proof. For A 1 - A2 we have a constant K > 0 such that 

5RIl22 X110(0I)	for all x E L2 (0, 1). 

From this we get w i (s) 5 k 2 (s) for a.a. s  [0, 1]. Otherwise there would exist a set 
) c [0,11 with meas(1l) > 0 and w i (s) > Kp2 (s) for s E Q Then the characteristic 
function xn e L 2 (0, 1) would fulfill the inequality 

II 1P1 W 1 0(0,1) L 2 (o,1) > 1 II2 Xtl II L2(Oi)• 

This, however, contradicts the above assumption. Now we have 

d 2 (t) = meas{s : p 2 (s) e [0,t]} 5 meas{s k' 1 (s) E [0,t]} = d.(t) 

and consequently 1 (s)	k 2 (s) for all .s E [0, 1]. From	(s) ^! K, s' (0 < s < 1) 
with a constant K 1 > 0 we finally derive 

;;2 (S) > k i (s) > KlKsv 

This completes the proof U 

A second connection between i and i' is indicated by the following theorem. 

Theorem 4.4. Provided that we have for positive constants ii and K 

(s) > Ks'	(0 <s < 1),	 (4.5) 

equation (4.1) possesses a stability rate ji.
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Proof. We generate the finite-dimensional spaces XN by the Haar wavelet base as 
the orthonormal system {w} 1 . This base is given by 

9 = 1 (scaling function) 
i,bmi(s) = 2 11' 0(2m , —1) (in> 0; 1 = 0,... ,2" —1) 

where 7P is the Haar mother wavelet = X[o,] -X[,i] So we can numerate 

WI = 9 
W2 m +j+I = bmi (in> 0; i = o, ...	—1) 

For N	2m + I + 1 any function z in XN can be expressed by 

21+2	 N 
Z =
	CIXF -1	1	 )'

Tr +
	C,( -l-2 -I-I 

I m+l 'J	 I 
1=1	 s=21+3 

where the second sum vanishes when we have I =	— 1. Now from (4.5) we obtain 
for IM that	j-s- can be estimated below by the minimum over {c i ,. .. , C,v} of the 
expression 

fT cs2 "ds +.. + hi ' ' c, 2 s 2 ds + f,2 2c13s2vds + ... + f_ c31 s 2 "ds22

ç(c + 	+ c 1.2 ) + 4(c 13 + ... + c) 

It can easily be seen that the minimum is attained whenever the constants c2 ,. . . CN 
are zero and c 1 is arbitrarily chosen. Then 

/2v + 1(2m+I)v 
7N

K 

follows. For 2' < IV < 2m + l we have YN < RN" with a fixed constant K > 0, i.e. 
we have found an orthonorrnal system, for which the 7N grow maximally as the rate of 
ill- posedness U 

Now we consider also for multiplication operators in the case of exact right-hand 
sides y = Ax Tikhonov regularized solutions 

(s) xe(s) = 2() +	
y(s)	a.e. in [0, 11 

and their convergence rates (3.8) for 0 < ii < 1. Then in contrast to the case of a compact 
operator A (see formula (3.10)) under the smoothness assumption x E L°°(0, 1) we have 
a uniform convergence rate depending on the given ill-posedness rate i> 1.
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Theorem 4.5. Let l > . be an ill-posedness rate of equation (4.1). Then we have 
for all x E L(0, 1)

iiXc - x = O(a)	as a —* 0.	 (4.6) 
Proof. To prove this theorem we apply the following equivalence of Neubauer (cf. 

[16]) for 0<	1: 

ii x —x li = O(o)	 I djjExxjj' = Q(2v) 
0 

Here E,, is the spectral family of the operator AA, i.e. in our case 

	

X(S) ifp2 (t)	A 
[EA (x)](s) = c

10 	ifp2(s)>A. 

Now with (4.4) we can estimate 

J dIlExII2 = 

=	
d	J	x2(s)ds=	f	x2(s)ds j  

{s:cp2(s)<A}	 {3e2(s)<M} 

f dt ll x iI(0,1) = dJ7)IIxiI(OI) 

= d(/7i)IIxII(Ol) 

k,. 

This yields formula (4.6)1 

Note that the assertion of Theorem 4.5 is not valid for i =	as the following

example shows. 

Example 4.6. Consider the multiplication operator A from (4.1) with the multi-
plier function

p(s) = .s.	 (4.7) 
Evidently, we have i = . Then (4.6) cannot hold for	from (4.7) and a solution 
X(S) = 1 (0 < s	1). Namely,

a2 
11 x 0 - x 11 2 = f ()2ds = 0(a 2 )	as a	0 

0 

would contradict the limit condition 

lim f	1	
ds= lim —2 o—o j (+a)2	a-0	

+2ln (1 +	= 
0	 -
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5. Case studies on condition numbers 

If we reinterpret the remarks on condition numbers kN (see formula (1.7)) of Galerkin 
matrices AN in Section 1 with respect to stability rates in the case of compact operators 
A, we find close connections between the growth rates (1.6) and (2.15). In this section we 
first illustrate these remarks on condition numbers by some computational results. We 
consider the family (3.6) of fractional integral operators Ar with kernels k(t)	Ct 
and singular values (SN(A,.))	NT. Instead of using Galerkin matrices we discretize 

the operator Ar by the lower triangular Toe plitz matrices 

k1	0	...	0 

-	k2	k1 
4N-

0 
kN	...	k2	k1 

ki=k(2N1)	(i=1,2,...,N) 

and compute condition numbers 

R N = cond(A N ) = IlNI2IIN 112 

using MATLAB routines. By setting N	2 (j 1) and 

R N CN	 (5.1)


the exponent i was fitted by observing the values 

= lflfrC N,, —In kN,	(j> 1). 

Table 1 shows the values zi, for j = 1,2, ..., 8 and a sample of indices r. In particular, 
for larger j (e.g., j	7 and j = 8) we get an impression of the realistic exponent i in 
(5.1). For the sufficiently small stability rates r < 2 (situations a) - e) in Table 
1) we can conclude that an equation t = r is realistic. If the index r approaches to 
2 from below, then we have a rather sharp jump of magnitude 1 with respect to the 
observed exponent i7 (17 2 for r = 1.9 and 17 3 for r = 2). This is an interesting 
phenomenon which we cannot interpret in detail. For larger values r > 2 it became 
clear that a reliable computation of condition numbers using MATLAB failed the more 
r and j were growing. The situation h) in Table 1 with r = 2.1 confirms for small j 
the growth of 17 as r grows. However, larger values j lead to inacceptable results. The 
results of r = 3 and r = 4 were completely instable and useless. This seems to be due 
to the fact mentioned by J. W. Demmel [3] that computing a condition number of a 

with
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problem is approximately as hard as computing the solution of the problem itself. 

a) r0.5 
i 1	2 3 4 5 6 7 8 

F,j 0.6054	0.5567 0.5386 0.5291 0.5222 0.5167 0.5123 0.5090 
b) r=0.75 
j 1	2 3 4 5 6 7 8 
i, 0.7994	0.7493 0.7429 0.7453 0.7479 0.7493 0.7499 0.7501 
c) r=l 
j 1	2 3 4 5 6 7 8 
i, 1.0457	0.9772 0.9737 0.9824 0.9900 0.9947 0.9973 0.9986 
d) r=1.5 
j 1	2 3 4 5 6 7 8 
i, 1.7793	1.5455 1.4852 1.4803 1.4867 1.4924 1.4960 1.4979 

e) r=l.9 
j 1	2 3 4 5 6 7 8 

17, 2.7986	2.4711 2.2298 2.0435 1.9440 1.9086 1.8999 1.8987 

f) r=1.99 
j 1	2 3 4 5 6 7 8 

17, 3.1156	2.9326 2.8637 2.7786 2.6344 2.4303 2.2215 2.0811 

g) r=2 
j 1	2 3 4 5 6 7 8 

17, 3.1531	2.9953 2.9766 2.9829 2.9901 2.9947 2.9973 2.9986 

h) r=2.1 

j 1	2 3 4 5 6 7 8 
17, 3.5516	3.7639 4.7476 7.2279 12.4041 22.7342 7.9525 5.6435

Table 1: Condition number rates for fractional integral operators 

In the second part of this section we want to demonstrate some comparable results 
for the non-compact multiplication operators to show that non-compact operators are 
not always 'less' ill-posed in general with respect to growth rates of condition numbers. 
We consider Ga.lerkin-Ritz schemes as a concretization of the ansatz (1.9) with X = 
Y = L2 (0, 1). and orthonormal systems 

{u}. 1 = {v}.. 1 = {w}. 1 C L 2 (0, 1) 

for this case. Using the N-dimensional space XN = span(w 1 , ..., wN) we obtain Galerkin 
matrices

= (aj Z	with	
= j 

(s)wj(s)w(s) ds 

for the operator of multiplication with the multiplier function p E L(0, 1). 
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First we consider for {w} 1 the Haar wavelet base introduced in the previous 
section. The arising Galerkin matrices AN are sparse due to the small support of the 
functions On j. Comparative numerical computations indicate that the non-diagonal 
entries do not essentially influence the decay rate of the singular values of such matrices. 
So it seems to be realistic to have a look at the corresponding diagonal matrices for which 
the singular values can be verified explicitly. These values coincide with the diagonal 
entries of the Ga.lerkin matrices for omitted non-diagonal entries. Now we assume for 
positive constants fl and K that the multiplier function satisfies the equation 

	

p(s) = Ks'	(0 < s < 1).	 (5.2)


Then for ri = 2m + I + 1 the diagonal entries ann of AN can be written as follows: 

	

1	 1 

= J ca(s)(s)ds = J Ks (s)ds = 

	

0	 0	 0

K 
= K f s 1 (s) ds = K J ? . 2mds 

= + 1)2-1'
((1 + 1)	- 1). 

0	 I 

For a fixed N = 2	+ IN + 1 it can be found out that the smallest singular value

(j)m of AN -occurs as the diagonal entry a with rn = rn and 1 = 0, 

whereas the largest singular value or , can be estimated above by 

K ((2mN)+1 - (2 MN  - 
— (fl 

This implies for the condition number 
a1  

KN = - ( ( 2mN)+ 1 - (2 m - i)') (i'+ 1)2 MN - 

since we have 0 < a'	
1Y4' < i + 1 for all values 1 < a < oo. With respect to 


2rnN <N < 2m N+ l we derive that kN (i' + 1)N 

For another example we consider 

	

W(S) = $	(0	.s	1)	 -	 (5.3) 

and use a set of weighted orthogonal polynomials. Let U denote the Chebyshev poly-
nomials of the second kind. Then the sequence 

-S2u($)} 

forms a orthonormal system in L2 (-1, 1). If we transform this sequence to the interval 
(0, 1), we obtain the orthonormal system {w} 1 with 

	

wn =	- s 2 U(2s - 1) 1n=1
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in L2 (O, 1).. Here the entries a ij of the Galerkin matrix AN are expressed by the formula 

	

1	 ! ifij 
ajj I s ' Vs - s 2 U(2s - 1)U(2s - 1)ds 

= {	
if I i - ii = 1 

	

0	 0 else. 

It can be verified that the singular values of AN have the form 

((N —n.+1)ir\ 
Ufl=S1fl	

2(N+1) )	
(n=1,...,N).  

So the condition number r1N is given by 

sin  (2(1)) 
= sin 2(2(+l))N2	

as Noo. 

In such a case the condition numbers grow for N - faster to infinity than the ill- 
posedness rate indicates. Comparable investigations concerning other functions show 
similar results for the same orthonormal system. 

The last example has indicated that for multiplication operators the condition num-
ber growth of Galerkiri matrices may be worse than ic NL for cp satiflying (4.5) if 
we choose an inappropriate system of orthonormal functions {w} 1 . On the other 
hand, from our considerations one can derive that at least for the Haar base {w} 
the growth rate of the condition numbers KN is bounded by the ill-posedness rate I of 
equation (4.1). 
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