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Abstract. The low wave number asymptotics for the solution of the Dirichlet problem for the 
two-dimensional Helmholtz equation in the exterior of an open arc is analyzed via a single-
layer integral equation approach. It is shown that the solutions to the Dirichlet problem for the 
Helmholtz equation converge to a solution of the Dirichlet problem for the Laplace equation 
as the wave number tends to zero provided the boundary values converge. 
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1. Introduction 
The study of the low wave number behavior of solutions to exterior boundary value 
problems for the Helmholtz equation in two dimensions via integral equation methods 
has a long history. This is due to difficulties arising from the following two facts. Firstly, 
in two dimensions the fundamental solution of the Helmholtz equation does not converge 
to the fundamental solution of the Laplace equation if the wave number k tends to zero. 
Secondly, the fundamental solution of the Laplace equation is not bounded at infinity. 
For the Dirichlet problem in the exterior of a finite number of disjoint closed contours 
the limiting behavior was investigated by MacCamy [13], Werner [151 and the present 
author [10]. Here, the analysis can be based on reducing the boundary value problem 
to an integral equation of the second kind via a double-layer or a combined double- and 
single-layer approach. 

In the present paper we want to examine the low wave number limit for the corre-
sponding Dirichlet problem in the exterior of an open arc. In this case, as opposed to 
the case of closed contours, we need to work with an integral equation of the first kind 
via a single-layer approach. The existence and uniqueness of solutions to the Dirichiet 
problem in the exterior of an open arc is well established (c.f. [5] or the appendix in 
the Russian translation [2] of [1] and the references therein). More recently, the author 
[12] has suggested to base the analysis of the single-layer integral equation for an arc 
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on the cosine transformation which has been introduced by Multhopp [14] and by Yan 
and Sloan [16] for the corresponding integral equation in the potential theoretic case of 
the Laplace equation. Here, we will adopt this approach to investigate the low wave 
number limit. Our analysis will be in a Sobolev space setting instead of a Holder space 
setting as in [12). Clearly, the results can be extended to the Dirichiet problem in the 
exterior of a finite number of disjoint open arcs. 

For corresponding investigations in two-dimensional elasticity we refer to Hsiao and 
Wendland [7, 81. 

2. Scattering from an open arc 

Assume that r C R 2 is an arc of class C2 , that is, r = {z(s) : s E [-1, 1]} where 
[-1, 1] - R2 is an injective and twice continuously differentiable function with 

z'(s) 54 0 for all s E [-1, 1]. The mathematical treatment of the scattering of time-
harmonic acoustic or electromagnetic waves from thin infinitely long cylindrical obsta-
cles is modelled by the following boundary value problem: 

Given a function 1k E C'(r), find a solution Uk E C2 (R2 \ r) fl C(R2 ) to the 
Helmholtz equation

Auk +k2 Uk—O	inR2 \r	 (2.1) 

with wave number k > 0 satisfying the Dirichlet boundary condition 

	

U k = 1k	on r	 (2.2) 

and the Sommerfeld radiation condition 

OUk lim ,/(- - iku k) = 0	(r = l x i)	 (2.3) 
r-	\Or 

uniformly in all directions j. Note that we do not explicitly assume any edge condition 
for the behavior of the solution at the two end points of r. 

The limiting case k = 0 corresponds to the following static boundary value problem: 
Given a function fo E C'(F), find a solution u 0 E C 2 (R2 \ r) fl C(R2 ) to the Laplace 
equation

AUO = 0	in R2 \ 1'	 (2.4) 

satisfying the Dirichiet boundary condition 

	

uo = fo	on F	 (2.5) 

and the boundedness condition 

	

u0(X) = 0(1)	(l x i -4	),	 (2.6) 

uniformly in all directions j. Again, no edge conditions are explicitly assumed.
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Theorem 2.1. The above exterior Dirichiet problems for an open arc both have at 
most one solution. 

Proof. As in the case of the Dirichiet problem for the exterior of a closed contour 
(see [11: Theorem 6.11)), uniqueness for the Laplace equation relies on the maximum-
minimum principle for harmonic functions and the boundedness condition at infinity. 
For the Helmholtz equation, uniqueness follows from Rellich's lemma and an application 
of Green's theorem. The application of Green's theorem can be justified by using an 
approximation idea due to Heinz analogously to the case of the exterior of a closed 
contour (see [3: Theorem 3.7)) I 

For functions W E L"(r) (1 <p < oo) we introduce the operator M by 

Mço := p—	jcods. 
1171

Then, for  < k < 1, we seek the solution of problem (2.1) - (2.3) in the form of a 
modified acoustic single-layer potential 

k(X) =	
27r 

tL

	

- j— (Pk(l/)}dS(Y)	(x e R2 )	( 2.7) 

with a density Vk E LP() and the fundamental solution to the Helmholtz equation in 
two dimensions given by 

,%(x, y) = - H'(kIx - y )	(x 54 y) 4 

in terms of the Hankel function H' of order zero and of the first kind. Since the Hankel 
function has the asymptotic behavior 

1	2	i	1	C 
- In — + —	 (t-0)	(2.8) 

where C = 0.5772... denotes Euler's constant, the acoustic single-layer potential (2.7) 
has a limit as k -* 0 given by 

u0(x) = 
j 

{o(x,y)(Mçoo)(y) +çoo(y)}ds(y)	(x ER2 )	 (2.9) 

with the fundamental solution 

41 0 	= 
1 
- In 1	(x 0 y) 27r	Ix - yl 

to the Laplace equation. Note that in the difference I - 4 o the trouble making term 
In k is eliminated due to fr, Mco k ds = 0. 

The potentials (2.7) and (2.9) satisfy the Helmholtz and Laplace equations in R2\r, 
respectively. Furthermore, (2.7) fulfills the radiation condition and (2.9) is bounded at 
infinity because of fr Mçao ds = 0. For densities in LP() the single-layer potentials
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(2.7) and (2.9) are continuous throughout R 2 (see [6: p. 276]). Hence, (2.7) solves the 
Dirichiet problem (2.1) - (2.3) provided the density Vk E L"(F) is a solution to the 
integral equation

2, 

IF 4'k(X,Y)j(M1Pk)(Y) - j—j Wk(Y)Ids(y) = fk( x) (x EF). (2.10) 

Analogously, (2.9) solves the Dirichlet problem (2.4) - (2.6) provided po E L(F) is a 
solution to the integral equation 

	

j{o(x,y)(Mo)(y) + o( y)} ds(y) = fo(x)	(x E F).	(2.11) 

Substituting s = cost into F = {z(s) : s E [-1,1]), we define operators A and B 
which map functions on F into functions on the interval [0, 7r] by setting 

(Ap)(t) = sin t Iz'(cos t)I (z (cos t)) 

(Bf)(t) = I (z(cos t)) 

for 0 t	r. The operator N given by 

N=— [fAldr]'A1JdT 

is related to the operator M by NA = AM. By this substitution, the integral equation 
(2.10) is equivalently transformed into 

	

fHk (tr){(Nbk)(r) - 27r	(')}d7- = 9k(t)	(t E [0,ir]),	(2.12) 
Ink 

0 

where 4'k = Aço k and 9k = Bfk and where the kernel is given by 

Hk( t , r) = k(z(cos t), z(cos r))	(t 5k r). 

Analogously, the parametrized version of (2.11) is given by 

I{Ho(t,r)(No)(r) + o(r)} dr = go(t)	(t E [0,),	(2.13) 

where
Ho(t,r	

1	 1
) := - In	 (t 54 r). 

27r	Iz(cos t) - z(cos r)I 

We will look for solutions of equations (2.12) and (2.13) in L2 [0, it]. For the correspond-
ing density V on F, related through t,b = A', we then have 

	

I(x)Ids(x) =	
10(01P di 

 I Iz'(cost)I P	sin	i F	0
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and, with the aid of Holder's inequality, can estimate

I_z 2 

	

liT	
1	

2r,r	1 

I Io(x)Ids(x)	
1	

Jsinf tdtj	J (t) 2 dt	(2.14) Jr	 'E(-I,IJ 1 z	
2.14)

Lo 

where the first integral on the right-hand side is finite provided 1 < p < , that is, 
E LP (F) for 1 <p < 1 which ensures continuity of the single-layer potentials. 

3. Low wave number limit 

For the further discussion we rewrite equations (2.12) and (2.13) in operator notation 
as

Kklb=fk 

with

	

(Kk)(t) = J Hk(t,r){(N)(r) -
	

(T)}dr	(t E [0,]) 

for 0 < k < 1 and 

(Ko)(t) = / {H0 (t, r)(N)(r) ± (r)} dr	(t e [0, 7r]). 

In addition we introduce the integral operator 

IT 

1!
 (Lib)(t) = - - / In ( 4 — [cost - cos T]2) 

47r	e2	 (r) dr	(t E [0, J	\ 
0 

In the sequel, by He' [0, 7r] we denote the subspace of even functions in H' [-ir, ir). 

Lemma 3.1. The operator L L'(0, 7r] -4 H[0,ir] is bounded and has a bounded 

	

inverse L' : H,[0, 7r] — L 2 [0,ir]. The operator K0 — L	L2 [0,ir] -' H,'(0, 7r) is 
compact. 

Proof. From the identity

	

]2)	
14 

sin 	4 . ln(_[cost_cosr	=lni- sin —)-4-ln(- sin e 2	 \e	2 2 

it follows that 

IT	 2ir 
f 

J lIn( 4 -i [cost - COS r]2) COS mrdr = 1 I ('	2 - 
"C 

sin 
—2) 

COS rnrdr. 
0	 0
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Therefore, for fm(t) = cosrnt, from [9: p. 881 or [11: Lemma 8.211 we have that 
Lfm = .Xmfm where) = 2 ma. (1,m) (mEN0 ). Hence L maps the function 0 E L2[O,ir] 
with Fourier series =	a,,,f,, into L?4' = Amamfm. Since {fm}No forms 
a complete orthogonal system for L2 [O, 7r] and for H' [0, it], this implies boundedness of 
L: L2 [0,7r] —* H'[0, 7r) and invertibility, with the bounded inverse L' given in terms 
of the Fourier series L'g = bmfm for g E H [0, it] with g b, fn. 
By Taylor's formula

Z(s) — z(a) = (s — a) / z'(a + A(s — a)) d, 

using the fact that z E C2[-1, 11 with z'(s) 0 0 for s E [-1,1, it can be verified that 

1	 1	 1	4 
Ho,j(t,r):=— in	 + 

27rIz(cost) — z(cosr)I

	

	
In (- [cost — COS 7-12	(t	T) 

it 

can be extended in a continuously differentiable manner on [0, 7r] x (0, 7r]. Hence, the 
operator K0,1 : L2 [0,ir] —* H[0,7r] defined by 

(Ko,,)(i) = f H0, , (t, r)(N)(r) dT	(i E [0, ) 

is compact. The operator K0,2 : L 2 [0,ir] — H[0,7r] defined by 

(K0,2 )(t) = [LA1 + 11 1 (7)dr	(t E [0, 7r]) 

is bounded and has finite-dimensional range and therefore also is compact. Now com-
pactness of K0 - L : L2 [0, it] — H [0, it] follows since K0 — L = K0, , + K0,2 I 

Theorem 3.2. There exist constants c > 0 and 0 < k 0 < 1 such that for all 
0 < /c < k0 the inverse operators K' : H'[0,ir] —, L 2 [0,ir] exist and satisfy 

11 Kk' — K0 " <-s--
In Jkl

. 

Proof. We first show that K0 : L'[0, it] — H'[0, 7r] has a bounded inverse. For a 
given g e He' [ 0, it], solving 1,C0 i,b = g for b E L 2 [0, it] is equivalent to solving the equation 
of the second kind

' + L'(K0 — L)i = L'g 

where the operator L (K0 — L) : L 2 [0, it] — L2 [0, it] is compact by the previous Lemma 
3.1. Hence, by the Riesz-Fredholm theory, it suffices to show injectivity of K0 in order 
to establish bijectivity of K0 and boundedness of the inverse. 

Let Oo E L2 (0, it] be a solution to the homogeneous equation K0 ,b0 = 0. Then the 
corresponding potential u 0 with density Wo E LP (I') (0 <p < ) defined by (2.9) solves
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the homogeneous boundary value problem (2.4) - (2.6). Therefore by Theorem 2.1 we 
have u 0 = 0 in Jj2• From (2.9) we have the asymptotic behavior 

	

u0(x) 
=	

0ds + o(1)	(lxi 

uniformly for all directions. Therefore u 0 = 0 in R2 implies that Jr çoods = 0. Now, in 
view of grad uo = 0 in JR2 \ I', the potential theoretic jump relations yield 

çoo(x) = urn [v(x) . graduo(x - hv(x))— v(x) . graduo(x +hv(x))] = 0 

for almost all x E r. Here, ii denotes the unit normal vector on r (chosen with one of the 
two possible orientations). That the jump relations for the gradient of the single-layer 
potential are valid for LP densities can be seen by relating them to the Sokhotski-Piemelj 
formulae for the Cauchy integral (see [11: p. 116]). However, the latter are valid for 
LP densities (see [4: p. 50]). Finally, o = 0 almost everywhere on r implies Oo = 0 
almost everywhere in [0, ?r] and the injectivity of K0 is proven. 

From (2.8) and

-H'(t)= _+O(tln) 

for t -+ 0 it can be deduced that J JKk - Koll = 0(1/ In Iki) (k - 0) for the difference 
Ak - K0 : L'[0, 7r] - H,[0, 7r]. Now the statement of the Theorem follows from the 
invertibility of K0 and the boundedness of the inverse K 1 by writing K,. = K0 [I + 
K(Kk - Ko)] and using the Neumann series I 

Corollary 3.3. For 0	k	k0 the Dirichlet problem (2.1) - (2.3) is uniquely 
solvable. 

Proof. This follows from Theorems 2.1 and 3.2 by using the single-layer approach 
(2.7)1 

Now we are in a position to state the main and final result of this paper. 

Theorem 3.4. Assume that 111k - follc'(r) - 0 as k - 0. Then, for k -* 0, the 
solution u k of the Dirichlet problem (2.1) - (2.3) for the Helmholtz equation converges 
uniformly on compact subsets of JR 2 to the solution u 0 of the Dirichlet problem (2.4) - 
(2.6) for the Laplace equation. 

Proof. We represent Uk and uo in the form of the potentials (2.7) and (2.9) with 
densities Wk and coo, respectively. For the corresponding solutionsO k = Aço k of the 
integral equations (2.12) and (2.13), that is, for ,b,. = Kg,., using Theorem 3.2 and 
the triangle inequality, we can conclude that 

kb,. - 00II0J0,,rJ	0	(k -+ 0).	 (3.1)

Here, we have used that 

h g ,. - gohlH'[o,,r] = II B(f,. - fo)Iliio,,r !^ C 1 JJf - fohlc'(r)
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for some positive constant c 1 . In view of (2.14), the convergence (3.1) implies that 

'Pk - 'Poll I.(r) -* 0	(k —* 0)	 (3.2) 

for 1 <p < 

We split the difference Uk - uo = vk + wk where, for x E R, 

Vk(X) 
= 

j {o(x, y)(M[çok — çoo])(y) + [co k( y ) — 0(y)1}ds() 

and

Wk(X) 
= J {[k(x ,Y) — o(x,y)](M'Pk)(y) — 

r 2 
r	 [—Fk(xY) + 11(Pk(Y)}d.s(Y). 

For vk, from the boundedness of K0 : L2 [0,ir] —* H0,ir] and (3. 1), we have that 

ll Bvk hoc = ll Ko(,bk - bo)Iloo 
^ c2 Ko(b — 'o)llH(o,]	

(k •- 0) 
< C3 11 0k — VIOllL2[O,ir] 
—*0 

for some constants c 2 > 0 and c3 > 0, that is ll vkIl,r —* 0 as k — 0. For sufficiently 
large R> 0, by the Holder inequality and (3.2), we can estimate 

Vk(X)i < c4 JjWk — 'PollLP(i) —* 0	(k — 0) 

for lxi = R and some constant c4 > 0 depending on R. Now, by the maximum-
minimum principle for harmonic functions from the two preceding estimates we derive 
that vk - 0 (k —* 0) uniformly on the disk {x e R2 : Ix  R}. 

Finally, for the function wk, using (2.8) and the Holder inequality, we can estimate 

iWk(X )i <—-- 
— lnikl 

lPkIlL,(r) —* 0	(k —* 0) 

for lxi R and some constant c5 > 0 depending on R. This completes the proof U 

In the case where 10 = 1 we have that u 0 = 1 in all of JR2 . On the other hand, 
the radiation condition implies that uk(x) —* 0 as lxi —* oo for all k > 0. Therefore, in 
Theorem 3.4, we cannot have uniform convergence in JR2. 

From the proof of Theorem 3.4 it is obvious that we also have uniform convergence 
of the derivatives of arbitraty order on compact subsets of R  \ F.
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