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On the Matrix Norm
Subordinate to the Holder Norm

J. Albrecht and P. P. Klein

Dedicated to P'rbf. L. von Wolfersdorf on the occasion of his retirement

Abstract. For non-negative matrices P the matrix norm subordinate to the Holder norm
of index p with p € (1,00) is determined by an eigenvalue problem Ta = Aa, where T is a
homogeneous, strongly monotone operator.
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1. Introduction

Assume v € R™ and M € R™*". For the Holder vector norm '

n 1/p ’
I:Z |v,-|”j| forl<p<oo
i=1

lIollp =

“max |v4] for p =00
i=1,...,n
the subordinate matrix norm
| M| p
1M, = ———  (1<p<oo)

~ vern\{o} lvll,

can be easily calculated in the limiting cases:
m . n
Ml =  max Zl Imi;l  and Ml = max Zl Imij.
= 1=

Furthermore, the spectral norm is well known:

M2 = [p(MTM))'/2.
Beyond that in the special case of non-negative matrices P € RT*" for all ‘p € (1,00)
the matrix norm ||P||, can be determined by an eigenvalue problem, which is nonlinear

for p # 2.
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2. The eigenvalue problem

Let P € R}*", p € (1,00) and (p — 1)(g —1) = 1. Because of |Pv| < P|v| for v € R®

Pl
I1Pll, = max .
veRI\{0} ||v||p
holds. Discussing this maximum problem leads to
Definition 1.

T:R? »R}, (Tv);= [Z;;.,(Pv){’f‘

=1

(1)

g—1

and

Theorem 1. Assume that the eigenvalue problem

Ta =\
value A\. Then

' (3)
has an eigenvector a with positive componcnts only, corresponding to a positive eigen-

I1Pllp = A9 (4)
Proof. 1.1 In the case (Pa); > 0, for v € R}
(Pv)i Zp,,v, ZPUO‘J

pijo; g
P)'ZJIJJ,

P j=1Pijq;
holds and Holder’s mequahty for convex functions ¢ (see [6, 8])

Xipiti\ X, pivlts)
¥ szj B Z Dj
yields v

pija;(2 S pi
(Pv)? < (Pa )PM (Pa)P~! p_ilv;’.
Z] 1 Pija; j=1 a?
1.2 In the case (Pa); =0, becauseof a; >0 (j=1,...,n),pij =0 (j=1,...,n)
holds and therefore (Pv); = 0 is valid for all v € R}.
2. Hence it follows that ’

p—1 O(Pl n
Z(Pv)p<22. 11:J(P°‘) Z(T )

b}
and

‘_ v
j=1 =1

1Pollp < A9 o]l
If v = a, then equality holds B

The theorem is lllustrated by the followmg
. Example (f € R} ,ge R? 1)

P=fg": a=(¢""L 1 IPlls = 1fllpllglls-

The assumption that the e)genva.lue problem To = Aa has an eigenvector o with
positive components only, correspondmg to a positive elgenvalue /\ will be shown to be
fulfilled if PT P is irreducible.
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3. PTP irreducible

In a real linear space X let the cone K define the partial ordering <. Eigenvalue
problems with operators T : K — K having the properties

1. T is monotone on K, i.e. u,v € K with u < v implies Tu < Tv
2 T is homogeneous on K, i.e. T(cv)=cTvforc>0andve K
3. T is completely continudus on K

have been investigated by Krein and Rutman (7] and by Bohl [2]. The results in [2]
necessitate another assumption, namely that T is strongly monotone on K. In the case
X =R", K = R} this means the following.

Definition 2. An operator T being monotone on R} is called strongly monotone
on RY, if for all v,w € R} with v < w and v # w there exists a number x € N such
that

(T*0); < (THw); (G =1,...,n)
holds.

By the following lemma the strong monotonicity of thé operator T defined in (2)
can be concluded from the strong monotonicity of PTP. '

Lemma 1. Assume P € RT*" and p € (1,00). For arbiirary vectors v,w € R}
with v < w, all v € N and each fized j € {1,...,n} the equivalence

(T"v); = (T*w);. <= ((PTP)v); = (PTP)w);. (5)
holds. . ' ‘ ) '
Proof. 1. v =1: Let j € {1,...,n} be fixed. Then (Tv); = (Tw); is equivalent to
> pis((Pw) ™! = (PoT) = 0. | (6)
'=] . - : . . . . : T

As v < w implies Pv < Pw and (Pv)?™' < (Pw)?™! (i.= 1,...,m), all terms of (6)
are non-negative. For every i € {1,...,m} with p;; > 0 equation (6) requires that

(Pw)?‘l - (P'u)f—l = 0, yielding (P(w — v)); = 0. Therefore
'Zpij(P(w —u)i=0" T

follows and thus (P7 Pv); = (PT Pw); holds. Analogously (6) can be deduced from (7).

2. Induction from v to v+ 1: Let j € {1,...,n} be fixed. As T is monotone, v < w
implies Tv < T"w. Define ¢ = T*v and & = T"w. Using (5) with v =1 leads to

(T9); = (T$); <= (PTP3); = (PTPw);
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ie. (T"*'v); = (T**'w); is equivalent to

> (PTP);x(T*w — T*v); = 0. (8)
k=1
As all terms in (8) are non-negative, (TYw — T"v)x = 0 holds for every k € {1,...,n}

with (PTP);x > 0. Since (5) is assumed to be true for v,

n

>_(PTPY((PTP)(w —v))k =0 ©)

k=1

follows and thus ((PTP)"“v) = ((PTP)"“w) is obtained. In the same way (8) can
be concluded from*(9) il

Theorem 2. Assume P € R}*", p € (1,00) and PTP irreducible. Then:
1. PTP and T are strongly monotone on K.
2. The eigenvalue problem Ta = Aa has an etgenvector a with positive components

only, corresponding to a positive eigenvalue A.

Proof. 1. All diagonal elements of PTP are positive. Assuming the contrary,
namely that (PTP);; = 0 for at least one j € {1,...,n}, all elements of the j-th
column of P would be zero. This would imply PT P to be reducible, in contradiction to
the assumption. _

Since PTP is irreducible and as its diagonal elements are positive, [2: p. 111/The-
orem 2.3] says that (P7P)"~! consists of positive clements only, i.e. PTP is strongly
monotone. Using Lemma 1 for v = n — 1 proves that T is strongly monotone as well.

2. As the operator T is completely continuous and strongly monotone,.by [2: p.
53/Theorem 2.7) with S = T, T has an eigenvector « w1th positive components only
and a corresponding positive eigenvalue A il

Example. Doubly stochastic matrices, e.g. .

9 2) 1 »
5 7]: a=[1], |IPl,=1.
1 6 1

Theorem 3. Assume P € RT*", p € (1,00) and PTP irreducible. Starting from
aM e R} having positive components only, the iterates a*+D) defined by

kD) .= 7ok (ke N) (10)

have the same property. With

and PRl _max % (k e N) (11)

,,,,,
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the. eigenvalue inclusion

ORI S O D P D IR S VRS VPSP S N 6 1)
13 obtained. Furthermore :
lim A% = A= lim X* (13)
k—oo k—o0

holds.
Proof. The monotonicity and the convergence of the sequences {A®}ren and
{X(k)}ken follow from [2, p. 53/Theorem 2.7 as well

Remark. For p = 2 Theorem 3 reduces to the inclusion theorem of Collatz [3] for
non- negatlve irreducible matrices applied to PTP. :

4. PTP reducible

Allowing PTP to be reducible, it may be assumed that PT P already has the normal
block diagonal form of symmetric reducible matrices [9]. Otherwise the columns of P
have to bé permuted appropriately, which implies the same permutations for the rows
of PT and thus results in the normal form of PTP. Permuting the columns of P has
no effect on ||P||,.

According to the number and the sizes of the diagonal submatnces of PTP the
matrix P € R} ™" is split up into column blocks

P=(P,...,P,) with P, € RT*"° (e =1,...,8). (14)
Correspondingly, a vector v € R} is decomposed as

vl . . . . '
v= | with v, €RY  (0=1,0,s). - (15)

)
The block structure of PT P implies
PIP,,:@,,,GIR:’X"’ (p # 0; p,a;l,..._,s)

which means that each non-zero row of P has non-zero elements exactly in one column

block of P. Therefore, taking notice of (15),

ann"—Zanon" (veR) N ¢ 1)

o=1 -

holds.
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Theorem 4. Assume P € R}*" and p € (1,00). Let PTP be reducible such that

PTP = diag(PTP,,...,P]P,) (17)
and assume each diagonal submatriz PYP, (0 = 1,...,s) to be irreducible. Conse-
quently, the eigenvalue problem (3) is split up into subproblems of the same type

T,a.,l= AoQy (e=1,...,s) (18)
where each Ty : R} — R}° results from (2) with P, instead of P. Then

IPll, = AY9  with A= max A, - (19)

.a=l,...,a
holds.

Proof. For each eigenvalue problem (18) Theorem 2 guarantees the existence of an
eigenvector a, with positive components only, corresponding to a positive eigenvalue
As. Therefore Theorem 1 ensures

1Poocl; < X2 ool (vs €RY, 0 =1,0.0,9)

with equality, if v, = a, (0 =1,...,s). For v € R}, using (16),
s s s .. : . .
1Pollp = D IIPovollf < 3 A lvally < X271 D fvg I} = AP~ ol
. o=1 . o=1 . o=1 ’

follows, implying
. 1Poll, < A9l '
Equality holds, if v satisfies '

_Ja, for Ag =X
Yo =18, for A, <A

Remark. Since permuting the rows of P leaves PT P as well as || P||, unchanged,
additional splittings of P € RT*" into row blocks can be obtained such that

P=(P,) with P, eR}"”™  (po=1,...,s)

and, with 7 denoting any permutation of {1,...,s}, each column block P, has exactly
one non-zero subblock Prpy, (0=1,...,s).

Example (f € RT™',g¢€ lﬁi").

v O :
PG D) 1Pt = maxisty ol
Theorem 4 is supplemented by the following

Remark. Allowing P P to have a zero diagonal submatrix PL P,. resulting from
a zero column block P,., then T,. is the zero operator with the eigenvalue A,- = 0.
This leaves the result of Theorem 4 unchanged.
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5. Numerical example

Applying discretization methods to boundary value problems with partial differential
equations, often leads to linear systems

v=Pv+r ' (20)

with non- negative matrices P. If P is symmetric, p(P) = ||P}l2 < ||Plp for 1 <p < oo
holds. In case P is non-symmetric, however, p* with [|P||,+ = min{||P|[;|]1 < p < oo}
is generally not known in advance.

. Applying: the finite difference method to the boundary value problem (5]

: 3 . 11 .
—(uzz'i'“w'*'muv) =1 mn B=(_§’§)x(—l’l)
u=20 on 9B

red-black ordering of the unknowns generates linear systems (20) with P non-symmetric,
non-negative and PT P reducible: .

@11 P]g) T (PQTP 012 )
P= : d PTp=(fu'm : 21
(P21 O2 an 0 PLP, .( )

For different mesh widths h the following results were obtained by discretely minimizing
[IP||, with respect to p in a finite interval:

Ao o(P)  p 1Pl 1Pl
é 33 0.91496 2.71 0.94058 0.94608
% 60 0.95175 2.99 0.97062 0.97689

1—12- 138 0.97843 3.62 0.99003 0.99690

% 248 0.98784 4.38 0.99587 1.00289

% 564 0.99459 6.79 0.99915 1.00632

313 1008 0.99696 12.6 0.99986 1.00719

Table 1: Discrete minimization of || P||,

Rewriting the boundary value problem in self-adjoint form [5]

(2L [e2)) -2 = 2

u=0 on OB

and applying the finite difference method with red-black ordering of the unknowns again,
_ linear systems (20), (21) are obtained, where P now is symmetric and non-negative. The
spectral radii p(P) in this case are slightly above those given in Table 1.
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