On the Matrix Norm Subordinate to the Hölder Norm

J. Albrecht and P. P. Klein

Dedicated to Prof. L. von Wolfersdorf on the occasion of his retirement

Abstract. For non-negative matrices P the matrix norm subordinate to the Hölder norm of index p with $p \in (1,\infty)$ is determined by an eigenvalue problem $T\alpha = \lambda \alpha$, where T is a homogeneous, strongly monotone operator.

Keywords: Hölder vector norms, subordinate matrix norms, non-negative matrices AMS subject classification: Primary 15 A 60, 15 A 18, secondary 47 H 07

1. Introduction

Assume $v \in \mathbb{R}^n$ and $M \in \mathbb{R}^{m \times n}$. For the Hölder vector norm

$$\|v\|_{p} = \begin{cases} \left[\sum_{i=1}^{n} |v_{i}|^{p}\right]^{1/p} & \text{for } 1 \le p < \infty\\ \max_{i=1,\dots,n} |v_{i}| & \text{for } p = \infty \end{cases}$$

the subordinate matrix norm

$$\|M\|_{p} = \max_{v \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|Mv\|_{p}}{\|v\|_{p}} \qquad (1 \le p \le \infty)$$

can be easily calculated in the limiting cases:

$$\|M\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |m_{ij}|$$
 and $\|M\|_{\infty} = \max_{i=1,...,m} \sum_{j=1}^n |m_{ij}|.$

Furthermore, the spectral norm is well known:

$$||M||_2 = [\rho(M^T M)]^{1/2}.$$

Beyond that in the special case of non-negative matrices $P \in \mathbb{R}^{m \times n}_+$ for all $p \in (1, \infty)$ the matrix norm $||P||_p$ can be determined by an eigenvalue problem, which is nonlinear for $p \neq 2$.

J. Albrecht: Techn. Univ. Clausthal, Inst. Math., Erzstr. 1, D-38678 Clausthal-Zellerfeld

P. P. Klein: Techn. Univ. Clausthal, Rech.-Zentrum, Erzstr. 51, D-38678 Clausthal-Zellerfeld

2. The eigenvalue problem

Let
$$P \in \mathbb{R}^{m \times n}_+$$
, $p \in (1, \infty)$ and $(p-1)(q-1) = 1$. Because of $|Pv| \le P|v|$ for $v \in \mathbb{R}^n$,
$$\|P\|_p = \max_{v \in \mathbb{R}^n \setminus \{0\}} \frac{\|Pv\|_p}{\|v\|_n}$$
(1)

holds. Discussing this maximum problem leads to

Definition 1.

$$T: \mathbb{R}^{n}_{+} \to \mathbb{R}^{n}_{+}, \qquad (Tv)_{j} = \left[\sum_{i=1}^{m} p_{ij} (Pv)_{i}^{p-1}\right]^{q-1} \qquad (j = 1, \dots, n)$$
(2)

and

Theorem 1. Assume that the eigenvalue problem

$$T\alpha = \lambda \alpha \tag{3}$$

has an eigenvector α with positive components only, corresponding to a positive eigenvalue λ . Then

$$\|P\|_{\mathfrak{p}} = \lambda^{1/q}.\tag{4}$$

Proof. 1.1 In the case $(P\alpha)_i > 0$, for $v \in \mathbb{R}^n_+$,

$$(Pv)_i = \sum_{j=1}^n p_{ij}v_j = \sum_{j=1}^n p_{ij}\alpha_j \frac{v_j}{\alpha_j} = (P\alpha)_i \frac{\sum_{j=1}^n p_{ij}\alpha_j \frac{v_j}{\alpha_j}}{\sum_{j=1}^n p_{ij}\alpha_j}$$

holds and Hölder's inequality for convex functions φ (see [6, 8])

$$\varphi\left(\frac{\sum_j p_j t_j}{\sum_j p_j}\right) \leq \frac{\sum_j p_j \varphi(t_j)}{\sum_j p_j}$$

yields

$$(Pv)_{i}^{p} \leq (P\alpha)_{i}^{p} \frac{\sum_{j=1}^{n} p_{ij} \alpha_{j} (\frac{v_{j}}{\alpha_{j}})^{p}}{\sum_{j=1}^{n} p_{ij} \alpha_{j}} = (P\alpha)_{i}^{p-1} \sum_{j=1}^{n} \frac{p_{ij}}{\alpha_{j}^{p-1}} v_{j}^{p}.$$

1.2 In the case $(P\alpha)_i = 0$, because of $\alpha_j > 0$ (j = 1, ..., n), $p_{ij} = 0$ (j = 1, ..., n) holds and therefore $(Pv)_i = 0$ is valid for all $v \in \mathbb{R}^n_+$.

2. Hence it follows that

$$\sum_{i=1}^{m} (Pv)_i^p \le \sum_{j=1}^{n} \frac{\sum_{i=1}^{m} p_{ij} (P\alpha)_i^{p-1}}{\alpha_j^{p-1}} v_j^p = \sum_{j=1}^{n} \frac{(T\alpha)_j^{p-1}}{\alpha_j^{p-1}} v_j^p = \lambda^{p-1} \sum_{j=1}^{n} v_j^p$$

and

$$\|Pv\|_p \le \lambda^{1/q} \|v\|_p.$$

If $v = \alpha$, then equality holds

The theorem is illustrated by the following

Example $(f \in \mathbb{R}^m_+, g \in \mathring{\mathbb{R}}^n_+)$.

$$P = fg^T: \quad \alpha = (g_i^{q-1})_{i=1}^n, \quad \|P\|_p = \|f\|_p \|g\|_q$$

The assumption that the eigenvalue problem $T\alpha = \lambda \alpha$ has an eigenvector α with positive components only, corresponding to a positive eigenvalue λ , will be shown to be fulfilled if $P^T P$ is irreducible.

3. $P^T P$ irreducible

In a real linear space X let the cone K define the partial ordering \leq . Eigenvalue problems with operators $T: K \to K$ having the properties

1. T is monotone on K, i.e. $u, v \in K$ with $u \leq v$ implies $Tu \leq Tv$

2 T is homogeneous on K, i.e. T(cv) = cTv for $c \ge 0$ and $v \in K$

3. T is completely continuous on K

have been investigated by Krein and Rutman [7] and by Bohl [2]. The results in [2] necessitate another assumption, namely that T is strongly monotone on K. In the case $X = \mathbb{R}^n$, $K = \mathbb{R}^n_+$ this means the following.

Definition 2. An operator T being monotone on \mathbb{R}^n_+ is called *strongly monotone* on \mathbb{R}^n_+ , if for all $v, w \in \mathbb{R}^n_+$ with $v \leq w$ and $v \neq w$ there exists a number $\mu \in \mathbb{N}$ such that

$$(T^{\mu}v)_{j} < (T^{\mu}w)_{j} \qquad (j=1,\ldots,n)$$

holds.

By the following lemma the strong monotonicity of the operator T defined in (2) can be concluded from the strong monotonicity of $P^T P$.

Lemma 1. Assume $P \in \mathbb{R}^{m \times n}_+$ and $p \in (1, \infty)$. For arbitrary vectors $v, w \in \mathbb{R}^n_+$ with $v \leq w$, all $v \in \mathbb{N}$ and each fixed $j \in \{1, \ldots, n\}$ the equivalence

$$(T^{\nu}v)_{j} = (T^{\nu}w)_{j} \quad \Longleftrightarrow \quad ((P^{T}P)^{\nu}v)_{j} = ((P^{T}P)^{\nu}w)_{j}.$$

$$(5)$$

holds.

Proof. 1. $\nu = 1$: Let $j \in \{1, ..., n\}$ be fixed. Then $(Tv)_j = (Tw)_j$ is equivalent to

$$\sum_{i=1}^{m} p_{ij}((Pw)_i^{p-1} - (Pv)_i^{p-1}) = 0.$$
 (6)

As $v \leq w$ implies $Pv \leq Pw$ and $(Pv)_i^{p-1} \leq (Pw)_i^{p-1}$ (i = 1, ..., m), all terms of (6) are non-negative. For every $i \in \{1, ..., m\}$ with $p_{ij} > 0$ equation (6) requires that $(Pw)_i^{p-1} - (Pv)_i^{p-1} = 0$, yielding $(P(w - v))_i = 0$. Therefore

$$\sum_{i=1}^{m} p_{ij} (P(w-v))_i = 0$$
 (7)

follows and thus $(P^T P v)_j = (P^T P w)_j$ holds. Analogously (6) can be deduced from (7).

2. Induction from ν to $\nu + 1$: Let $j \in \{1, \ldots, n\}$ be fixed. As T is monotone, $v \leq w$ implies $T^{\nu}v \leq T^{\nu}w$. Define $\tilde{v} = T^{\nu}v$ and $\tilde{w} = T^{\nu}w$. Using (5) with $\nu = 1$ leads to

$$(T\tilde{v})_j = (T\tilde{w})_j \iff (P^T P\tilde{v})_j = (P^T P\tilde{w})_j$$

i.e. $(T^{\nu+1}v)_j = (T^{\nu+1}w)_j$ is equivalent to

$$\sum_{k=1}^{n} (P^T P)_{jk} (T^{\nu} w - T^{\nu} v)_k = 0.$$
(8)

As all terms in (8) are non-negative, $(T^{\nu}w - T^{\nu}v)_k = 0$ holds for every $k \in \{1, \ldots, n\}$ with $(P^T P)_{jk} > 0$. Since (5) is assumed to be true for ν ,

$$\sum_{k=1}^{n} (P^{T}P)_{jk} ((P^{T}P)^{\nu} (w-v))_{k} = 0$$
(9)

follows and thus $((P^T P)^{\nu+1}v)_j = ((P^T P)^{\nu+1}w)_j$ is obtained. In the same way (8) can be concluded from (9)

Theorem 2. Assume $P \in \mathbb{R}^{m \times n}_+$, $p \in (1, \infty)$ and $P^T P$ irreducible. Then:

1. $P^T P$ and T are strongly monotone on K.

2. The eigenvalue problem $T\alpha = \lambda \alpha$ has an eigenvector α with positive components only, corresponding to a positive eigenvalue λ .

Proof. 1. All diagonal elements of P^TP are positive. Assuming the contrary, namely that $(P^TP)_{jj} = 0$ for at least one $j \in \{1, ..., n\}$, all elements of the *j*-th column of P would be zero. This would imply P^TP to be reducible, in contradiction to the assumption.

Since $P^T P$ is irreducible and as its diagonal elements are positive, [2: p. 111/Theorem 2.3] says that $(P^T P)^{n-1}$ consists of positive elements only, i.e. $P^T P$ is strongly monotone. Using Lemma 1 for $\nu = n - 1$ proves that T is strongly monotone as well.

2. As the operator T is completely continuous and strongly monotone, by [2: p. 53/Theorem 2.7] with S = T, T has an eigenvector α with positive components only and a corresponding positive eigenvalue λ

Example. Doubly stochastic matrices, e.g.

$$P = \frac{1}{15} \begin{pmatrix} 4 & 9 & 2 \\ 3 & 5 & 7 \\ 8 & 1 & 6 \end{pmatrix} : \quad \alpha = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \|P\|_{p} = 1.$$

Theorem 3. Assume $P \in \mathbb{R}^{m \times n}_+$, $p \in (1, \infty)$ and $P^T P$ irreducible. Starting from $\alpha^{(1)} \in \mathbb{R}^n_+$ having positive components only, the iterates $\alpha^{(k+1)}$ defined by

$$\alpha^{(k+1)} := T\alpha^{(k)} \qquad (k \in \mathbb{N}) \tag{10}$$

have the same property. With

. .

$$\underline{\lambda}^{(k)} := \min_{j=1,\dots,n} \frac{\alpha_j^{(k+1)}}{\alpha_j^{(k)}} \quad and \quad \overline{\lambda}^{(k)} := \max_{j=1,\dots,n} \frac{\alpha_j^{(k+1)}}{\alpha_j^{(k)}} \quad (k \in \mathbb{N})$$
(11)

the eigenvalue inclusion

$$\underline{\lambda}^{(1)} \leq \ldots \leq \underline{\lambda}^{(k)} \leq \underline{\lambda}^{(k+1)} \leq \ldots \leq \lambda \leq \ldots \leq \overline{\lambda}^{(k+1)} \leq \overline{\lambda}^{(k)} \leq \ldots \leq \overline{\lambda}^{(1)}$$
(12)

is obtained. Furthermore,

$$\lim_{k \to \infty} \underline{\lambda}^{(k)} = \lambda = \lim_{k \to \infty} \overline{\lambda}^{(k)}$$
(13)

holds.

Proof. The monotonicity and the convergence of the sequences $\{\underline{\lambda}^{(k)}\}_{k \in \mathbb{N}}$ and $\{\overline{\lambda}^{(k)}\}_{k \in \mathbb{N}}$ follow from [2, p. 53/Theorem 2.7] as well

Remark. For p = 2 Theorem 3 reduces to the inclusion theorem of Collatz [3] for non-negative irreducible matrices applied to $P^T P$.

4. $P^T P$ reducible

Allowing $P^T P$ to be reducible, it may be assumed that $P^T P$ already has the normal block diagonal form of symmetric reducible matrices [9]. Otherwise the columns of P have to be permuted appropriately, which implies the same permutations for the rows of P^T and thus results in the normal form of $P^T P$. Permuting the columns of P has no effect on $||P||_{p}$.

According to the number and the sizes of the diagonal submatrices of $P^T P$, the matrix $P \in \mathbb{R}^{m \times n}_+$ is split up into column blocks

$$P = (P_1, \dots, P_s) \quad \text{with} \quad P_\sigma \in \mathbb{R}^{m \times n_\sigma}_+ \quad (\sigma = 1, \dots, s). \tag{14}$$

Correspondingly, a vector $v \in \mathbb{R}^n_+$ is decomposed as

$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_s \end{pmatrix} \quad \text{with} \quad v_{\sigma} \in \mathbb{R}^{n_{\sigma}}_+ \quad (\sigma = 1, \dots, s). \tag{15}$$

The block structure of $P^T P$ implies

$$P_{\rho}^{T}P_{\sigma} = \Theta_{\rho\sigma} \in \mathbb{R}_{+}^{n_{\rho} \times n_{\sigma}} \qquad (\rho \neq \sigma; \ \rho, \sigma = 1, \dots, s)$$

which means that each non-zero row of P has non-zero elements exactly in one column block of P. Therefore, taking notice of (15),

$$\|Pv\|_p^p = \sum_{\sigma=1}^s \|P_{\sigma}v_{\sigma}\|_p^p \qquad (v \in \mathbb{R}^n_+)$$
(16)

holds.

Theorem 4. Assume $P \in \mathbb{R}^{m \times n}_+$ and $p \in (1, \infty)$. Let $P^T P$ be reducible such that

$$P^{T}P = \operatorname{diag}\left(P_{1}^{T}P_{1}, \dots, P_{s}^{T}P_{s}\right)$$
(17)

and assume each diagonal submatrix $P_{\sigma}^T P_{\sigma}$ ($\sigma = 1, ..., s$) to be irreducible. Consequently, the eigenvalue problem (3) is split up into subproblems of the same type

$$T_{\sigma}\alpha_{\sigma} = \lambda_{\sigma}\alpha_{\sigma} \qquad (\sigma = 1, \dots, s) \tag{18}$$

where each $T_{\sigma}: \mathbb{R}^{n_{\sigma}}_{+} \to \mathbb{R}^{n_{\sigma}}_{+}$ results from (2) with P_{σ} instead of P. Then

$$||P||_p = \lambda^{1/q}$$
 with $\lambda = \max_{\sigma=1,\dots,s} \lambda_{\sigma}$ (19)

holds.

Proof. For each eigenvalue problem (18) Theorem 2 guarantees the existence of an eigenvector α_{σ} with positive components only, corresponding to a positive eigenvalue λ_{σ} . Therefore Theorem 1 ensures

$$\|P_{\sigma}v_{\sigma}\|_{p}^{p} \leq \lambda_{\sigma}^{p-1}\|v_{\sigma}\|_{p}^{p} \qquad (v_{\sigma} \in \mathbb{R}^{n_{\sigma}}_{+}, \ \sigma = 1, \dots, s)$$

with equality, if $v_{\sigma} = \alpha_{\sigma}$ ($\sigma = 1, ..., s$). For $v \in \mathbb{R}^{n}_{+}$, using (16),

$$\|Pv\|_{p}^{p} = \sum_{\sigma=1}^{s} \|P_{\sigma}v_{\sigma}\|_{p}^{p} \le \sum_{\sigma=1}^{s} \lambda_{\sigma}^{p-1} \|v_{\sigma}\|_{p}^{p} \le \lambda^{p-1} \sum_{\sigma=1}^{s} \|v_{\sigma}\|_{p}^{p} = \lambda^{p-1} \|v\|_{p}^{p}$$

follows, implying

$$\|Pv\|_p \leq \lambda^{1/q} \|v\|_p.$$

Equality holds, if v satisfies

$$v_{\sigma} = \begin{cases} \alpha_{\sigma} & \text{for } \lambda_{\sigma} = \lambda \\ \theta_{\sigma} & \text{for } \lambda_{\sigma} < \lambda \end{cases} \qquad (\sigma = 1, \dots, s)$$

Remark. Since permuting the rows of P leaves $P^T P$ as well as $||P||_p$ unchanged, additional splittings of $P \in \mathbb{R}^{m \times n}_+$ into row blocks can be obtained such that

$$P = (P_{\rho\sigma}) \quad \text{with} \quad P_{\rho\sigma} \in \mathbb{R}^{m_{\rho} \times n_{\sigma}}_{+} \quad (\rho, \sigma = 1, \dots, s)$$

and, with π denoting any permutation of $\{1, \ldots, s\}$, each column block P_{σ} has exactly one non-zero subblock $P_{\pi(\sigma)\sigma}$ ($\sigma = 1, \ldots, s$).

Example $(f \in R^{m-1}_+, g \in \mathring{\mathbb{R}}^{n-1}_+).$

$$P = \begin{pmatrix} \Theta & f \\ g^T & 0 \end{pmatrix} : \quad \|P\|_p = \max\{\|f\|_p, \|g\|_q\}$$

Theorem 4 is supplemented by the following

Remark. Allowing $P^T P$ to have a zero diagonal submatrix $P_{\sigma^*}^T P_{\sigma^*}$ resulting from a zero column block P_{σ^*} , then T_{σ^*} is the zero operator with the eigenvalue $\lambda_{\sigma^*} = 0$. This leaves the result of Theorem 4 unchanged.

5. Numerical example

Applying discretization methods to boundary value problems with partial differential equations, often leads to linear systems

$$v = Pv + r \tag{20}$$

with non-negative matrices P. If P is symmetric, $\rho(P) = ||P||_2 \le ||P||_p$ for $1 \le p \le \infty$ holds. In case P is non-symmetric, however, p^* with $||P||_{p^*} = \min\{||P||_p | 1 \le p \le \infty\}$ is generally not known in advance.

Applying the finite difference method to the boundary value problem [5]

$$-\left(u_{xx} + u_{yy} + \frac{3}{5-y}u_{y}\right) = 1 \quad \text{in } B = \left(-\frac{1}{2}, \frac{1}{2}\right) \times (-1, 1)$$
$$u = 0 \quad \text{on } \partial B$$

red-black ordering of the unknowns generates linear systems (20) with P non-symmetric, non-negative and $P^T P$ reducible:

$$P = \begin{pmatrix} \Theta_{11} & P_{12} \\ P_{21} & \Theta_{22} \end{pmatrix}, \quad \text{and} \quad P^T P = \begin{pmatrix} P_{21}^T P_{21} & \Theta_{12} \\ \Theta_{21} & P_{12}^T P_{12} \end{pmatrix}.$$
(21)

For different mesh widths h the following results were obtained by discretely minimizing $||P||_p$ with respect to p in a finite interval:

h	\boldsymbol{n}	ho(P)	p^{**}	$\ P\ _{p}$	$\ P\ _{2}$
$\frac{1}{6}$	33	0.91496	2.71	0.94058	0.94608
$\frac{1}{8}$	60	0.95175	2.99	0.97062	0.97689
$\frac{1}{12}$	138	0.97843	3.62	0.99003	0.99690
$\frac{1}{16}$	248	0.98784	4.38	0.99587	1.00289
$\frac{1}{24}$	564	0.99459	6.79	0.99915	1.00632
$\frac{1}{32}$	1008	0.99696	12.6	0.99986	1.00719

Table 1: Discrete minimization of $||P||_p$

Rewriting the boundary value problem in self-adjoint form [5]

$$-\left(\left[\frac{1}{(5-y)^3}u_x\right]_x + \left[\frac{1}{(5-y)^3}u_y\right]_y\right) = \frac{1}{(5-y)^3} \text{ in } B,$$
$$u = 0 \text{ on } \partial B$$

and applying the finite difference method with red-black ordering of the unknowns again, linear systems (20), (21) are obtained, where P now is symmetric and non-negative. The spectral radii $\rho(P)$ in this case are slightly above those given in Table 1.

References

- Albrecht, J.: Minimal norms of nonnegative irreducible matrices. Lin. Alg. Appl. 249 (1996), 255 - 258.
- [2] Bohl, E.: Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen. Berlin: Springer Verlag 1974.
- [3] Collatz, L.: Einschließungssatz f
 ür die charakteristischen Zahlen von Matrizen. Math.Z. 48 (1942), 221 – 226.
- [4] Collatz, L.: Funktionalanalysis und Numerische Mathematik. Berlin: Springer Verlag 1964.
- [5] Collatz, L.: The Numerical Treatment of Differential Equations. Berlin: Springer Verlag 1966.
- [6] Hölder, L. O.: Über einen Mittelwertsatz. Nachr. Ges. Wiss. Göttingen 1889, 38 47.
- [7] Krein, M. G. and M. A. Rutman: Linear operators leaving invariant a cone in a Banach space. AMS Transl. (Series One) 10 (1962), 307 - 320.
- [8] Polya, G. and G. Szegö: Problems and Theorems in Analysis (Vol. 1). New York: Springer Verlag 1978.
- [9] Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs: Prentice Hall Inc. 1962.

. :

Received 02.06.1998