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Abstract. For non-negative matrices P the matrix norm subordinate to the Holder norm 
of index p with p E (1,00) is determined by an eigenvalue problem To = )o, where T is a 
homogeneous, strongly monotone operator. 
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1. Introduction 
Assume v E R' and M e	For the Holder vector norm 

II v IIp	'J
(rn

ivjIPI 
L=

1/p
for 1 <p< 

max	lvii for p = n 
the subordinate matrix norm 

II M II =
llMvll max 

vER- \{O}	IllIp
(l<p<cxD) 

can be easily calculated in the limiting cases: 
M 

11M11  = max V' 
j 1 .....

. 
Iml	and

fl 

ii M II	=	max	>	m. 
i=1 j=1

Furthermore, the spectral norm is well known: 

11 M 112 = [p(MTM)]112. 

Beyond that in the special case of non-negative matrices P E Rxn for all p E (1,) 
the matrix norm 11P11 p can be determined by an eigenvalue problem, which is nonlinear 
for p r 2. 
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2. The eigenvalue problem 
Let FE R", p E (1,) and (p - 1)(q —1) = 1. Because of j Pvj < P i v i for v E R", 

Il Pv lip 
ll'Th = max	 (1) 

vEll\{O}	llllp 
holds. Discussing this maximum problem leads to 

Definition 1.
m	 q-I 

T: R	R+ ,	(Tv) = [ Pi(Pv)r']	(j = 1,...,n)	(2) 

and
Theorem 1. Assume that the ezgenvalue problem 

Th=Aa	 (3) 
has an eigenvector a with positive components only, corresponding to a positive eigen-
value A. Then

iiii	=	 .	 ( 4) 
Proof. 1.1 In the case (Pa) > 0, for v E IR, 

TI	 TI	 L Vi	j=1 pijaj (PV) = >pij Vj = > pjj aj-1_ = (Pa) 1	 a,En 

holds and Holder's inequality for convex functions ç (see [6, 8]) 

Ej	(pt\ .>pjç(tj) 

pj 
yields Fn 

(Pv)' <(Pa)	1iL,) = (Pa )r ' E	rv.j=1 pjiai 

1.2 In the case (Pa) 1 =0, because of a >0 (j = 1,...,n), p13 =0 (j = 1,...,ri) 
holds and therefore (Pv) 1 = 0 is valid for all v E R. 

2. Hence it follows that 

>2(Pv)' <>2 >	 v = >2	= A1 >2 v 

and
llPvll, < 

If v = a, then equality holds U 
The theorem is illustrated by the following 
Example (1 E lR,g ER). 

P = fgT	ci = (g')'=i,	llPll p = Ill iipllgllq 
The assumption that the eigenvalue problem Ta = Aa has an cigenvector a with 

positive components only, corresponding toa positive eigenvalue A, will be shown to be 
fulfilled if pTp is irreducible.
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3• pTp irreducible 

In a real linear space X let the cone K define the partial ordering . Eigenvalue 
problems with operators T K - K having the properties 

1. T is monotone on K, i.e. u,v E K with u v implies Tn Tv 
2 T is homogeneous on K, i.e. T(cv) = cTv for c 0 and v E K 

3. T is completely continuous on K 

have been investigated by Krein and Rutman [7] and by Bohl (2]. The results in [2] 
necessitate another assumption, namely that T is strongly monotone on K. In the case 
X R Th , K = R. this means the following. 

Definition 2. An operatorT being monotone on lR is called strongly monotone 
on R, if for all v,w E R with v wand v 36 w there exists a number j E N such 
that

(Tv) < (T'w)j	(j = 1,... ,n) 

holds. 

By the following lemma the strong monotonicity of the operator T defined in (2) 
can be concluded from the strong monotonicity of pTp• 

Lemma 1. Assume P e Rm n and p E (1,). For arbitrary vectors v,w E R. 
with v w, all v E N and each fixed j E 11,. . . ,n} the equivalence 

(T'v) = (T"w)j .	((PTP)Pv) = ((pTp) v w) .	 (5) 

holds. 

Proof. 1. 1 = 1: Let j E {1,. .. , n} be fixed. Then (Tv) = (Tw)j is equivalent to 

- (Pv)) =0.	 (6) 

As v w implies Pv Pw and (Pv) 1p-i (Pw) 1p-i (z = 1,... ,m), all terms of (6) 
are non-negative. For every i E {1,. . , m} with pj, > 0 equation (6) requires that 
(Pw)r 1 - (Pv)' = 0, yielding (P(w - v)) = 0. Therefore 

> p,j( P( w - v)) = 0	 (7) 

follows and thus (PTPv) = (PTPw) holds. Analogously (6) can be deduced from (7). 
2. Induction from vtozi+1: Let  € {1,...,n}befixed. AsTismonotone,v <w 

implies T"v T'w. Define ij = T"v and zii = T'w. Using (5) with ii = 1 leads to 

(Ti3) = (Tii')	 (pTpj3) = (pTpth).
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i.e. (T'v) = (T"'w) j is equivalent to 

	

(pTp)(T V w - Tv)k 0.	 (8) 

As all terms in (8) are non-negative, (T'w - T'v)k = 0 holds for every k e {1,... , n} 
with (PTP))k > 0. Since (5) is assumed to be true for ii, 

E(pTp )jk 	- v))k = 0	 (9) 

follows and thus ((pTp) L + I v)3 = ( ( PT P) P + i w) is obtained. In the same way (8) can 
be concluded from (9) I 

Theorem 2. Assume P E R", p E (1,) and pTp irreducible. Then: 
1. pTp and T are strongly monotone on K. 

2. The eigenvalue problem Ta Aa has an cigenvector a with positive components 
only, corresponding to a positive eigenvalue A. 

Proof. 1. All diagonal elements of pTp are positive. Assuming the contrary, 
namely that (PTP)33 = 0 for at least one j E {1,. . . ,n}, all elements of the j-th 
column of P would be zero. This would imply pTp to be reducible, in contradiction to 
the assumption. 

Since pTp is irreducible and as its diagonal elements are positive, [2: p. 111/The-
orem 2.31 says that (pTp)_1 consists of positive elements only, i.e. pTp is strongly 
monotone. Using Lemma 1 for v = n - 1 proves that T is strongly monotone as well. 

2. As the operator T is completely continuous and strongly monotone,. by [2: p. 
53/Theorem 2.71 with S = T, T has an eigenvector a with positive components only 
and a corresponding positive eigenvalue A I 

Example. Doubly stochastic matrices, e.g. 

f492\ 
P=(3 57): a=(

1)

1I,	IPIIp=1. 
15 8 1 6)	 iJ 

Theorem 3. Assume P E lT7Xfl p E (1,) and pTp irreducible. Starting from 
R. having positive components only, the iterates a(c+1) defined by 

:= Ta	(k E N)	 (10) 

have the same property. With 

(k+i)

	

	 (k+1) 
—(k) mm	

a	
and A := max 

a	
(k E N)	(11) a	 '' a )	 .7
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the. eigenvalue inclusion 

(I) <<(k) <(k+i) <	<	<k+i) < k) < ... <'	( 12) 

is obtained. Furthermore,
(k) urn A =A= urn A	 13

k—oo 
holds. 

Proof. The monotonicity and the convergence of the sequences {}kEN and 
—(k) 
{A }kEN follow from [2, p. 53/Theorem 2.7] as well  

Remark. For p = 2 Theorem 3 reduces to the inclusion theorem of Collatz [3] for 
non-negative irreducible matrices applied to pTp •	- 

4. pTp reducible 

Allowing pTp to be reducible, it may be assumed that pTp already has the normal 
block diagonal form of symmetric reducible matrices [9]. Otherwise the columns of P 
have to be permuted appropriately, which implies the same permutations for the rows 
of pT and thus results in the* form of pTp Permuting the columns of P has 
no effect on IIPII. 

According to the number and the sizes of the diagonal submatrices of pTp, the 
matrix P e R xn is split up into column blocks 

	

P = (P1 ,... ,P3 )	with F,,, e Rxn	(a = 1,... ,$).	(14)

Correspondingly, a vector v E R is decomposed as 

	

(V
' )	

with v,, E R	(a 	 (15)
31 

The block structure of pTp implies  

PPa®pER'	(pa; p,a=1,...,$) 

which means that each non-zero row of P has non-zero elements exactly in one column 
block of P. Therefore, taking notice of (15), 

Il Pv II =	IPgvIl	(v E R)	•.	-.	, (16) 

holds.
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Theorem 4. Assume P E	and p E (1, ). Let pTp be reducible such that 

	

PTP=diag(P1TP1,...,PfP3)	 (17) 

and assume each diagonal submatrix PIP, (a = 1,.. . , s) to be irreducible. Conse-
quently, the eigenvalue problem (3) is split up into subproblems of the same type 

T0 a0 = A 0 a,	(a = 1,... I S)	 (18) 

where each T0 :	- R results from (2) with P0 instead of P. Then 

	

iiPii = I/q	with A = max A,	 (19)

holds. 

Proof. For each eigenvalue problem (18) Theorem 2 guarantees the existence of an 
eigenvector a0 with positive components only, corresponding to a positive eigenvalue 
A 0 . Therefore Theorem 1 ensures 

I P0 V0IV' < A "0 'II voII	(v0 E R, a = 1,... ,$) 

with equality, if v0 = a0 (a = 1,...,$). For v E R., using (16), 
3	 3	 3. 

II Pv II =	II P0 v0II <	A 1 v0	< A"' 
0=1	 0=1	 o=1 

follows, implying
IIPvIIp 

Equality holds, if v satisfies

1,,a0 forA0=AV0=9 forA0<A (a=1,...,$) 

I
Remark. Since permuting the rows of P leaves pTp as well as IIPIl p unchanged, 

additional splittings of P E R T into row blocks can be obtained such that 

P=(P 0 )	with P0ERm'" 

	

+	(p,a = 1,... ,$) 

and, with 7t denoting any permutation of 11,. . . ,s}, each column block P0 has exactly 
one non-zero subblock P, (0)	(a = 1,. . . , s). 

Example (1 E	E 

P
	

(	
):	iiii = max {IfII, IIgIIq} 

Theorem 4 is supplemented by the following 
Remark. Allowing pTp to have a zero diagonal submatrix P,'f. P,. resulting from 

a zero column block P0., then T0. is the zero operator with the eigenvalue A 0. = 0. 
This leaves the result of Theorem 4 unchanged.
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5. Numerical example 

Applying discretization methods to boundary value problems with partial differential 
equations, often leads to linear systems 

v=Pv+r	 (20) 

with non-negative matrices P. If P is symmetric, p(P) = 1 1 P I12	IIPII p for 1	p 
holds. In case P is non-symmetric, however, p with 11P11 p. = min {II P IIpI 1	p	ocD} 
is generally not known in advance. 

Applying the finite difference method to the boundary value problem [51 

_—_) =1	in B=(_)x(_11)} 

u=0 onaB 

red-black ordering of the unknowns generates linear systems (20) with P non-symmetric, 
non-negative and pTp reducible: 

(\ 
'\. P2l 022)'	

and	pTp (P21'P2I	e 01	P12 \ 

021	p1p12)	
(21) 

For different mesh widths h the following results were obtained by discretely minimizing 
II PII with respect to p in a finite interval: 

h n p(P) p" IIPllp• 11P112 
33 0.91496 2.71 0.94058 0.94608 
60 0.95175 2.99 0.97062 0.97689 
138 0.97843 3.62 0.99003 0.99690 
248 0.98784 4.38 0.99587 1.00289 
564 0.99459 6.79 0.99915 1.00632 

1008 0.99696 12.6 0.99986 1.00719

Table 1: Discrete minimization of JjP jj p 
Rewriting the boundary value problem in self-adjoint form [51 

 —) 3 s)3 ' in B
(1(5 

	[1 
—	-.I. 

+
jj	(5—!J) 

on OB 

and applying the finite difference method with red-black ordering of the unknowns again, 
linear systems (20), (21) are obtained, where P now is symmetric and non-negative. The 
spectral radii p(P) in this case are slightly above those given in Table 1. 
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