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Initial Dirichlet Problem for Half-Plane Diffraction: 
Global Formulae for its Generalized Eigenfunctions, 
Explicit Solution by the Cagniard-de Hoop Method 
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Dedicated to Prof. L. von Wolfersdorf on the occasion of his 65th birthday 

Abstract. This paper deals with time-dependent plane wave diffraction by a soft/soft Som-
merfeld half-plane E : x > 0, y = ±0. The explicit solution is obtained as a time-convolution 
in two ways: The first is directly applying the Cagniard de Hoop method to the generalized 
Wiener-Hopf solution of the corresponding stationary problem due to Meister & Speck (1989). 
The second way makes use of the Laplace integral representation of the generalized eigenfunc-
tions with respect to the spatial (Cartesian) variables derived by Ali Mehmeti in his habilitation 
thesis (1995) from formulae of Meister (1983). After deforming the path of.integration into the 
semi-infinte branch cut lines of the characteristic square root _- k2 of the Helmholtzian, 
he obtains representations where real wave numbers may appear. But for convergence of the 
integrals one has to distinguish the cases x 0 and x < 0, where the obstacle is present or 
not. We set the time Laplace variable s = —ik and recover the time domain functions for 
the diffracted field from the eigenfunctions of the stationary problem. There follows a global 
formula representation with polar coordinates having the diffracting edge of E as its center. 
The solution of the initial boundary value problem is seen to coincide with that obtained in 
the first way, indeed. 
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tions, Cagniard-de Hoop method, explicit solution 
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1. Introduction 

At the time t = 0 a plane incident wave front defined with an arbitrary integrable 
function g(.) and the Heaviside step 1.( . ) . as 

v1 (x,y,t;O) = G(t - x cos 6 - y sin 9)	 (1.1) 

G(t) = 1+(t) . Jg(r)dr	 (1.2) 
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governed by the two-dimensional wave equation (for short ôj =, t9rr + 3,,, = 
Laplacian)

(3tt_3—O)v(x,y,t;8)0 .	 -	(1.3) 

strikes the edge (0,0) of, the Sommerfeld half-plane E : x > 0, y = ±0, modelling a soft 
wall in acoustics for the pressure (P = v), or a thin sharpedged and perfectly conducting 
metallic sheet in electrodynamics for E-polarized electromagnetic waves (E = v), where 
the covering unbounded medium is assumed to be linear homogeneous and isotropic. 
The travel speed of a wave is equal to one. The parameter 6 denotes the incident angle 
between the x-axis and the normal of the wave front. See Fig. 1 drawn below. 

Y
(O -	v(x, y, t; 0) = 0 

X > 0 y = ±O 

X  

Figure 1: Plane wave strikes edge (0,0) with incident angle 8 at time t 0 

• Before t 0 the system is at rest. This implies zero initial conditions for the total 
wave field. And homogeneous Dirichlet (soft) boundary conditions are to be satisfied. 
We solve this initial value problem Py in two ways in Sections 4 and 5. It represents a 
reference model for general considerations of exterior domain problems with unbounded 
boundary by means of spectral theory. The latter still remains to be developed. In his 
habilitation thesis Ali Mehmeti [2] started first investigations for-the half-plane problem 
described above. Basing on the diploma thesis of Mihalinëié recently a 3-dimensional 
half-space problem for the wave equation with two adjacent wedge-shaped materials is 
solved by spectral theoretic means [3]. 

We suggest that there are cases where one can make use of half-plane problem 
solutions in order to solve time-dependent wedge problems and even problems with -a 
(finite) polygonial geometry with explicit formulae. This is planned for future papers. 
Note that procedures with Wiener-Hopf techniques run with Cartesian coordinates. 
As an example for rectangular wedges we refer to the paper [11] of Meister, Speck and 
Teixeira, where operators of the Wiener- Hopf- Hankel type appear. As another direction 
Budaev [5] for instance works on wedge problems with function theoretic Maliuzhinetz 
methods using polar coordinates for the diffracted field. For a study of inverse problems 
for the wave equation, in a (semi-)infinite dispersive slab, for instance, see v. Wolfersdorf 
(16].	 . 

In section 2 the corresponding stationary reduced inhomogeneous Dirichlet problem 
P for the scattered (= total - incident) field to the Helmholtz equation (k - wave
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number)

(L 2 + k 2 )u(x,y,k;9) = 0	 (k = k 1 + ik2 , Ic2 >0)	(1.4) 

u(x,y,k;9) = —exp(ikx cos 9)	(x >0, y = ±0)	(1.5) 

is solved in a rigorous way by modern Wiener-Hopf methods in Sobolev spaces, more 
precisely the energy norm space H', v = 1, where u is represented by a' Fourier integral. 
We refer to the paper of Meister and Speck [10]. In our special case u must be a 
generalized eigenfunction, but real wave numbers seem not to be permitted. Suitably 
chosen paths of integration will permit them a posteriori in Section 3. Confer Meister 
[8, 9]. Ali Mehmeti [2] observed the Fourier integral to be of the inner product form 
u = (f, P±g) - = (P+ f, g) (see Lemma 2 and Corollary 1). This is due to symmetry 
in ii (duality) of the involved Hardy spaces. The (fixed set of determined functions given 
as) projections to R+ in the Cauchy principal value sense 

2+1 = P+ [exP(_iCx) exp(—yI 1e 2 - k2)1	
(C = 77 = — kcos9)	(1.6) 

represent generalized eigenfunctions for general Dirichlet boundary data g. In our special 
case it is even the solution u of problem P (up to the factor - k). Moreover, the 
solution u corresponds to the time Laplace transformed scattered field of problem Pi, 
that is

9) = u(x, y, is; 9) = Üscatt(x, y, s; 9) = fe_a Uscatt(X, y, 1; 9) di	(1.7) 
0 

vscatt(X, y , 1; 9) 
= f G(t, - T) scatt(x, y, r; 9) dr,	(s = —ik > 0).	(1.8) 

0 

In Section 4 we recover the time domain function from the Fourier integral solution u, 
and in Section 5 (as a new contribution) from the one-sided Laplace integral represen-
tation of the generalized eigenfunctions Pf with respect to the parametrizations of the 
branch cut half-lines of There appear single poles corresponding to incident and 
reflected wave fields as physically expected. After splitting off the residues there remains 
to consider the unknown diffracted field part. Both procedures work with the Cagniard 
de Hoop method [7] introducing a positive-valued time variable I. After substitution 

= k-y = is-y as an example I = y/i _72 - -yx > 0 for some properly deformed 
contour -y = y of integration in the complex plane. This is in order to achieve the 
formula for time Laplace transformation and to read off the time domain function from 
the integrand to be evaluated along that contour. We note that in many diffraction 
problems appear wave numbers k = k(s) of more general s-dependence. 

The solution formula in Theorem 3 was first derived by Sommerfeld [15] with the 
aid of his theory of multi-valued functions, for the latter see also the monograph of 
Baker & Copson [4], and note that the Maliuzhinetz method is based on the theory of
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multi-valued functions. The solution coincides with that obtained by de Hoop in his 
Ph.-D.-thesis [7: Formula (9.34]. 

We emphasize that our main objective is to deal with the stationary formulae of 
Meister [6: p. 267/Formulas 6.1.32 and 6.1.351 given in Corollary 4, and not to derive 
Theorem 3. 

2. Wiener-Hopf solution of the Dirichiet problem 

2.1 Formulation of the problem (1'). Find a solution u = ( u(1),u(2)) E H I (Q) = 
H'(1 1 ) x HI(Q2) of the scalar Helmholtz equation 

	

+ k 2 )u = 0	(k E C)	 (2.1) 

in Q = {(x, y ) € R2 : y 0 0) such that the traces of u and	on R. x {y = ±0) denoted ay 
by

u01 = u(x, —0),	u02 = u(x, +0)	 (2.2) 

u 11 =	 au —(x, —0),	u12 = — ( x, +0)	 (2.3)ay 

satisfy boundary conditions on the banks of E =	e E given as 

	

= 902 	±	 ( 2.4) 
-	j on

	: x > 0, y = ±0	
(2.5) U01 - 

and fulfil zero-jump (=compatibility) conditions across	: x < 0, y 0: 

	

fc, := fu] 0 = U ,,2 - ual = 0 1	(a e {0, 1}).	 (2.6) 

Y

(5+k2) u(x,y,k;O) = 0 

2: y> 0 

[UL =o, [u] 1 =0	I

E:x>0,y=±0 
.e,o.jonp,	edge (0,0)	D

Y < 0 

Figure 2: Dirichlet problem for a half-plane



Initial Dirichlet Problem for Half-Plane Diffraction	311 

2.2 Equivalent Wiener-Hopf formulation and solution of pioblem (7'). By 
the use of the 1-dimensional Fourier transformation parallel to E (to be understood in 
the sense of tempered distributions S'(R)) 

F1_((x)] :=J(x) exp(ix)dx 

with its inverse transform
+00 

= F1 [)] = — J	) exp(—ix)d 
-00 

there follows a representation formula for the solution with two half-space parts 

u(x,y) = F'{1(y) i () exp(yt(e)) + 1(y) 2 () exp(_yt())}	(2.7) 

with S'-ansatz data 'i and p2 situated on the banks y = O, respectively, and a 
characteristic square root t() =	— k2 to be defined with semi-infinite branch cuts 
of the factors t = taken parallel to the imaginary axis in order to have a 
positive real part of t(e) in a whole strip region of the complex c-plane containing the 
real -axis (see Figure 3).

—+ 
Im	 branch cut of 

arg(—k)E( —,+] 

ED k 

in strip region	 I	Angle measure 

ImeI < IImkI
	 with positive axis

Re 
t holomorph, Re I > 0 

k

branch cut of /Tk 

+— arg(+k)E 
H+

3
 2 

Figure  3: Branch cuts oft =	— k 2 = tt =
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Note that	corresponds to a multiplication by —ie in the Fourier image. The ax 
Helmholtz equation becomes the ordinary homogeneous linear differential equation 

Y) = t2 (; k)	; y)	 (2.8) 

with a real parameter . This implies an ansatz of exponential type and finally leads 
to the representation formula given above. From this formula there follow bijective 
relations between the (Fourier-transformed) trace and ansatz data: 

—0) = I  = 

= p2(') =1102(C) 

40i(C,-0)=i2ii(C) 

—t(C),+0) = U12(C). 

Collecting the jumps f =	to the vector f := (fo 
f1)T one arrives at 

=
iio
=(' I)I	•(2.9) 

to be inserted into the representation formula. Hence a solution can be expressed by 
data jumps having support E = lL. x {0} R+: the positive axis with respect to the 
spatial variable x. 

u(x,y) - F' {1(Y)exP(Yt(C))( - ) [ 	I f 
 + -

+ 1+(y)ex(—yt(C))() [; -
 

or in a more convenient form 

u(x,y) = F 1 J,,p (JyJ t(C)) [sign(y)jo - 
t()1 }	

( 2.10)


where
f=&f	 (2.11) 

defines the extension of the (partially unknown) jump vector on E by zero and l ±() = 
I±sign(y)  

2	with the usual signum function sign( . ). Let 

(goi,go)7 :	eveng1eveng2)T	 (2.12) 

be any suitable even extension of the given Dirichlet data (e.g. by reflection) and note 
that

+00 

limo	 dlJ	
(2.13) 

27r i —+ j f 	ii - (C ± i6) 
-00 

= (I ± $(C) = p e0	F(C)	(2.14)
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are bounded projections for any function in the Hardy spaces 

i e H(R) := FH'(R)(- <s < 

then having a unique direct sum representation 

P-+1'=:f +, 

E	(R) := F 0 H'(R±),	H!. n R1 = { 0} 

(these facts follow from [6: Lemmas 5.3 and 5.4 and Theorem 5.2]). Here £,, denotes 
the extension by zero, XR the restriction to R±, I the identity operator and 

(eE r )	 (2.15) 
7r	77 

denotes the Hubert transform to be understood as Cauchy integral in the principal value 
sense with respect to the unbounded curve r = R. 

Lemma 1. For Fourier symbols of order ord in e 

tIEH 3	(s=—(ord++e)V>0) 

holds. 

Proof. This is a direct consequence from the definition of Hardy spaces I 
Theorem 1. The explicit Wiener-Hopf solution of the Dirichiet problem (2) is 

given by the Fourier integral representation 

u(x,y) = Fz{e v/T[sign(y)Fo (g2 ;)

(2.16) 
+1
	

P [ven (2	
')] 

Remark 1. This formula corresponds to that given by Meister and Speck in [10: 
Corollary 2.6].. 

Proof of Theorem 1. It remains to determine the unknown Neumann jump f 
(with support R+ to be inserted into the representation formula. Adding both equations 
of the system (1.14) yields

+ UO2 = oi +go2 +_ = 

with some minus function h_ which is caused by an unknown function to live on IL.. 
due to the traces u01 , u02 both unknown on IL.. for this half-plane problem. We write 
the last equation in the L2 — lifted form [10] 

+ +) = -jp,
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then (may!) apply the projection to R 

2+	 + g02 +	= 2 [v(oi + 02)] 

-+[  

and finally obtain

	

=	 2+	/CF_en(g +g)]. 

This completes the proof I 

In the sequel we confine ourselves to the physically most relevant case of coinciding 
boundary values on the screen E

9i =	=:	 ( 2.17) 

For plane waves Uinc incident on E the function gr describes the boundary values of the 
scattered field Uscatt when approaching the banks x > 0, y = ±0 of E. 

3. On the resolvent of problem (1') in terms of generalized 
eigenfunctions 

3.1 Formulae by projection operator shifting. The subject of this section is 
to derive formulae for the eigenfunctions with real wave numbers. The Wiener-Hopf 
procedure presented above requires imaginary parts of k (small but) different from zero 
but one can manipulate the solution formula given in Theorem 1 in a suitable manner. 
The first step is due to the following Lemma of Ali Mehmeti [2). 

	

Lemma 2. Let 2±	Fo± F', f E	g EH3 (- < s < ) with 
(f,g)...3,3	((•) -3 f, () 3 g)j, () := (2 + 1)	and 111113 := IIIIIL 2 (R) . Then


(f, P g)_ 3 , 3 = (P f, g)_3,3 

holds. 

Proof. This follows from the boundedness of the operators 2± for - < s < 
and the special case L2 s = 0, which is due to Plancherel's theorem I 

Corollary 1. The solution of the Dirichlet problem (2) with u01 = u02 = 9  on 
E = R is given by

+00 

u(x,y) =	I 2 [e—' 4 1 e	
(F9)()d.	(3.1) 

	

2irj 	 I
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Remark 2. We have just reproduced [2: Formula (91)]. 

The advantage of this solution formula is that one can make further computations 
with a fixed set of known functions for general functions g E given on the boundary. The 
second step is to compute the projection in Corollary 1 by means of the residue theorem 
for splitting off possible singularities and then deforming the integral path (real line) 
into the semi-infinite branch cut lines (the right "+" banks) of the square roots /TE. 
As result a Laplace-type integral representation will turn out. The function 

r e M 
, ,	

1 
d k(e) = e''

L	]	
( 3.2) 

is of the general form

	

= C.	b,k(e), 

where c0 is constant (= 1) and b is a function of negative order(-i) in without 
rational zeroes and poles and containing the square roots	to be defined from

the right of their branch cuts when tending to (k + i) (see Figure 4). Thus 
denote functions to be defined in this limiting sense. 

Remark 3. Theorem 2 given below also holds for 

1eIyI/1 

	

 C. e'	I  
[ v 2 - k2 j 

with estimates of a similar form we made use of in the proof there. Note that in the 
second case x 0 the term	appears as a square root type singularity. 

The next theorem was derived in [13]. It gives Laplace integral representation formu-
lae in a systematical manner and presents the final form of the projection terms needed 
for Corollary 1. Compare the calculations in [2, 8, 9] for to obtain such representations. 

Theorem 2 (Laplace integral representation formulae). Let k = k1 + i k2 with 
k,, k2 > 0 and 77 ± r+k U r_k. Consider the projections (extended to the complex 
halves)

P	
=

	co e	b k(e) -	(± IM 77 ± > 0).	(3.3) 

(A) For x < 0 there hold 

= d,(17)

d c0e -ikz 

+ 2i f e [ b k (k + i9) - b k
(k +i)] 0 - i(k - 

0
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and

+00 
__ d,2

2 i f e [b 
c0e-iki  

k(k + ip) - b k ( k +	
d 

i(k - 
=

0 

hold. 
(B) For x > 0 there hold

+00
d 

	

c0e+k1 J e	[ b k (- k - ip) -	- ia)] - 
i(k + ii) 27ri

0 

and

P+d ,,k (71)	-d,,k(17

do - c0e' 
+00 

-L" [ b k (- k - i) -	- is)] p - 
i(k+ ) 2iri

0 

hold.

Proof. The integrand is of order less than -1 in . It remains to show that the 
contributions to the integrals due to the singularities of the integrands at the branch 
points ±k do vanish when approaching the branch cuts. Let us assume some e small 
enough so that 0< c < Iki and 0< e < 1± k - ij± I hold for fixed 77 r±k. Further we 
define lower (upper) half circles of the radius e with their centers at ±k as 

OC+k, : e - k = ee'	(p e [-7r, 01 
ÔC_ke : + k = ce	( W e 

They and their interiors (moreover, the c-vicinity covering the branch cuts) do not 
contain 71±. 

Statement (A) The case  < 0: We want to deform the integral path (= real 
line with positive orientation) to the plus(+) bank of the upper branch cut r+k. The 
function has a singularity of squareroot-type at = k. We obtain by simple 
triangle inequalities that the integral

•2irc 
+, L	I	

IcoI	
e z 

,' -71 ±	c.(I+k-71I-c) 

with k2 > 0 denoting the imaginary part of k, tends to zero for e - +0. 
Statement (B). The case x	0 with the lower branch cut r_k: We get the 

estimate

faC-k,.	
Icol	

e_c21 .1

e -	-	Ic - 12k11 (I - k -,q± I  - c)
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for e -i +0. Hence the residue theoreiii will become available: 
The case z < 0 with the upper branch cut z = +k + ip (p > 0) leads to 

+00 1
 I 

dz,y,k()	

1 27r i 1 dk(e)

 e —	

d = 2iri Res± 
	— ± J
-00

	

/ +k	 +k+ioo 
1 1	r	d k( z )	 dk(z)\ 

	

+-( J	+ I	±)dz. 

100 

The case x > 0 with the lower branch cut z = —k - ip (p ^! 0) leads to


-	-	 - 
_____

1 27ri
i —d,()1 J	d = 2iri Res....q±	

- ± j + 00

I -k 

+ 
1 
- 2iri	f 

— k 100 

This completes the proof of Theorem 2 I

-k-ioo 

—dYk(z)\ 

+ I 
-k	

) dz. 

—+ 

case x <0
upper branch cut f'+k: 

k 
e=k+ip, o >0 

77

R 
77 

case	ü fl	lower branch cut r_k: 
= —k — i, &>0 

+ 

Figure 4: Deformed integral paths enclose the branch cuts of /e2 --V
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Remark 4. The Laplace-type integrals in Theorem 2 make sense for real wave 
numbers k. They are absolutely convergent if 

Re(k+i)O	and 

hold. Otherwise, if the real parts vanish, 

Im(k+i)>O	and	Im(k—i)>O 

must hold. 

Next we obtain explicit formulas for the integrands. We assume the square roots 
+ r- to be defined from the right of the branch cut lines drawn from ±k to ±(k + ioo). 

(A) Upper branch cut F+k : = k + ip (p > 0) for the case x <0: 

== e • 

/ip+2k=e 4	/p-2ik. 

= +i \/P(P - 2ik) 

cosh (II /2 -__V) = cos (ii /p(p - 2ik)). 

sinh (II	- k2) =	(ii /p(p - 2ik)). 

(B) Lower branch cut F_ k : = —k - ip (p> 0) for the case x 0: 

./A= /—ip-2k=e' /p-2ik. 

=	= e 

v'e2 - k 2 = —i /p(p - 2ik) 

cosh ([ni /2 --k 2) = cos (II /p(p - 2ik)). 

sinh (I[ /2 - k 2) = —i sin (II /p(p - 2ik)). 

Remark 5. Meister [8, 9] has used this method in order to construct formulae of 
solutions for the Sommerfeld diffraction problem for special oscillating boundary data. 
Ali Mehmeti [2] recognized that these formulae appear automatically. 

Corollary 2. For	in Theorem 2, on the "+" banks of F±k, 

cos (lvi \/P(P _7k:)) 
[ b	- b;k](k + ip) = 2e' 

[b k - b](—k - ip) = 2ie' sin (lvi /p(p - 2ik)) 
v1P - 2ik 

hold.
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Corollary 3. Let u(x,±0) = g E (x)	—e1' on E : x > 0, y = ±0, q =

Im(ij) > 0 or 77 = i, lm(i7 ) <0. The solution of problem (P) then reads 

tt(x,y) = P+ [dX,,k(1)] v'1 - k. 

Note that
F1. [teve	-	

1	
- 

g(x)]

	

	 (3.4) 
- i(e -)  

Consider the special case

= r :=-kcos9	(Cos 9>0).	 (3.5) 

In Theorem 2 and Corollary 3 one has to take 

ii — k= —k(cos9+1)	 0 V '—kcos8—k= — iv'cos— 
77 - + k = k(1 - Cos 0) = 2k sin' g

	and	 2 
(_k Cos 9)2 - k 2 = -ik sin 9.  

The boundary value problem (P) with its solution given above corresponds to diffraction 
of a time-harmonic plane incident wavefield 

Y, t) = Re [e05 8+y sin 9)—ii] (3.6) 

at the edge of a half-plane E: x > 0, y = 0. The total field Vt0(t, x, y) = e 1 utt(x, y) 
is a superposition of scattered (diffracted and reflected) and incident parts and obeys 
the wave equation, that is the stationary spatial parts (amplitudes u,,,., , USC&tt, Utot) 
obey the Helmholtzian Au + Vu = 0, where here the total field is zero in a limiting 
sense when approaching the boundary of the obstacle (the banks y = ±0 of E) non-
tangentially. After splitting off the time-harmonic factor e"' 1 and making use of the 
previous formulae in Theorem 2 we can state 

Corollary 4 (Time-harmonic diffraction problem). For the (permanent) incident 
wavefield u 1 (x, y) = eik ( x cos O+v sin 0) the amplitudes of the total field read as follows: 

(A) For x <0, y E R: incident + diffracted parts 

(x, y) =	cos 8+y sin 8)

+00	 ________ 

—i	
' J e1 cos (yv"p(p - 2ik))	dp 

Ir 
-----e 4 cos e 

v/5	p_2ikcos2 
0 

(B) For x > 0, y E R: incident + reflected + diffracted parts 

U t0t(X , y) = e	 cos B+y sin 8) - eZ cos O+I y I sin 8) 

+00	 ________ 

	

J e' sin (I yI'p(p -	d 

	

2ik))	p +—e 4 cos	 _____ 
7r

	

	 2 p-2ik	p-2iksin2°
o
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4. Explicit solution of a time-dependent plane wave 
diffraction problem for the half-plane E 

We have just derived the basic formulae for the treatise of a more general time-dependent 
half-plane diffraction problem which shall serve as a reference model for later spectral 
theoretical considerations. It is modelled as follows: Consider a plane incident wave 
field (source line) after the switch on at time t = t 0 travelling with speed c = 1 parallel 
to the normal direction of its wavefront

(cos 9, sin 9)T	 (4.1) 

where 9 denotes some arbitrary (fixed) angle taken with the positive x-axis. The wave-
front shall strike the edge (x, y) = (0,0) of the half-plane-shaped obstacle E : x > 
0, y = 0 at time t = t 3 to. The incident field is of the form 

v0(x,y,i) = G  - t 0 - (x cos 9+y sin 9))	 (4.2) 

where

G(t) = 1(t) . J9(T)dT,	(4.3) 
and 1+(t) denotes the Heaviside step function. Compare with Achenbach 111 who solved 
a time-dependent Neumann-case (x > 0) with zero Dirichiet conditions along x <0 by 
the Cagniard de Hoop method [7] there. We formulate the initial boundary value 

Problem (Pi) (see Figure 1). Finda solution of the 2-dimensional wave equation 
(M) to hold for t > 0 in the exterior of the half-plane E: x 0, y = 0 for the following 
homogeneous initial conditions (10) and (Ii) and homogeneous boundary conditions 
(BO):

	

(M)	
(a, 

t - c2 L) v(x, y, t) = 0 

	

(JO)	v(x,y,to +0) = v 0 (x,y) = 0 

	

(Ii)	a1v(x,y,to+o)=v1(x,y)=0	
(4.4)

 

	

(BO)	v(x > 0, ±0, t 2 t3 2 to 2 0) = 0 
where v corresponds to a total wave field V = vt,t = VSCat + V inc generated by scattering 
of the incident wave

v,(x,y,t) = G  - t 0 - !(x cos e + y sin 9)) 

after striking (the edge (0,0) of) the half-plane E : x > O,y = 0 at time t = t 3 . For 
simplicity let c = 1 and t 3 = t0 = 0. 

After making use of the one-sided time Laplace transform defined as 

£j	[(t)) = fe 3t (t)dt	(s >0)
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one obtains

	

[s2 —i.Jii(x,y,$) = sv0 (x,y) +v i (x,y) = 0	 (4.6) 

	

7+(x) [(x, 0, s)j = 0	 (4.7) 

where	denotes the restriction to R+. The scattered field VSC aIt obeys the same partial 
differential equation, but the boundary condition then reads as 

Vscatt(x > 0, 0, t) = — 7 (x) [v(x, 0, t)]	 (4.8) 

and its Laplace transform as 

i3scatt (x, 0, s)	— ^(x ) [e'--Y+(- ) - 

After dropping the factor 9. and setting s = —ik, that is k = i k2 (k2 > 0) one arrives 
at the boundary value problem (P) we have just solved before 

(L.ry + k 2 )iscatt (x,y,$) = 0 

scatt(x 2 0,0,$) = _ + (x) [e k os8J 
I 

So we are in position to write down a solution formula for the initial boundary value 
problem (Pt): 

Corollary 5. Let without loss of generality 0 < 9 < . The solution of problem. 
(Pi ) is given as follows: 

(A) For x < 0, y E IR: incident + diffracted parts 

v(x,y,t)=G(t—(x cos 9+y sin 9))

+00
	 1 

31 f 1 cos(y \/p(p 
______

+2s))	dp	I £ 3 _t 
^(s)
Icos 
L

s	ir	2	 p+2scos2

-	 0	 -. 

(B) For x 2 0, y E R: incident + reflected + diffracted parts 

v(x,y,t) = G(t — (x cos9 +. y sin9)) - G(t - (x cos6+ II sin 0))
_ 

• I i(s) v"	 J e_pi5mfl(+23	cip 
+ r L l ---- cos e	 ____ 

I s	ir	2	 p+2s	p+2s sin %j 
L	 0 

where the inverse Laplace transforms write as convolutions of 

= G(t) =1+(t) . Jg(a)da 
I-si

0
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and the functions corresponding to the integral terms in the original time domain. 

Remark 6. After the substitution p = (R - 1)s in the integral terms given inside 
the brackets, the formulae for the diffracted wave parts take the form 

+00	
(syVR2 - 1)	dR	

(4.9) vdaff(x <O,y,$) s	2 f e3 R. cos 

VR - 1	T+ cos 9 

+00	 _____ 

	

i(s) '/	J	sin (sIyl/R2 - 1)	dR 

	

Vd j ff( X > O,y,$) = --cos—	 (4.10) 

	

s 7r	2	 /R+1	R—cos9 

The remaining question is how to find the Laplace inverses of the integral terms: 
From Theorem 1 and equation (3.4) the scattered field is easily checked to be represented 
by the following formula: 

Corollary 6. Making use of the two-sided Laplace transform with respect to the 
spatial variable x the time Laplace transformed scattered field writes 

	

i3scatt (x, y, s)	
i(s) 

=	scatt(X, y, s)

S 

where in the strip —.s < /3 < +s

V2--s Cos 
Üscatt (x,y,$) = -	 2 

27r 

e'1 ./çi:j_)
d/3 

/(8 + s Cos 8) 
—100 

'holds. 

After splitting off the residuum — E—) e—s(x cos o+IvI sin 0) which is due to the pole 
/3 = —s cos 9 and setting /3 = sy the time Laplace transformed diffracted part writes in 
the strip - cos 9 < Yi < +1 as 

- V2_ cos ______ 

	

Udiff(X,Y,S) -	2i	I	+ cos9) 
d.	(4.11) 

1i 100 

From the physical point of view the diffracted wave field should be radial symmetric with 
respect to the diffracting edge (0,0). Therefore let us introduce the polar coordinates 
(upper half-circles)

r = ,,/x2 + y2 

	

x	- y	0	
(+0 a <it).	 (4.12) 

cosa = -, sina 

	

r	 r 

We invert the last integral given above by the Cagniard de Hoop method (see Achenbach 
[1]) to yield
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Theorem 3. For problem (Pi ) the diffracted wave field i3 given by 

	

vdlff(r,a,t) 

= / 
G(t —p) udIff( r,o,p)dp	 (4.13) 

where

v/	sin .a-	sin 1	(4.14) udIff( r , a, t)	1+(t - r) 2ir/iT L t_Tc05 (9_a) i—rcos(9+a)]' 

with 1+(t - r) . denoting the Heaviside step. For the scattered parts we then have 

(vdlff (r,a,t)—G(t —r cos(9—a)) if +0 a <9

vsca tL (r, a, t) =	 (4.15) 

vdlff(r , a , t )	 if  <a zr. 

Proof. It remains to verify the representation given for Udiff. The idea of the 
Cagniard de Hoop method is to deform the (spatially) two-sided Laplace integral such 
that it takes a one-sided Laplace integral with respect to the new (time) variable. So 
we introduce the new variable

	

t=IyI/1_y2 — 72:	 (4.16)


to be positive. The suitable Cagniard de Hoop contour is thus given by 

= -- cosa ± i sin 	—1	(sina > 0)	(4.17) 

which describes a hyperbola in the (Re 7±, Im 7±) plane with its vertex at - cos a. For 
short

F(y) := 
/F(7 + Cos 0)
	or	 (4.18) 

Note the symmetry due to complex conjugation F(7) = F(7+) = F(7+). One imme-
diately obtains

+ 00 
/cos 

Iet [F(7+)_F(7)-i]dt


	

a, s) -
	27ri

r
+00 

- -
	cos 2 2i f	Im [F(7+ )	dt 

	

-	2iri
r 

where
- cosa .	a t sin  

+ I ____ r	r[t2_r2 

F(7^)a	 /1+7	1	/1+7 at _______	 __  

- 7+ 2 7 + cos 0 
= 

Vt - r 2 7 + cos 0

(4.19)



324	E. Meister and K. Rottbrand 

Hence, with Im (iz) = Re (z),
+00  

	

10 	-St 
u	 '/diff(r, a, s) = - —	cos -	

e	Re[-V11 + -Y+ dt •	2 j Vt2_r2 
r 

follows and it is immediately seen that

V2- COS	IV'i+7 

	

udIff(r , a , t ) = —1+( - r) .	______ Re I (4.20) 
7rV't 2 -	+ cos o] 

It remains to compute the real part of 

	

(/cos)1+-y+(r,a,t)	
(4.l) Q(r,a,t). 

For convenience let

cosh	(then ..t+ = - cos(a + iv)) 

cosh= 4 1 , sinh=\J1 

+	= Vf1 - cos(a + i) =	sin ( a + 

-	= V1 +cos(a +i) =	cos ( 

We get after rewriting _(y+ + COS 0) = 1 -	—(1 + COS 0) that 

Q	____ /cos/1+y+ 
-	

(422) 
2 COS  sin (!) 2	11 

= 

With the trigonometrical relations 
2 cos x sin y = sin(x + y) - sin(x - y) 

fX+ y \	— 
cos x - cos y = —2 sin ---) sin 

fx y
 

x+ y '	f' — !I cos x + cos y = +2 cos (-i--) cos 

one finally arrives at

[sin	- ______ 

	

= 1 sin () cosh	 +i COS (-)sinh	 (4.23) 

	

2 sin  () cosh 	+ cos2 (-) sinh2 
— 1 sin() cosh —i COS ()sinh 

2 sin  () cosh  2 + cos2 () sinh2
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and obtains

1 1/	\/2 -)	//i 	sin ()i 
Re(Q) =— i	 -	 _ 

2	t - r cos(9 - a)	t - r cos(9 + a) 

This completes the proof I 

Remark 7. The region +0 a < 9 is the so-called shadow zone; the incident wave 
is cancelled there. 

Remark 8. The case 7r <a < 27r - 0 can be done in the same manner: 3 = a - it 
leads to the Cagniard contour 

	

-y± ±	t	
\/(t\2 

- cos j9 ± i sinfi	- - 1	(sinS> 0)	 (4.24) 
r	 ri 

and the formulae

at ___ 1 = cos(fl - iv),
'/t2_ r2 

	

i +	=	cos -
	

-	=	i 	(4.25)
sn 2'	 2	1 
2cos k Cos (jl )	 I 

/(sin( j! )	 J 
where after rewriting with /3 = a - it and complex conjugation the last expression Q 
becomes exactly that appeared before in Theorem 3 for +0. < a < it. That is, the 
formula for the diffracted field holds in the full sector (+0 a 27r - 0), the whole 
exterior of the obstacle as physically expected. In this way it represents a global solution 
of the wave equation which satisfies homogeneous boundary conditions of the first kind 
for a = +0 and a = 27r —0. Further the region 27r —9 < a 27r is the zone of reflections. 
There one has to take into account poles similar as above: Note that the cosines of a 
coincide with those in the shadow zone. Hence Theorem 3 can be supplemented by 

Corollary 7. For it a 27r - 0 the scattered wave field in Theorem 3 reads 

Vscatt(r, a, 
t)- { 

vdff( r , a, t)	 if it	a < 27r - 9 

- vdlff( r ,a, t )—G( t —r cos(9+a)) if2ir— 9 <a < 27r —0. 

Note that the incident wave can be written in the form 

v(r,a,t) = G(t - rcos(a —9)) = G(t - r + 2rsin2	 (4.26)
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5. Comments on the solution formulae 

In this section we will see that the time functions (4.14) we derived above for the 
diffracted field by the Cagniard de Hoop method can also be recovered from the gener-
alized eigenfunctions of the stationary problem given in Corollary 4 as Laplace integrals 
with respect to the positive-valued variable p for parametrization of the semi-infinite 
branch cut lines of the characteristic square root _ - V of the Helmholtzian. In other 
words: We show that we have two equivalent representations of the eigenfunctions of 
problem (2). The one is with respect to polar coordinates, the other with respect to 
Cartesian coordinates. Let us start to compare them by regarding the boundary values. 

Making use of the Laplace transforms 

1 = e6 erfc()	(b > 0) 

+00	 +00 

e t2 erfc(x>0)=	 di rrf -	= 1 f	d,, 
e_rn


	

\/	v/ 1	 2:2 

1	te'' 

	

= 1 —erf(x > 0)= 1—	J 7==drn 
0 

and
- r) f(t)] = e_rS c[f(t)] 

the Laplace transform of the diffracted field part in Theorem 3 can be written as 

= e-3r cos (0—a) erfc	sin	sign [sin _-i]
(5.1) I . 6+I I 9+al 1 —Sr cos(9+cs) erfc	sin ---) sign [sin 2-j - 

Hint: Rewrite equation (4.14) as 

1 1(t - r) 1 1	sin	-	sin	1 
udIff( r , a , t ) =    2	I	(5.2) 2	 ir	- r + 2r sin2 £.	t - r + 2r sin  

For the special cases 

(i)a=0: x=+r>0,y=0 
(ii)a=ir: x=—r<0,y=0 

the corresponding equations (4.10) and (4.9) are easily seen to yield coinciding expres-
sions. After splitting off the common factor 2., that is 

(i) üdIff = 0 
(ii) üdjff	e3' cos Oerfc(V/	cos ), when cos 9 > 0.
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Moreover, one observes the symmetry

1 1+(t - r) [
	

sin9 UdIff( T , 9, t)	udlff(r, 27r - 9, t) =
2	 t - r + 2r sin2 9]	

(5.3) 

For sin  > 0,

udjff(r, 9, s) = - e 51 cos (20) erfc(/	sin 9) 

holds. Let us recall from Remark 6 and Corollary 5, respectively, 

00	 ______

Rx 
Cos "	

+	
dR 

	

Üdjg (X <0,y,$) = --cos -	 ____	 (5.4) ir	2	 R-1	R+ Cos 9 

This formula was derived by deforming the integral path into a branch cut line. It is of 
interest to recover Udjff(T, a, t) where the result is expected to coincide with that given 
by Theorem 3. After some simple rearrangements the Cagniard de Hoop method which 
means deforming of the integral path into a hyperbolic curve (instead of a straight line) 
will help again to succeed in this question. We want to consider the case x < 0, so that 

x = r Cosa 
y=rsinaJ	

(-<a<).	 (5.5) 

After substitution =	- 1 > 0 the integral reads 

9 eI'IV'	 Ji + VI-1—+C 2 
udiff(x ,yI S ) = -	cos - f	cos(sye)	 d.	(5.6) r	2	/i + 2	/i —+C2 + cos9 

This can be rewritten as a two-sided Laplace transform 

cog 
	 -,(IzI-v)1 + 1 _2 d7(5.7) 7r	2i

-11 +100 

-- fe	 ___ 
Udjff(X,Y,S) — I	s./17	V1_72+ Cos 9 

1 100 

which holds in a strip of C containing y ' = 0. We set (the time variable) 

t:=IxI/1_y2_ yy	 (5.8)


and obtain in order to have t > 0 the Cagniard contour (hyperbola) 

'0 y± =_ sin aqi Cos at/_1	(Cosa <0). 
r	 Yr2 

We write this contour of integration in the more convenient form 

	

= - sin(a ± i),	t-	cosh.	 (5.9)
r
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It follows

	

.	 a	1 

	

= — i —	-=sinhço—,. -= ____ 
- 7+2	Dt	 5j	•J 2 - 

Choose y =	with positive imaginary part. After calculating (cmp. (4.18)) 

37	VITT yi - 72	37	1  
F(7)

= (i _72 + Cos 9)1 _ 72 Ot =	t 2 r2 cos9 -cos(a +i) 

one ends up with
+00 

	

I f	e	cos sin	 1.	1 
____ Re I 

	

ud1ff(r,a,$)= --
	'.../t—r	[sin2.	—sin2	dt 

	

r	 - 

1(t — r)	 cos sin!	11 =r...	 Rd 
Lvht2_ r2	Lcos22_cos2d] 

where the real-part term coincides with that of the expression given in (4.22). 
Next we want to recover udlff(r, a, t) as a representation with polar coordinates in 

the case x > 0. The corresponding Laplace integral to be under consideration (compare 
(4.10)) reads

+00 

	

\/	9 J c_SR i S IIJIV"R2 -1)	dR 
U	>_dIff(X 0 1 y 7 s) = + —Cos -	 (5.11) 

	

IT 2	 OR —+I	R- Cos 9 

We confine the considerations on y ^! 0 with +0 < a < 9 <. The case 0 < 9 < a 
can be treated in the same manner. The case y < 0 with	<a < 27r - 0 can be done

analogously by symmetry arguments.  

The substitution R := cosh/3 leads to the integral 
+00 

Udjff(X ,> '0, y, s) =	J e3X cash fi sin(sy sinh	
2 cos sinh 2 d,3cosh - cos 9 Ir 

0

1 00	 ___ 

= 
IM --- f e cosh $—iysinh 2 cos sinh 2 

	

2'r	
dl) cosh 

This reads with polar coordinates x = r cos a, y = r sin a as 
+00 

udIff(r , a , $ )	Re	e _3r05+	2cos sini 1 J 2 dl)1 

	

27r	 -	 Cos ifl- Cos 9 
0O 

+0010 

	

= Re	f	—sr cosh w 2cos sill( 2
	I


dp I 
27r -00-io
	 cos(a - i) - Cos 	I


j

(5.10)
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The last formula was obtained by the substitution =,6 - i a and describes integrating 
parallel to the real line. Shifting the path of integration onto the real line yields 

+00 
1'	 r 2cos sin( ! ) 1 I u	 'Re d 1 ff(r, a, s) 

= - 
j e_c05h	

L	
2 

c0s(a - i) - cósO] dp 

+00 = --  I e	
cosh Re 2cos sin (!I) 1 

ir 	 Lcos_)_c0s9] d. 

After introducing the real (time-) variable t = r cosh V the integral takes the form 
-	. +00	.- 

UdIff( r , a, s) = -	_____ 
- 

Re	2 sin	1 di 
1 f e"	2cos 

[cos(a - i) - cos 9] 
r 

to yield the original function in the time domain 

udlff(r,a,t) 
= 1+(i - r) 

Re I 2cos sin	1 
..Jj2 - r2	L c0s (a - i) - cosoj

(5.12) 
- 1+(t—r)	I cos sin (j! ) 1 
_r

 Re I 
- 7rt2 - 2	[cos2 (j!) - cos2 

the last term representing the complex conjugate of the expression we faced already in 
equation (4.22). 
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