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Initial Dirichlet Problem for Half-Plane Diffraction:
Global Formulae for its Generalized Eigenfunctions,
Explicit Solution by the Cagniard-de Hoop Method

E. Meister and K. Rottbrand

Dedicated to Prof. L. von Wolfersdorf on the occasion of his 65th birthday

Abstract. This paper deals with time-dependent plane wave diffraction by a soft/soft Som-
merfeld half-plane £: z > 0, y = £0. The explicit solution is obtained as a time-convolution
in two ways: The first is directly applying the Cagniard de Hoop method to the generalized
Wiener-Hopf solution of the corresponding stationary problem due to Meister & Speck (1989).
The second way makes use of the Laplace integral representation of the generalized eigenfunc-
tions with respect to the spatial (Cartesian) variables derived by Ali Mehmeti in his habilitation
thesis (1995) from formulae of Meister (1983). After deforming the path of.integration into the
semi-infinte branch cut lines of the characteristic square root /€2 — k2 of the Helmholtzian,
he obtains representations where real wave numbers may appear. But for convergence of the
integrals one has to distinguish the cases £ > 0 and =z < 0, where the obstacle is present or
not. We set the time Laplace variable s = —ik and recover the time domain functions for
the diffracted field from the eigenfunctions of the stationary problem. There follows a global
formula representation with polar coordinates having the diffracting edge of ¥ as its center.
The solution of the initial boundary value problem is seen to coincide with that obtained in
the first way, indeed. :
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1. Introduction

At the time ¢ = 0 a plane incident wave front defined with an arbitrary integrable
function ¢(-) and the Heaviside step 14(-)- as

Vine(Z,9,1;8) = G(t — zcos @ — ysin ) (‘1.1)
G(t) = 14(1)- [ o(ryar (12)
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governed by the two-dimensional wave equation (for short 8, = %, Orr + 8,y = Asy :
Laplacian) '

o (B = 0iz = Oy )(z,y, t:8) =0 - S (1.3)
strikes the edge (0, 0) of the Sommerfeld half-plane £ : z > 0, y = +0, modelling a soft
wall in acoustics for the pressure (P = v), or a thin sharp-edged and perfectly conducting
metallic sheet in electrodynamics for E-polarized electromagnetlc waves (E = v), where
the covering unbounded medium is assumed to be linear homogeneous and isotropic.
The travel speed of a wave is equal to one. The parameter 8 denotes the incident angle
between the z-axis and the normal of the wave front. See Fig. 1 drawn below.

(Ou — ALy) v(z,y,t0)=0
D

(mN.

" Figure 1: Plane wave strikes edge (0,0) with incident angle 8 at timet =0

Y:z2>0, y=20

Before t = 0 the system is at rest. This implies zero initial conditions for the total .
wave field. And homogeneous Dirichlet (soft) boundary conditions are to be satisfied.
We solve this initial value problem Pz in two ways in Sections 4 and 5. It represents a
reference model for general considerations of exterior domain problems with unbounded
boundary by means of spectral theory. The latter still remains to be developed. In his
habilitation thesis Ali-Mehmeti 2] started first investigations for the half-plane problem
described above. Basing on the diploma thesis of Mihalinéié recently a 3-dimensional
half-space problem for the wave equation with two adjacent wedge-shaped materlals is
solved by spectral theoretic means [3]. ‘

We suggest that there are cases where one can make use of half-plane problem
solutions in order to solve time-dependent wedge problems and even problems with -a
(finite) polygonial geometry with explicit formulae. This is planned for future papers.
Note that procedures with Wiener-Hopf techniques run with Cartesian coordinates.
As an example for rectangular wedges we refer to the paper [11] of Meister, Speck and
Teixeira, where operators of the Wiener-Hopf-Hankel type appear. As another direction
Budaev (5] for instance works on wedge problems with function theoretic Maliuzhinetz
methods using polar coordinates for the diffracted field. For a study of inverse problems
for the wave equation, in a (semi-)infinite dispersive slab, for instance, see v. Wolfersdorf
16]. ‘

In section 2 the corresponding stationary reduced inhomogeneous Dirichlet problem
P for the scattered (= total — incident) field to the Helmholtz equation (k - wave
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number)

(Azy + k*)u(z,y,k;0) =0 . (k=ky +ikg, k2 >0) . (1.4)
u(z,y, k;0) = — exp(ikz cos 8) (z >0, y = +0) (1.5)

is solved in a rigorous way by modern Wiener-Hopf methods in Sobolev spaces, more
precisely the energy norm space H”, v = 1, where u is represented by a-Fourier integral.
We refer to the paper of Meister and Speck [10]. In our special case u must be a
generalized eigenfunction, but real wave numbers seem not to be permitted. Suitably
chosen paths of integration will permit them a posteriori in Section 3. Confer Meister
[8, 9]. Ali Mehmeti [2] observed the Fourier integral to be of the inner product form
u = (f, ’P+g)_ulu = ('P+f,g)_”’u~(see Lemma 2 and Corollary 1). This is due to symmetry
in v (duality) of the involved Hardy spaces. The (fixed set of determined functions given
as) projections to Ry in the Cauchy principal value sense

Pyf =Py | exp(~iz) e"p(“'f}g— ka “R (e=n

represent generalized eigenfunctions for general Dirichlet boundary data g. In our special
case it is even the solution u of problem P (up to the factor \/n~ — k). Moreover, the
solution u corresponds to the time Laplace transformed scattered field of problem Py,
that is

= = —kcosb) (1.6)

u(z,y,k;0) = u(z,y,is;0) = tscaun(z,v,s;8) = /e_"usca"(z,y,t;e) da  (1.7)
0

vscat.t.(xy Y, t; 0) = /G(t - T) uscan(zy Yy, 7 6) dT, (SA = —ik > 0) (18)

In Section 4 we recover the time domain function from the Fourier integral solution u,
and in Section 5 (as a new contribution) from the one-sided Laplace integral represen-
tation of the generalized eigenfunctions P4 f with respect to the parametrizations of the
branch cut half-lines of /& £ k. There appear single poles corresponding to incident and
reflected wave fields as physically expected. After splitting off the residues there remains
to consider the unknown diffracted field part. Both procedures work with the Cagniard
de Hoop method [7] introducing a positive—va.lued time variable t. After substitution
£ = ky = isy as an example t = |y|\/1 -2 — yz > 0 for some properly deformed
contour ¥ = 41 of integration in the complex plane. This is in order to achieve the
formula for time Laplace transformation “and to read off the time domain function from
the integrand to be evaluated along that contour. We note that in many diffraction
problems appear wave numbers k = k(s) of more general s-dependence.

The solution formula in Theorem 3 was first derived by Sommerfeld [15] with the
aid of his theory of multi-valued functions, for the latter see also the monograph of
Baker & Copson [4], and note that the Maliuzhinetz method is based on the theory of
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multi-valued functions. The solution coincides with that obtained by de Hoop in his
Ph.-D.-thesis [7: Formula (9.34].

We emphasize that our main objective is to deal with the stationary formulae of
Meister [6: p. 267/Formulas 6.1.32 and 6.1.35] given in Corollary 4, and not to derive
Theorem 3.

2. Wiener-Hopf solution of the Dirichlet problem

2.1 Formulation of the problem (P). Find a solution v = (uV),u®) € HY(Q) =
H'(Q,) x H'(Q3) of the scalar Helmholtz equation

(Dey+k)u=0 (keCHt) (2.1)

in Q = {(z,y) € R?: y # 0} such that the traces of u and 3—;‘ on R; x {y = +0} denoted
by

ugy = u(z, —0), ug2 = u(z, +0) (2.2)
0 7]
upy = a—Z(z, -0), up= %(z, +0) (2.3)

satisfy boundary conditions on the banks of & = &t @& £~ given as

b))
Up2 = ¢ .
’ (;2} onE¥: >0, y=20 (34)
and fulfil zero-jump (=compatibility) conditions across &' : z < 0, y = 0:
fa = [u]o = Ug2 — U1 =0, (a € {07 1}) (26)
y
(Azy + &%) u(z,y,4;0)=0
' Qg Yy > 0
l (ug=0, [u], =0 D
E::::ﬁ::::::n x>0 y=20
edge (0,0) D

Q,:y<0

Figure 2: Dirichlet problem for a half-plane



Initial Dirichlet Problem for Half-Plane Diffraction 311

2.2 Equivalent Wiener-Hopf formulation and solution of problem (P). By
the use of the 1-dimensional Fourier transformation parallel to £ (to be understood in
the sense of tempered distributions S'(R))

+o00
BE) 1= Feelola))i= [ o(a) explige) ds
with its inverse transform
s 1 .
o) = L, (@) = 57 [ 21€) exn(-iga) e

there follows a representation formula for the solution with two half-space parts

w(z,y) = F{1-(1)$1(6) exp (v ¢O)) + 14+(v) B2(6) exp (-3 2(€))}  (2.7)

with S'-ansatz data ¢, and ¢, situated on the banks y = F0, respectively, and a
characteristic square root t(£) = \/é2 — k2 to be defined with semi-infinite branch cuts
of the factors ty = /€ F k taken parallel to the imaginary axis in order to have a
positive real part of t(£) in a whole strip region of the complex £-plane containing the
real £-axis (see Figure 3).

© I

Im¢ branch cut of & — k
arg (6~ k)€ (- F,+5]

k

A A\

VW W W VW W W | S W W W W W VA W W W W W

in strip region Angle measure

with positive axis

[Im¢] < [Imk| >
Re¢

t holomorph, Ret > 0

VA
k

branch cut of V€ + k
arg (€ +k) € (-3, +% |

Figure 3: Branch cuts of t = /€2 — k2 =t_t, = E-kVE+ Kk
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Note that % corresponds to a multiplication by —i¢ in the Fourier image. - The
Helmholtz equation becomes the ordinary homogeneous linear differential equation

S 69 = LR TE) 29)

with a real parameter . This implies an ansatz of exponential type and finally leads
to the representation formula given above. From this formula there follow bijective
relations between the (Fourier-transformed) trace and ansatz data:

u(§, —0) = &1(€) = o1 (§) 1
u(§, +0) = Z2(€) = toa(¢)
t(€) w(§, —0) = w11 (€)

—t(&) u(€, +0) = u12(§).

Collecting the jumps fo = [u], to the vector f := (fo, fi )" one arrives at

o /-1 _% = . .
@ =uy = 5( 1 l)f ‘ (2.9)

to be inserted into the representation formula. Hence a solution can be expressed by
data jumps having support & = Ry x {0} = Ry: the positive axis with respect to the
spatial variable z.

stz = F {1 Wexly t€) - 5P+ h)

+a@en-u©)(5) [ - b |

or in a more convenient form

u(z,v) = SFE, {CXP(IyIt(ﬁ)) [ssntws - 57} (2.10)
where S
f=0f=% : (2.11)
defines the extension of the (partially unknown) jump vector on £ by zero and 14(y) =
ﬁgn_(y_) with the usual signum function sign(-). Let
- T ven even ©\T - ’
(901»{]02)7 = (‘?e 901a£ ¢ 902 (2.12)

be any suitable even extension of the given Dirichlet data (e.g. by reflection) and note
that

PullE) = £ 5 lim, / T (213)

= %(Ii%)‘m) = Floxry FELL9(6) (2.14)
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are bounded projections for any function ¥ in the Hardy spaces
$€ H'(R):=FH'(R) (-1 <s<+d),
then having a unique direct sum representation
b =P+ Prih =P + 9%,
¥* € Hi(R) = FGA*(Ry),  H:n A3 = {0}

(these facts follow from [6: Lemmas 5.3 and 5.4 and Theorem 5.2]). Here £, denotes
the extension by zero, xr, the restriction to R4, Z the identity operator and

~ 1 [ $(n)
Spv(§) = — | ——=dn
| o= ey
denotes the Hilbert transform to be understood as Cauchy integral in the principal value
sense with respect to the unbounded curve I' = R.

(€eT) (2.15)

t,emma 1. For Fourier symbols 12)\ of order ordz:/; in €
1?;61?’ (s:—(ord$+%+e)\/e>0)
holds.
Proof. This is a direct consequence from the definition of Hardy spaces L}

Theorem 1. The ezplicit Wiener-Hopf solution of the Dirichlet problem (P) is
gwven by the Fourier integral representation

5 e
wz9) = F {e VIR siga() e, (%2 581)

T p))
+ él_ P, Jﬁ___kpeevcn(go2';-901)}]}.

Remark 1. This formula corresponds to that given by Meister and Speck in [10:
Corollary 2.6].. ’ :

(2.16)

Proof of Theorem 1. It remains to determine the unknown Neumann jump f,
(with support R4 to be inserted into the representation formula. Adding both equations
of the system (1.14) yields

- 1 -
o1 + Uo2 = go1 + Go2 + h- = ——— fi.
St TRz = g0 t(€) !

with some minus function h_ which is caused by an unknown function to live on R_
due to the traces up;, ug2 both unknown on R_ for this half-plane problem. We write
the last equation in the L?— lifted form [10]

V€ — k(Gor + Goz +Tl-) = —\/éf]Tk.,
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then (may!) apply the projection to Ry

P+ [VE — k(go1 + Goz + Tl—)] =P+ [VE€ - k(Gor + o2)]

_ ; ;
=Pl - 7l = e

and finally obtain

f 1
t—% B/ Pi[VE =k Foee €7 (5, + 953) ]

This completes the proof B

In the sequel we confine ourselves to the physically most relevant case of coinciding
boundary values on the screen ¥

901 =95 =1 g~ (2.17)

For plane waves ujnc incident on £ the function g* describes the boundary values of the
scattered field uscair when approaching the banks z > 0, y = +0 of £.

3. On the resolvent of problem (P) in terms of generalized
eigenfunctions

3.1 Formulae by projection operator shifting. The subject of this section is
to derive formulae for the eigenfunctions with real wave numbers. The Wiener-Hopf
procedure presented above requires imaginary parts of k (small but) different from zero
but one can manipulate the solution formula given in Theorem 1 in a suitable manner.
The first step is due to the following Lemma of Ali Mehmeti 2).

Lemma 2. Let Py = Flxg, F71, f € H*, g e B (-1 < s < 1) with
(£,8)=s,s .= ((Y £ D amwy, (€) == (&2 +1)% and ||f|ls := ||fllz2m)- Then

(fv Py g)—s,a = (p:t f, g)—s,s

holds.

Proof. This follows from the boundedness of the operators Py for —% <s < %
and the special case L? : s = 0, which is due to Plancherel’s theorem i

Corollary 1. The solution of the Dirichlet problem (P) with ugy = up2 = g* on
¥ =Ry 13 given by

+o0

e VETE
u(-r,y)=% / Py {e"“ﬁ] VE=k (Fereng®) (6)de.  (3.1)

—0oo
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Remark 2. We have just reproduced [2: Formula (91)].

The advantage of this solution formula is that one can make further computations
with a fixed set of known functions for general functions g= given on the boundary. The
second step is to compute the projection in Corollary 1 by means of the residue theorem
for splitting off possible singularities and then deforming the integral path (real line)
into the semi-infinite branch cut lines (the right “+” banks) of the square roots v/ £ k.
As result a Laplace-type integral representation will turn out. The function

e-m\/sz‘-v]

=T (3.2)

dzyk(8) = e [

is of the general form .
dz,yk(§) = €0 €™ by k(£),

where ¢, is constant (= 1) and b is a function of negative order (—3) in ¢ without
rational zeroes and poles and containing the square roots /£ £ £ to be defined from
the right of their branch cuts when tending to F (k + ioco) (see Figure 4). Thus bik(f)
denote functions to be defined in this limiting sense.

Remark 3. Theorem 2 given below also holds for

e—IyI\/E’-k’]

. ' e —ifx

er(€) 1= coe [ —
with estimates of a similar form we made use of in the proof there. Note that in the
second case = > 0 the term /€ + k appears as a square root type singularity.

The next theorem was derived in [13]. It gives Laplace integral representation formu-
lae in a systematical manner and presents the final form of the projection terms needed
for Corollary 1. Compare the calculations in [2, 8, 9] for to obtain such representations.

Theorem 2 (Laplace integral representation formulae). Let k = k, + ik, with

ki,ka > 0 and n* ¢ Ty UT_k. Consider the projections (eztended to the complez
halves)

. 400 -
1 —-ifzr d
Py dzyk(nt) = 3o / coe™' by.k(€) # (£Im % > 0). (3.3)

(A) For z < 0 there hold

Pidzyk(n*) = dz,yk(n*)

—ikz +oo d
Co€ JIE S . - . 4
+ o / e? [by_k(k+1g)—by‘k(k+1g)] _*Q—i(k—-n'*)
4 -
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and
’ c e—ikx +oo : dg
- _ %o z (14 . - .
Padyyuln™) = 5 /e" (634 (k + i0) = by (b +i0)] ——
0
hold.
(B) For x > 0 there hold
+oo
+ikz : d
+y = € —er [yt (_k—ip)— b (—k —io)]| ——2
P+dz,y,k(n ) omi / e [by,k( 19) by,k( ]9)] o— l(k + 77+)
0
and
Pidzyk(n”) = —dzyk(n”)
. _ +oo
Coe+ikz:
_ -ez _ _ &
2ri ,/ [y o) = b=k el (k-Fn )
0
hold.

Proof. The integrand is of order less than -1 in §. It remains to show that the
contributions to the integrals due to the singularities of the integrands at the branch
points £k do vanish when approaching the branch cuts. Let us assume some ¢ small
enough so that 0 < & < |k| and 0 < & < |+ k — %] hold for fixed n* ¢ T'+x. Further we
define lower (upper) half circles of the radius ¢ with their centers at +k as

OCire: E—k=ce?® (¢ € [-m,0]
BC_ke: E+k=ce® (¢ €0, +m].
They . and their interiors (moreover, the e-vicinity ﬁovering the branch cuts) do not

contain n¥.

- Statement (A) The case z < 0: We want to deform the integral path (= real
line with positive orientation) to the plus(+) bank of the upper branch cut T'yx. The
function d.yx has a singularity of squareroot-type at £ = k. We obtain by simple
triangle inequalities that the integral

| / ey,
[Jocse &~ 71*
with k2 > 0 denoting the imaginary part of k, tends to zero for ¢ — +0.
Statement (B). The case z > 0 with the lower branch cut T'_x: We get the

estimate
- / deyk |
8C_i.. £ - Ui

ekgz
_|a| T T '27!’6,
€7 - (| +k—n*[—¢)

e—kgz 1

Y e R TH ST

2ne = 0
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for ¢ — +0. Hence the residue theorem will become available:

The case £ < 0 with the upper branch cut z = +k +1ip (p > 0) leads to

+oo
1 dz,yx(§) dE = 2 Rese_ps [_1_ dz,y,k(f)]

2mi £ —n* 2mi € —n*
— 00
+k +k+ico
+ L dz,y,k(z) + / d:,y,k(z) dz
2mi z -t z—n* '
+k+ico +k

The case z > 0 with the lower branch cut z = —k —ip (p > 0) leads to

1 =deya(©) 1 —duyi(€)
Y e 71 TLAST AP P, P8 2 TO%yklS)
27ri/ font df = 2miRes¢_ 2 [21ri s

+o00
—k _ —k—ioo +
b / Zdyr) | / TR
2mi \. z—n% . z—n*
—k—ioco -

This completes the proof of Theorem 2§

@ | - -|+vE=E

case . < 0
upper branch cut [ 4:
E=k+ig, 020

. 77+
< R
k .
case z > 0 lower branch cut I'_;:
+|-VE+Ek

Figure 4: Deformed integral paths enclose the branch cuts of \/€? — k2 .
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Remark 4. The Laplace-type integrals in Theorem 2 make sense for real wave
numbers k. They are absolutely convergent if

Re(k+n%*)#0 and  Re(k—1n%)#0
hold. Otherwise, if the real parts vanish,
Im(k+7%)>0 and Im(k-7n%)>0

must hold.

Next we obtain explicit formulas for the integrands. We assume the square roots
+,/ tobe defined from the right of the branch cut lines drawn from +k to +(k + ico).

(A) Upper branch cut Ty : £ =k +ip (p > 0) for the case z < 0:
VE—k=+ip=etT /p.
VE+k=\ip+2k=etT/p=2ik.
€2 — k2 = +iv/p(p — 2ik)

cosh (|y| V& - k’) = cos (|y| Ve(p — 2ik)) .

sinh (|y| Vet k2) = +isin (|y| Volp = 2ik)) .
(B) Lower branch cut T'_x : £ = —k —ip (p > 0) for the case z > 0:

VE—k=+/-ip—2k=c"'T/p—2ik.
VETE=Tip=cE 5
VE -k = =i \/p(p - 2ik)

cosh (Iy1 VE = 2) = cos {u] /ol — ).

sinh (|y| /&7 = #7) = ~isin (|y| v/p(p - 2F)) .

Remark 5. Meister 8, 9] has used this method in order to construct formulae of
solutions for the Sommerfeld diffraction problem for special oscillating boundary data.
Ali Mehmeti (2] recognized that these formulae appear automatically.

Corollary 2. For d; ,x(-) in Theorem 2, on the “+” banks of 44,
b+ b= k : =9 -ig cos (lyl p(p - 21k)
(6} — by (k +ip) = 2¢ Vﬁ )

- : ;= sin (ly] /p(p — 2ik)
56 - 35l (-k ) = 235 SR (VRE B0

hold.
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Corollary 3. Let u(z,+0) = ¢%(z) := —e™* on T : z > 0,y = +0, n =17t
Im(n*) >0 0rp =17, Im(y~) <0. The solution of problem (P) then reads

u(zly) = q:P-f- [dz,y,k("]:t)] Vv 77:*: — k.

Note that - 1
Foo. [eeven T z)] = - - i 3.4
(0] = e e &4
Consider the special case
n=n":=—~kcosl (cos6 > 0). (3.5)

In Theorem 2 and Corollary 3 one has to take

N~ —k=—k(cos6+1) V—kcos§ —k=—i 2kcosg

and

- . .0
" +k=k(Q1 —cos @) = 2k sin® 5 (—kcos8)? — k2 = —iksiné.

The boundary value problem (P) with its solution given above corresponds to diffraction
of a time-harmonic plane incident wavefield

v;nc(z,y,t) = Re [eik(zcos 8+ ysin 0)—iwl] ‘ (36)

at the edge of a half-plane £ : z > 0, y = 0. The total field vio.(t, z,y) = e« Uror(Z,y)
is a superposition of scattered (diffracted and reflected) and incident parts and obeys
the wave equation, that is the stationary spatial parts (amplitudes ujnc, Uscatty Utot)
obey the Helmholtzian Au + k%u = 0, where here the total field is zero in a limiting
sense when approaching the boundary of the obstacle (the banks y = £0 of ¥) non-
tangentially. After splitting off the time-harmonic factor e and making use of the
previous formulae in Theorem 2 we can state

Corollary 4 (Time-harmonic diffraction problem). For the (permanent) incident
wavefield uinc(z,y) = ek c0s0+ysin®) ype gmplitudes of the total field read as follows:

(A) For £ <0, y € R: incident + diffracted parts

ul.ov.(x, y) — eik(z cos8+y sin 8)

+o00

_ V2 e~ ¥ cos 6 e—ikz / ez 598 (yve(p — 2ik)) dp
T 2 ) VP p — 2ik cos? g'

(B) For z >0, y € R: incident + reflected + diffracted parts

ik(z cos §+y sin6) _ eik(x cos 8+|y| sin 8)

250 (lyl\/p(p — 2ik)) dp
Vp = 2ik p — 2ik sin? &

ulot(xv y) =€

[+ ]

+

vk iz 8 etikz

+ ——e Y cos— e
2

o,



320 E. Meister and K. Rottbrand

4. Explicit solution of a time-dependent plane wave
diffraction problem for the half-plane ©

We have just derived the basic formulae for the treatise of a more general time-dependent
half-plane diffraction problem which shall serve as a reference model for later spectral
theoretical considerations. It is modelled as follows: Consider a plane incident wave
field (source line) after the switch on at time t = ¢, travelling with speed ¢ = 1 parallel
to the normal direction of its wavefront

n := (cos,sin 6)T (4.1)

where 8 denotes some arbitrary (fixed) angle taken with the positive z-axis. The wave-
front shall strike the edge (z,y) = (0,0) of the half-plane-shaped obstacle ¥ : = >
0, y = 0 at time ¢t = t, > ¢,. The incident field is of the form

Vine(z,9,1) = Gt ~ to = ~(zcos +ysin®)) (4.2)

where
t

6 =1 [oram,  (43)

and 14(t)- denotes the Heaviside step function. Compare with Achenbach {1] who solved
a time-dependent Neumann-case (z > 0) with zero Dirichlet conditions along z < 0 by
the Cagniard de Hoop method [7] there. We formulate the initial boundary value

Problem (P;) (see Figure 1). Find a solution of the 2-dimensional wave equation
(M) to hold for ¢t > 0 in the exterior of the half-plane £ : z > 0, y = 0 for the following
homogeneous initial conditions (I0) and (I1) and homogeneous boundary conditions

(B0):

(M) (Out — czA,y)v(z,y,t) =0
(10) ~v(z,y,to +0) = vo(z,y) =0 (4.4)
(I1) Gv(z,y,to + 0) = v1(z,y) =0 .
(BO)

v(z >0,£0,t >t, >t >0)=0
where v corresponds to a total wave field v = v1o1 = Vscart + Vinc generated by scattering
of the incident wave

S ' 1

Vinc(Z,y,t) = G(t —to — —(zcosf + ysin 0))
c
after striking (the edge (0,0) of) the half-plane £ : z > 0,y = 0 at timet = ¢,. For
simplicity let ¢ =1 and t, =ty = 0.
After making use of the one-sided time Laplace transform defined as

+oo

o= Lmlold)= [ a5 0) (45)

0
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one obtains

[32 - Azy]ﬁ(r’y’s) = svo(z,y) +vi(z,y) =0 _ (4.6)
v+(z) [0(2,0,5)] = 0 (4.7)

where v+ denotes the restriction to R+. The scattered field vscar, obeys the same partial
differential equation, but the boundary condition then reads as

vséau(z > 0,0,t) = —7+(2:) [v;nc(z,O,t)] (4~8)

and its Laplace transform as

After dropping the factor L:) and setting s = —ik, that is k = 1k; (k2 > 0) one arrives
at the boundary value problem (P) we have just solved before .

ikz coseg(s)
S

(A::y + k2)'l~)§cau(1?7 y,S) =0

1‘}scat.t(a: > 07075) = _7+(I) € ] .
So we are in position to write down a solution formula for the initial boundary value
problem (P):

Corollary 5. Let without loss of generality 0 < 8 < 7. The solution of problem
(Pr1) 1s given as follows:

(A) For z <0, y € R: incident + diffracted parts
v(z,y,t) = G(t — (z cosf + y sin#))

+oo -
o | VR 8 ,z/ep,COS(y Plp+2s))  dp

2 cos —e
s=tlos ow 2 VP p+2scoszg

0 -

-

(B) Forz >0, yeR: incidvent + reﬂected + difracted parts

v(z,y,t) = G(t = (z cosf + y sinf)) = G(t - (z cos 6 + |y| sinb))

. . +oo . o
+ c—l g(s) \/53- cos g e~ / e Pt sin (lyl V P(P + 23)) dp
=t s 2 Ve +2s " p+2ssin® g

_where the inverse Laplace transforms write as convolutions of

s)

S

o

£ [2] = 6 =14 [ g(a)da
0
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and the functions corresponding to the integral terms in the original time domain.

Remark 6. After the substitution p = (R — 1)s in the integral terms given inside
the brackets, the formulae for the diffracted wave parts take the form

+ o0
. A8 T one VD) _an
Bair(z < 0,y,8) = ~—cosz [ e ] R+ cosd (4.9)
1
+co
~ ORIy R o N S
. > = =
vdlff(z _07y7s) T 2 € R+ R - COSO' (410)
1

The remaining question is how to find the Laplace inverses of the integral terms:
From Theorem 1 and equation (3.4) the scattered field is easily checked to be represented
by the following formula:

Corollary 6. Making use of the two-sided Laplace transform with respect to the
spatial variable z the time Laplace transformed scattered field writes

g(s) -

5scalt(z: Y, S) = uscall(mu Y, 5)

where tn the strip —s < ) < +s

+i
V2scos & Prtico e— Uyl —82-81)

2

2mi . \/7(,8+sc050)

1—100

ascan(zy Y, S) = -

<holds.

After splitting off the residuum —@ e 3(z cosf+lyl sin6) which is due to the pole
B = ~scos# and setting § = sy the time Laplace transformed diffracted part writes in
the strip — cosf < v; < +1 as

V2cos & e e— Nyl v1- 7’—-7:)
—2 (4.11)
27 V1i—7v ('y+c050)

T —ioco

ugif (2,y,8) = —

From the physical point of view the diffracied wave field should be radial symmetric with
respect to the diffracting edge (0,0). Therefore let us introduce the polar coordma.tes
(upper half-circles)

7‘=*/1‘2+y2

z .
cosa = —, sSina =
r

>0 (40 € a < 7). (4.12)

S|

We invert the last integral given above by the Cagniard de Hoop method (see Achenbach
[1]) to yield
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Theorem 3. For problem (P;) the diffracted wave field is given by

t
vaif (7, @, t) = / G(t - p) uain(r, o, p) dp (4.13)
o
where
Vor sin 9;—" sin 12
wi(r,ot) = 14(t—7) - - 2 . .
uain(r, & t) +(t-r) 2rt—r [t—rcos(§ —a) t—r cos(f+ a) (4.14)

with 14(t — r)- denoting the Heaviside step. For the scattered parts we then have

vaifi (1, a,t) = G(t =r cos(§ —a)) f+0<a<d< T

4.15
vdiff(r)ayt) : tf0 <a S . ( )

vscau(ra a, t) = {

Proof. It remains to verify the representation given for ug;g. The idea of the
Cagniard de Hoop method is to deform the (spatially) two-sided Laplace integral such
that it takes a one-sided Laplace integral with respect to the new (time) variable. So
we introduce the new variable

to be positive. The suitable Cagniard de Hoop contour is thus given by
+ t - - t\2 .
¥F=—-cosatisina (—) -1 (sina > 0) (4.17)
T r

which describes a hyperbola in the (Re y%, Im y*)-plane with its vertex at — cosa. For

short
1

. _ o+ -
=5 1 cos0) (=97 or y=797).

Note the symmetry due to complex conjugation F(y~) = F(y*+) = F(v*). One imme-
diately obtains

F(y):=

(4.18)

V2 cos & i oyt oy~
san(r.) = =528 oo [Pt - p) B
. (4.19)
V2 cos '

9 oo

z 3’7+
—__ =2 ~st +
= ot 21 / e™*" Im [F("/ )—61! ] dt

where )
oyt cosa . tsina

ot r +1'r\/t2—1r'2
ayt
F(-,ﬂ% __F Myt 1 1497

=i }
/1 _ y+? ¥+ + cosé V2 —rZ vt +cosé
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Hence, with Im (iz) = Re(z),

1
daig(r, a,s) = - 2 cos =

e
R
2 / Vt? —r2 ¢ [7* + cos 8
follows and it is immediately seen that

\/icosg

ugif(r,a,t) = ~14(t — 1) - R
N -r

V1i+vt

vt + cos 8

Re

It remains to compute the real part of

0 T o
Qr,a,t) = (=v2 cos 5)y/T+ 7+(T’a’t).
¥+ (r,a,t) + cos8
~ For convenience let
t 3
- coqh ¢ (then y* = — cos(a +iyp))
t
ity
cosh = L 5 smh =

\/1+7+—\/l—cos(a+1<p) \/ism( 5 )

V1 =9% = /1 +cos(a +ip) = V2 cos (a-;up)'

We get after rewriting —(y+ + cos ) =1 — v+ — (1 + cos ) that

m—\/ﬁcos )(W+\/§cosz)
_ 2cosgsm(%ﬁe)
V2 (cos (“52) — cos £)v/3( cos (T5%) + cos 7)’

With the trigonometrical relations

Q_

2 cos z sin y = sin(z + y) — sin(z — y)

cosz—cosy——2sin(z+y) sin(x_y)
h 2 2

) = ()

1 1 1

. ' T
cosm+cosy=+2cos(

one finally arrives at

°= 2 sin (0—2'5‘3) - sin (M)

1 sm(e £52) cosh £ +1cos(0 "’) sinh £
" 2 sin? (92—") cosh? g + cos? (9T°) sinh? £

1 sin (9—“,‘,&) cosh £ — icos(%ﬂ) sinh t‘f
2 sin? (0—3—"-) cosh? £ + cos? (8—*23) sinh? £

V1+7+]dt

(4.20)

(4.2‘1)

(4.22)

(4.23)



Initial Dirichlet Problem for Half-Plane Diffraction 325

and obtains

Re(Q _1 V2ryt+r sin(452) V2rt+r sin (42)
e )_2. t—rcos(6—a)  t-rcos(f+a) |

This completes the proof il

Remark 7. The regioﬁ 40 < a < @ is the so-called shadow zone; the incident wave
is cancelled there. ' ’

Remark 8. The case 7 < o < 27 — 0 can be done in the same manner: A =a — 7
leads to the Cagniard contour

. SN2
cos Bt isinfy/ (;) -1 (sinB > 0) (4.24)

art \
at 1

=1
\/1_7_*_2 \/tz—"'2

Vit = \/icosﬂ_z"P, JI—7F = V3 sin 2= (4.25)

2
0= - 2cos§cos(%‘£) .
V2(in (B52) — cos §) V2(sin (5%) T oos D) |

vt =

3 )~

and the formulae

7t = cos(B — iy),

where after rewriting with 8 = @ — 7 and complex conjugation the last expression Q
becomes exactly that appeared before in Theorem 3 for +0.< « < w. That is, the
formula for the diffracted field holds in the full sector (+0 < a < 27 — 0), the whole
exterior of the obstacle as physically expected. In this way it represents a global solution
of the wave equation which satisfies homogeneous boundary conditions of the first kind
for « = +0 and a = 27 —0. Further the region 27— 8 < a < 27 is the zone of reflections.
There one has to take into account poles similar as above: Note that the cosines of a
coincide with those in the shadow zone. Hence Theorem 3 can be supplemented by

Corollary 7. For 7 < o < 2w — 0 the scattered wave field in Theorem 3 reads

vd',ff(r,a,t) ifr<a<2r -0

Vscart(7, o, t) =
u ) { vdii(r,a,t) —G(t =t cos(0 + ) f2r -0 <a <27 —0.

Note that the incident wave can be written in the form

Vinc(ry0,t) = G(t — rcos(a — §)) = G(t —r+2rsin? = ; 0). (4.26)
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5. Comments on the solution formulae

In this section we will see that the time functions (4.14) we derived above for the
diffracted field by the Cagniard de Hoop method can also be recovered from the gener-
alized eigenfunctions of the stationary problem given in Corollary 4 as Laplace integrals
with respect to the positive-valued variable p for parametrization of the semi-infinite
branch cut lines of the characteristic square root \/£2 — k2 of the Helmholtzian. In other
words: We show that we have two equivalent representations of the eigenfunctions of
problem (P). The one is with respect to polar coordinates, the other with respect to
Cartesian coordinates. Let us start to compare them by regarding the boundary values.

Making use of the Laplace transforms

5,[‘/(_’

| ra) e >0

0 +oo0 +o0
erfc(z>0)=77TI/ Ydt = \/——/T

x

=l-ef(z>0)=1- \/—_O/Tdm

and
Loms[L4(t = 1) - f(2)] = €77 Los[£(2)]

the Laplace transform of the diffracted field part in Theorem 3 can be written as

. 0—a ) . 8-«
sin 5 sign |sin 5
+

: > . [ . 0 + a]
sign [sin .
Hint: Rewrite equation (4.14) as

11;(¢-7r) 1 V2r sin 452 V2r sin &2
2 JVi—r t—r + 2r sin? 22 t—7"+27‘si112&2m

2
For the special cases

1
ﬁdif{(r, O‘,s) - Ee—sr cos(f—a) erfe (\/_2;

. (5.1)
_ 5 e~ ST cos(6+a) erfc ( /257,

sin

ugir(r, a,t) =

} . (5.2)

Na=0:z=4r>0,y=0

ll)a=7:2=-r<0,y=0
the corresponding equations (4.10) and (4.9) are easily seen to yield coinciding expres-
sions. After splitting off the common factor %’), that is

(i) taig =0
(11) qif = —e*" c‘“‘9erfc(\/2.<5r cos g), when cos g >0.
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Moreover, one observes the symmetry

1 14(t —1) V2r siné

uaift(r,6,) = uain(r, 27 — 6,1) = 3 vier T Tr o ente)

For sin8 > 0,
1
dgif(r,0,s) = -3 e~ <0329 erfe(\/2sr sin )

holds. Let us recall from Remark 6 and Corollary 5, respectively,

. V2
udm—(z<0,y,s)=—TC05— R—1 R+ cosé

+o0
8 / srz €08 (syVRZ — 1 dR
3 e

1
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(5.3)

(5.4)

This formula was derived by deforming the integral path into a branch cut line. It is of
interest to recover ugif(r, o, t) where the result is expected to coincide with that given
by Theorem 3. After some simple rearrangements the Cagniard de Hoop method which
means deforming of the integral path into a hyperbolic curve (instead of a straight line)
will help again to succeed in this question. We want to consider the case z < 0, so that

I =T Cosa

y=rsina

} (F<a< ¥
After substitution £ = vV R? — 1 > 0 the integral reads

~ G o FeTE e
iw(z,y,8) = ~— cos = | ————— cos(syf) YV—o——
rrln =y | T re O e e

This can be rewritten as a two-sided Laplace transform

- ) V2 st 7’/+i°°e—s(|:|\/1—7’—y7) V1+ /1 —+2 P
Udiffi\Z,Y,5) = ———
' vV1-72 vV1—9%+cosé i

T2
which holds in a strip of C containing 7, = 0. We set (the time variable)

de.

v —ioo

t:=|z|v/1-792—yy

and obtain in order to have t > 0 the Cagniard contour (hyperbola)

t . . 12
'yi:——smaqilcosa\/——z-—l (cosa < 0).
T r

We write this contour of integration in the more convenient form

t
% = —sin(a + ip), — =: cosh.
r

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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It follows

+
- By dp 1

= L sinh ?2 = =
‘/1__74_2_ Yo ro 3 T Jeenm
Choose v = v+ with posmvc imaginary part. After calculdtmg (cmp. (4.18))
37' 1+ /1 67 .1 V2 sin (241£)
=1 -
at (\/1_7 +C0q6)\/1— 2 at \/t2—1‘2 COSO—COS((X‘*‘)(P)

one ends up with

Re

cos 5 sin ——f it
sin® %‘e sm2 0

‘ - 1 ¢
dgin(r,a,s) = _; \/ﬁ

ﬁi-—‘.s{h(t r) Re[ cos £ sin 2tie ”’

T Vt2 —r? cos? %‘ﬁ — cos? .g

(5.10)

where the real-part term coincides with that of the expression given in (4.22).

Next we want to recover uqig(r, , ) as a representation with polar coordinates in

the case z > 0. The corresponding Laplace integral to be under consideration (compare
(4.10)) reads

+o00

g / c_stsin (s|y|\/R2 -1) dR

2 VR+1 R — cosé’
1

We confine the considerations on y 2 0 with 40 <@ <60 < 5. The case 0 < 6 < a <%
can be treated in the same manner. The case y < 0 with 37" < a £ 27 — 0 can be done
analogously by symmetry arguments. - .

The substitution R := cosh f§ leads to the integral

2
tgig(z > 0,y,8) = +£cos (5.11)
m

o+ .
. : : 1 © —srcoshf _: . 2cos§ sinhg,
udiﬁ'(l‘.Z 0’ y,s) = ; e R .sm(sy smhﬂ) mdﬂ
0
o .
=Im L / e—s(xcoshﬂ iysinh B8) 2COS sinh ; ﬂ ,3
27 cosh ﬂ — cos 9
—o0

This reads with polar coordinates z = rcosa, y = rsina as

+ o0 9 P 8
- 1 . cos 5 sini
dgi(r,a,s) =Re |—— [ e7srlcoslatif)) 2 7 2
27 cosifl — cosf
L — 00
r 4+oo—-ia .
8 o a—ip
= Re L e cosh ¢ 2cos 3 Sin ( 2 )
27 cos(a — ip) — cos §
L —co—ia
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The last formula was obtained by the substitution ¢ = 8 —i« and describes integrating
parallel to the real line. Shifting the path of integration onto the real line yields

~ ( ) 1 ' —srcosh o R 2C°S§Q Sin(ﬂ’%f) d
tgig(r,a,s) = — : - .
Lramn e =or ¢ € cos(a — ip) — cos 8 ?
—o0
+ oo . ) .
8 . —ip
, v — l / e~sTcoshe po 2 cos z S (OYZl ) de.
T cos(a — ip).— cos @
0

After introducing the real (time-) variable ¢ = r cosh ¢ the integral takes the form

2cos g sin (9"7'2) ]

- . . 400 ~
‘~ ( ) 1 / e—s( R
taig(r,a,8) = — e -
o . g Vi —rZ | cos(a — ip) — cos @
to yield the original function in the time domain

ugia(r,ont) =

14(t - 1) 2cosg sin("—;if)
‘T2 —r2? ¢ cos(a — ip) — cosf
Iy(t—r1) cosg,sin(g—;—if)
= ————< .Re|: .
cos? (0_—212) —~ cos? g'

(5.12)

the last term representing the complex conjugate of the expression we faced already in
"equation (4.22). '
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