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Abstract. Property C, that is, completeness of the set of products of some solutions to Sturm-
Liouville equations is proved. Several uniqueness theorems for various inverse scattering prob-
lems are obtained in a very simple way with the help of property C. Two classical uniqueness 
results for inverse scattering problem on the half-axis and for the inverse spectral problem are 
proved in a very short new way. Earlier the author introduced property C for partial differential 
equations and used it extensively for proving uniqueness theorems for many inverse problems. 
Keywords: Property C, inverse scattering, non-destructive testing, remote sensing, Sturm-

Liouville equation 
AMS subject classification: 35R30 

1. Introduction 
Property C was introduced in 15], applied to inverse scattering for partial differential 
equations in [6] and the theory is developed systematically in [7], where its many appli-
cations to inverse problems are presented. In [3] some results on completeness of the set 
of products of solutions to pairs of Sturm-Liouville equations are obtained and applied 
to some problems for ordinary differential equations. In [13] a new method is given for 
derivation of the completeness results for products of solutions to ordinary differential 
equations and examples of incompleteness of the set of products of solutions to ordinary 
differential equations are given. These results were related to some inverse scattering 
problems of geophysics [9]. 

In this paper we use the idea from [13] but simplify and generalize it and obtain 
new results on completeness of the set of products of solutions to ordinary differential 
equations. We apply these results to several inverse scattering problems. In particular, 
we give a new very short proof of the uniqueness of recovery of the potential from I-
function [7, 8]. This uniqueness result can be obtained from the uniqueness results for 
the inverse problem with spectral function as data (see [3, 8]) but our proof is much 
shorter. We derive a uniqueness theorem for finding a compactly supported potential 
from the boundary data known at all energies and several other uniqueness theorems 
for various inverse problems. The statements of these inverse problems and the proofs 
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of the uniqueness theorems for them are given in Section 3. In Section 2 property 
C for some pairs of ordinary differential equations is established. In Section 4 a new 
short proof is given for the classical inverse scattering problem on the half-axis and in 
Section 5 a uniqueness theorem is proved for the inverse problem with mixed data: the 
potential is known on a part of the interval and part of the spectrum of the associated 
Sturm-Liouville operator is given. 

2. Property C for ordinary differential equations 

Let
Lu := u" + k 2 - q(x)u = 0	(—cc <x < cc)	 (2.1) 

where k = const, q is a real-valued function, f°(1 + IxI)Iq(x)I dx < cc. The scattering 
problem consists in finding the solution to (2.1) with the asymptotics 

( exp(ikx) + r(k) exp(—ikx) + 0(1) for x - —cc 

	

= 
t(k)exp(ikx)	 for'x	±cc	(2.2) 

The coefficients r(k) and t(k) are called the reflection and transmission coefficients. The 
Jost solutions of (2.1) are the solutions with the asymptotics 

Mx, k) = exp(±ikx) + o(1)	(x - +cc)	 (2.3) 

and
g(x, k) = exp(±ikx) + o(1)	(x -* —cc).	 (2.4) 

Denote by L (j = 1,2) operators (2.1) with q = q, (x), let R = (0, cc), IR_ = (—cc, 0), 
{q: f(1 + I xIq(x)Idx < 

Definition 2.1. We say that the pair {L 1 ,L2 } has property C if the sets


	

{fi (x, k)f2 (x, k)}o< k <	and	{g1(x, k)92 (x, k)}o<k< 

are complete in L1 1 (R±), respectively. 

Here f3 and g3 are f and gj+, respectively, where 1+ and g+ are defined by 
formulas (2.3) and (2.4). We assume throughout that q E Li,i(—cc,00). 

Theorem 2.1. The pair {L 1 ,t2 } has property C±. 

Proof. We prove property C. Proof of C_ is similar. The idea of the proof is to 
reduce the problem of completeness to the problem of injectivity of a certain Volterra 
operator. It is well known (see [4, 7]) that 

Mx, k) = exp(ikx) + 1. 00 Aj (x, t) exp (i k t) dt,	 (2.5) 

where f2 is the Jost solution for L, and the kernels A2 (x, t) are continuous functions, 
such that 

sup 
CO

 A(x,t)Idt <cc and IA(x,y)I <cf q[dt := 
c (--),	

(2.6)
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and their derivatives A. and A are absolutely integrable with respect to y over the 
interval (x,00) for any x 0. We have 

fl 12 = exp(2ikx) + 1.00 B(x, i) exp[i/c(t + x)j dt	
(2.7) +1 f 

where
B(x, t)	A 1 (x, t) + A2 (x, t),	 (2.8) 

arid, setting t + r = .s, t - r = a, one gets 

1. 00 1.00 
A 1 (x, t)A2 (x, T)exp[ik(t + r))dtdr = 12 'r'o T(x, s) exp(iks)ds,	( 2.9)


where f	 A 
2z

T(x,$)=—	 (x, 
s+a \ 	s—a" 

2 (3-21)	-i--) 
A2

 çx ---) 
dcr.	(2.10)


Suppose h E L 1,1 (R+) and 

0 = f h(x)fi (x,k)f2 (x,k)dx	Vk>0.	 (2.11)


Then, using (2.7) and (2.10) one gets 

0 = I	dxe2 'h(x) +
Jo

I 
Jo

dse'	I	B(x,s - x)h(x) dx 
Jo 

+ [ds	ik.,
Jo I

	T(x, 
Jo

s)h(x) dx,

or

0
= j 

ds	[h(s) + 2f B(x, 2s - x)h(x) dx + 2j T(x, 2s)h(x) dx]	(2.12) 

for all k > 0. The right-hand side of (2.12) is analytic with respect to k in the upper 
half-plane Im k > 0 and vanishes for k > 0. Thus, it has to vanish for k < 0 as well. 
Therefore (2.12) implies 

h(s) + 2f B(x, 2s - x)h(x) dx + 2f T(x, 2s)h(x) dx = 0	Vs > 0.	(2.13) 

Since B(x,2s) and T(x,2s) are bounded continuous functions, it follows from the 
Volterra equation (2.13) that h(s) = 0. Theorem 2.1 is proved I 

Let us prove another theorem of the property C type. Let k) be the solutions 
to equation (2.1) with £ = ej which satisfies the conditions (0, k) = 0, '(0, k) = k. 
Similar considerations are valid for the functions T,1(x, k), which solve equation (2.1) and 
satisfy the conditions 0"(0, k) = 0, (0, k) = 1. Fix an arbitrary number b> 0. 
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Theorem 2.2. The sets of products 

	

{ 1 (x, k) 2 (x, k)}k>o	and	{ (x, k) 2 (x, k)}k>o 

are complete in L2(0,b). 

Proof. The idea of the proof is similar to that of Theorem 2.1. We have 

k) = sin(kx) + j K(x ) y) sin(ky)dy	(j = 1, 2),	(2.14) 

where the kernels K, define the operators (sec 13, 4] and [7: p. 250]), which transform 
the solution to equation (2.1) with q(x) = 0, satisfying the above initial conditions 
at x = 0, into the solution to equation (2.1) with q = qj, satisfying the same initial 
conditions. Thus 

12 = sin 2 (kx) + 
j

 x K(x, y) sin(kx) sin(ky) dy 

+ 1 f f Ki(x,y)K2(x,$){ cos[k(y - s)] - cos[k(y + s)]} dyds, 

where K := K1 + K2 . Assume that 0 = f' dxl (x)0 i 02 for all k > 0. Then 

p 6	 p6 
0= / dxf(x) — / dxf(x)cos(2kx) 

Jo	Jo 

l
6	 p6 

+ 
	

dscos(ks)J dxf(x)K(x,x - .$)	 (2.15) 
 

10
26	

p min(6,$)
dscos(ks)J	dxf(x)K(x,s—x)+

 

where

	

pb

	
Jo x fx:I:= I dxf(x)Ki(x,y)K2(x,$){cos[k(y—s)]—cos[k(y+s)]}dyds. 

Jo   

Let y—s:=t,y+s:=v.Then 

fo x fo x Ki K2 cos[k(y - s)]dyds = f ds cos(ks)B i (x, .$), 

where
z— V — S\ S+V\	/ V—S\ 

	

Bj(x,$):=	
2 

[	IKi(x,—__)K2(x,-----_) +Ki(x,---)K2(x,----)]dv 

2z 

	

fo x lo xK
i K2 cos [ k ( y + s ) ] dyds = 	B2(x,$)cos(Ics)ds 

  Jo 

	

\	st 

	

B2 (x,$) :=	[	K 1 (x,  t+S_ )K2 (x,	 )dt, 
J—(3)
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andc=sforO<s<x,w=2x—sforx<s<2x. Therefore 

i = lb d	(k)fdf()B() - 10x, dscos(ks)Jdxf(x)B2(x,$).	(2.16) 

From (2.15) and (2.16), taking k - oo, one gets j' f(x)dx = 0, and (using completeness 
of the system {cos(ks)}o<k<. in L2 (0, b)) the following equation: 

b	 min(b,$) = _L1 + j K(x,x - s)f (x)dx - J	dxl (x)K(x,s - x) 

 6	 (2.17) 
+
 l

b 

dxf(x)Bi(xs)—fdxf(x)B2(x,$). 

The kernels K, B and B2 are bounded and continuous functions. Therefore, if b < 
and 1(x) = 0 for x > b, equation (2.17) implies 

12 Y 
If( x )I dx + c

ly
 If(x)Idx, 

where c > 0 is a constant which bounds the kernels 2K, 2B 1 and 2B2 from above and 
= s. From the above inequality one gets 

max If()I <c€ max If(y )I,	 (2.18) 
6— (:5Y <6	 b_:5y<b 

where f (0 < c < b) is sufficiently small so that c < 1 and b - € < 2b - 2E. Then 
inequality (2.18) implies 1(x) = 0 if b — c < x < b. Repeating this argument, one proves, 
in finitely many steps, that 1(x) = 0 if 0 < x < b. Theorem 2.2 is proved I 

Remark 2.1. The proof of Theorem 2.2 is not valid if b 

3. Applications 

3.1. Consider the following inverse scattering problem which often arises in geophysics. 
Assume q(x) = 0 for x < 0, suppose that the scattering problem (2.2) is considered, 
and the scattering data is the impedance function, the 1(k) function, defined as 

1(k)-- u'(O,k) (k>0).	 (3.1)
 u(0, k) 

Problem (IP1). The inverse scattering problem is: given 1(k) for all k > 0, recover 
q E L1,1(R). 

If q(x) = 0 for x < 0, then (2.2) implies 

u'(O, k) = ik(1 - r(k))	and	u(0, k) = 1 + r(k),	(3.2)
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so
— 1(k) = zk1 r(k) 

1 
+r(k)	

(3.3) 

Therefore 1(k) and r(k) are in one-to-one correspondence, and problem (IP1) can be 
reduced to the inverse scattering on the full line which is developed in [4]. However, 
the inverse scattering theory on the full line uses as the scattering data not only the 
reflection coefficient, but also the bound states and the forming constanth. Therefore 
this theory is not applicable since we do not know the bound states and the forming 
constants. 

From Theorem 3.1, which we prove below, it follows that if one knows a priori that 
q(x) = 0 for x < 0, then the knowledge of the reflection coefficient alone determines 
uniquely the potential q E L 1,1 , and therefore, determines the bound states and the 
norming constants (see also [8, 10, 11]). 

Another approach to problem (IF 1) which gives an inversion procedure and neces-
sary and sufficient conditions for a given function 1(k) to be an I-function corresponding 
to a potential q from some functional class (for instance, m times differentiable q) is 
given in [8]. 

Here our goal is to give a very short proof of the uniqueness of the solution to 
problem (IP1). This proof is patterned after the proofs of several uniqueness theorems 
in [7], and we want to emphasize the method of the proof. 

Theorem 3.1. Problem (IP1) has at most one solution. 

Proof. Suppose there are two potentials qj (j = 1,2) with the same 1(k) and 
u(x, k) are the corresponding scattering solutions, 

ej uj = 0,	 (3.4) 

where I, is the operator (2.1) with q = q3 (j = 1, 2). Note that (2.2) implies 

Ui = t(k)f(x, k),	 (3.5) 

so

I(k) - 
- f(0,k)

(j = 1, 2),	 (3.6)  f(0,k) 

where f,(x,k) = f+(x,k) are the Jost solutions, defined by formula (2.5): 

tj fi = 0	(j = 1, 2).	 (3.7) 

Subtract from (3.7) with j = 1 equation (3.7) with j = 2 and get 

£IW = p12,	W	fi — 12, p := q, -	.	 (3.8) 

Let us assume now that
11(k) = 12 (k)	(k > 0)	.	 ( 3.9)
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and derive from (3.8) and (3.9) that

A-) = 0,	 (3.10)


which is equivalent to the desired conclusion: 

q i (x) = q2(x) .	 ( 3.11)


This derivation is simple: multiply (3.8) by f2 (x, k) and integrate over (0, cc) to get 

00
00 

	

fo Pflf2dx=J e i wfi dx=J we, fi dx +(w'fi — wf) =0,	(3.12) 
0	 0	 0 

and the last equation will be explained below. From Theorem 2.1 and the orthogonality 
condition, which follows from equation (3.12): 

1,00 
p(x)fl (x, k)f2 (x, k) dx = 0	(k >0),	 (3.13)


the desired conclusion (3.10) follows immediately. 
To finish this very short proof, let us explain that the integral on the right-hand 

side of (3.12) vanishes since e l f, = 0, and the boundary terms in (3.12) vanish because 
1) w =	= 0 at infinity since fi and 12 have the same asymptotics as x - + 00 

and
2) C := w'(0, k)f1 (0, k) - w(0, k)f (0, k) = 0 because of (3.9). 

Indeed, 

C = ffi - f2fi - f, fl + 1211 = 1112 - 1211 = flf2( 

	

\fi - T) = 0.	(3.14)


Theorem 3.1 is proved I 

3.2. As the second application of Theorem 2.1 and the above method of proof, consider 
the following inverse scattering problem. Let 

fg	
c9g = —8(x - y), -- zkg - 0 as lxi - cc,	 (3.15) 

aixi 
where £ is defined in (2.1), 8(x) is the delta-function, and y < 0. Assume that y is fixed 
and

q E L i [0,al,	q(x) = 0 if x V (0, a] (0 < a < cc).	 (3.16)

As the scattering data take the values 

vo(k) := g(0, k)	and	v i (k) := g(a, k)	(k > 0).	(3.17)


Problem (1P2). Do the data (3.17) determine q(x) uniquely? 

- One can consider different data, for example, 1o(k):=	and 1 1 (k) := 
or any boundary conditions which imply that the boundary term, analogous to the one 
in formula (3.12), vanishes.



338	A. G. Ramm 

Theorem 3.2. The data (3.17) determine q(x) uniquely. 

Proof. Suppose q3 (j = 1,2) generate the same data. Then, as in the proof of 
Theorem 3.1,

flW = P92,	w := g - 92, p := qi - q .	 (3.18) 

Since g' and 92 satisfy the radiation condition at ±oo and w(0, k) = w(a, k) = 0, one 
concludes that

w(x,k) = 0	if x V [0, a] .	 (3.19) 

If x 2 0, one has
92(x,k) = c(k)f2 (x,k)	(c(k) 54 0,x 20)	 (3.20) 

because £292 = 0 for x 2 0 and 92 satisfies the radiation condition (3.15). Multiply 
(3.18) by fi (x,k), integrate over (-,) and then integrate by parts using (3.19) and 
(3.20) to get the orthogonality condition (3.13). Apply Theorem 2.1 and conclude that 
p(x) = 0. Theorem 3.2 is proved U 

3.3. Consider the scattering problem on the full line assuming that q E L'(0, a), 
q(x) = 0 if x [0,a], q is real-valued. The scattering solution u(x,k) is defined by 
equation (2.2). The non-standard scattering data we give are 

{u(0,k), u(a,k)}k>o.	 (3.21) 

These data are practically important. One can think about a layer of thickness a and 
the field measured at the entrance into the layer and at the exit from the layer. From 
the measured field at all frequencies one wants to recover the function q describing the 
layer. 

Theorem 3.3. Let u(x, k) be the scattering solution defined by (2.2). Then data 
(3.21) determine q(x) uniquely. 

Proof. As in the proof of Theorem 3.2 one gets an equation similar to (3.18): 

£1w = pu2 ,	w := U 1 - u 2 , p:= q - q	 (3.22) 

and
w(0, k) = w(a, k) = 0	(V k > 0).	 (3.23)


If p(x) = 0 for x > a, then 

w"(x, k) + k 2 w(x, k) = 0	(x > a). 

Therefore
w = c i (k)exp(ikx) + c2(k)exp(—zkx). 

Since w is a difference of two functions each of which satisfies the second relation (2.2), 
it follows that c2 (k) = 0 and w = c i (k)exp(ikx). If w(a,k) 0, then c i (k) = 0. 
Therefore w(x, k) = 0 for x > a.
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Similarly one proves, using the first condition (2.2), that w(0, k) = 0 implies 
w(x, k) = 0 for x < 0. Therefore 

w(x,k) = 0	if x	[0,a].	 (3.24) 
From (2.2) it follows that

	

U2 = t2 (k)f2 (x, k) .	 ( 3.25) 
Multiply (3.22) by f, (x) and integrate over [0, a] to get 

	

0 = jaP(x)U2(x,k)fl(x,k)dX	(V k >0)	 (3.26)


From (3.26), (3.25) and Theorem 2.1 it follows that p(x) = 0. Theorem 3.3 is proved I 
Remark 3.1. Note that Theorem 3.1 implies that the data {u(0,k)}k>o alone 

determine q(x) which vanishes outside the interval [0, a]. Indeed, if u(x, k) is the scat-
tering solution (2.2), and q = 0 for x < 0, then u = e* + r(k)c' for x < 0. Thus, 
u(0, k) = 1 + r(lc), so the data {u(0,k)}t>o determine r(k) for all k > 0, and Theorem 
3.1 guarantees that q(x) is uniquely determined by these data because r(k) determines 
uniquely 1(k) if q(x) = 0 for x < 0. To see this, note that the solution to (2.2) equals 
to t(k)f(x, k) for x > 0, so = 1(k), and u = e + r(k)e' for x < 0, so 
1(k) = u'(0, k) = .k[1-r(k)] which is formula (3.3). Therefore r(k) determines uniquely 
1(k) if q(x) = 0 for x <0, and Theorem 3.1 is applicable. 

On the other hand, it is not clear (and is not likely in general) that the data at 
x = a alone determine q(x) uniquely. Indeed, these data will determine the transmission 
coefficient t(k), rather than the reflection coefficient, and the problem of the recovery of 
a compactly supported potential from the transmission coefficient alone was not studied 
in the literature to our knowledge. 

3.4. Let q be the same as in Theorem 3.3. In the same way as Theorem 3.3 one proves 
Theorem 3.4. Let u(x, k) be the scattering solution defined by formula (2.2). Then 

the data
{u'2(01k),u(a,k)}vk>o	 (3.27) 

determine q(x) uniquely. 

Remark 3.2. a) Other data containing linear combinations of u(a, k) and u'(a, k) 
can be to use. 

b) The data can be given not for all k > 0 but for k on an arbitrary small open 
subset of the positive semiaxis (0, ). Indeed, if the potential is compactly supported, 
then u(x, k) known on an open subset of the positive semiaxis k > 0 determines uniquely 
the values of u(x, k) for all k > 0 by analyticity. 

The uniqueness results will be valid in all the problems in which the data are the 
boundary values of functions, analytic in the half-plane Im k > 0: such functions cannot 
vanish on an open subset of the real axis unless they vanish identically. The problems 
in Section 3 have this property. 

3.5. As another example of many applications of property C for ordinary differen-
tial equations, we derive the following uniqueness theorem for inverse scattering by a 
potential q on the whole line.
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Theorem 3.5. If q E L11(—c,c'o), and q(x) = 0 for x <a, where a> -00 is an 
arbitrary fired number, then the data {r(k), t(k)}k>o determine q uniquely. 

Theorem 3.5 is weaker than the well-known uniqueness theorem for inverse scatter-
ing on the whole line, which does not require that q(x) vanishes for x < a. However, 
our proof is very short and simple, and by this reason it is included here. The author 
thinks that a modification of Theorem 2.1 will yield the uniqueness theorem, similar to 
Theorem 3.5, for any q E L1,1(—,). 

On the other hand, Remark 3.1 is applicable, and for potentials which vanish on 
the half-axis x < 0 (one can take a = 0 without loss of generality) the argument given 
in Remark 3.1 shows that the data {r(k)}y k >o determines q uniquely, so the data in 
Theorem 3.5 for such potentials are overdetermined. 

Proof of Theorem 3.5. As above, assuming that there are two potentials with 
the same data {r(k),t(k)}k>o, one gets (3.22). Multiply (3.22) by f1 (x, k) and integrate 
over (-, oo) to get the orthogonality relation, similar to (3.26): 

f0000 

P( X ) U 2 (x, k)fl (x, k) dx = 0	(V k >0).	 (3.28) 

The terms due to the integration by parts vanish, because r 1 = r 2 and t 1 = t 2 by the 
assumption. From (3.25), (3.28) and Theorem 2.1 it follows that p = 0. Theorem 3.5 is 
proved I 

Remark 3.2. The reason we require q(x) = 0 for x <a in the above argument is 
that formula (2.5) is proved for x > -. 

In Theorem 3.5 the transmission coefficient t(k) can be dropped from the data if 
q(x) = 0 for r <a, and the conclusion of this theorem remains valid. This follows from 
the argument in Remark 3.1. 

3.6. In this subsection we give an application to an inverse problem for partial differ-
ential equations. Let u = u(x,t), 

u it = u - q(x)u (x > 0, t > 0)	 (3.29) 

u=u 1 O at t=0	 (3.30) 

u(0,t) = 6(t)	 .	 ( 3.31) 

where 6 is the delta-function. The extra data are 

u(a, t) = f(t)	(V t > 0).	.	 (3.32) 

Assume that q E L 1( R+), and q(x) = 0 for r > a and for x <0. The inverse problem is 

Problem (1P3). Given f, find q.
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Theorem 3.6. The above inverse problem has at most one solution. 

Proof. Taking Laplace transform of (3.29) - (3.32) one gets 

	

v - A2 v —q(x)v = 0 (x > O,A >0)	 (3.33) 

v(0, A) = 1	 (3.34) 
v(a, A) = F(A)	 (3.35) 

where 

v(x,A) := 10 "o u(x, t) exp(—At)dt and F(A) := 10 00 f(t)exp(—At)dt.	(3.36) 

The function v(x, A) is analytic in the half-plane Re A > 0 and has limiting values on the 
imaginary axis Re  = 0. Let A = ik, k > 0. Then equation (3.33) takes the form (2.1) 
and we denote the solution v as a function of k also by v. The solution v(x, k) = 
where f(x, k) is the Jost solution to equation of (2.1). Indeed, the above . v solves (2.1) 
and satisfies condition (3.34). Since q(x) = 0 for x > a, one has f(x, k) = e' for x > a. 
Therefore condition (3.35) yields 1(k), namely 1(k) = Therefore Theorem 3.6 
follows from the result in (10] (see also [111) U 

One could give a proof of Theorem 3.6 based on property C, but we want to demon-
strate a different proof. The result in (10] says that a compactly supported real-valued 
integrable potential is uniquely determined by the Jost function 1(k) and there is no 
need to know a priori the bound states and forming constants: these are uniquely 
determined by 1(k) if the potential is compactly supported. 

Recently the author solved the inverse problem of recovery of a compactly supported 
q(x) from {f'(O, k)}>. 

3.7. Consider the problem

	

- q(x)u, (0 < x < 1, t > 0)	 (3.37) 

u,, (0, t) = 0,	u(1, t) = b(t)	 (3.38) 
u(x,0)=0.	 (3.39) 

The extra data are:
u(1, t) = a(t)	(t > 0).	 (3.40) 

Problem (1P4). The inverse problem is: 
Assume that b(t) 0 0 is integrable and compactly supported. Given a(t) and b(t), 

find q(x). 
Theorem 3.7. The above problem (1P4) has, at most one solution. 

Proof. Let us transform problem (1P4) into an inverse problem for ordinary differ-
ential equations. To do this, take the Laplace transform 

v(x,A) := j exp(—At)u(x, t) dt,	-	 (3.41)
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and get
v"—Av—q(x)v=O (0<x<1)	 (3.42) 

v(O,A)=O, v(1,A)r=B(A)	 (3.43) 

v(1, A)	A(A),	 (3.44)


where A and B are the Laplace transforms of a and b, respectively. Assume that there 
are two potentials q j and q2 with the same data (3.43), (3.44), v 1	vi(x,A) and 
V2	v2 (x,A) are the corresponding solutions to (3.42) - (3.44) and let p := q, - 
W v 1 - v2 . From the first equation (3.43) it follows that v = c(A)t,b(x,A), where 

(x, A) solves (3.42) and satisfies the conditions i(O, A) = 1, b(O, A) = 0, and c(A) 
does not depend on x. Since b(i) is compactly supported and b(t) 0 0, it follows that 
B(A) is an entire function of A, therefore it may vanish at most at a discrete set of 
points. Note that this is valid even if b(t) is a compactly supported distribution, for 
example the delta-function. 

Problem (3.42) - (3.43) is uniquely solvable for all A except possibly at A equal to 
the negative eigenvalues of the operator - + q(x) in L2 (0, 1) with the homogeneous 
boundary conditions (3.43), that is, boundary conditions v(0,A) = v(1,A) = 0. As 
it was done in the proof of Theorems 3.1 and 3.3, for all A for which problems (3.42) - 
(3.43) with potentials q and q2 are solvable, one derives the orthogonality relation 

I
p(x) 1 (x,A) 2 (x,A)dx = 0, 

which actually holds for all A because its left-hand side is an entire function of A. 
Property C (Theorem 2.2) and this orthogonality relation imply p(x) = 0. Theorem 3.7 
is proved U 

Let us sketch an alternative proof, although it is a longer one. From (3.43) and 
(3.44) it follows that c(A)(1,A) = B(A) and c(A)(1,A) = A(A). Thus the function 
G(A) :=

	

	is known for all A, except possibly at a discrete set, provided that A(A)
00 1 AT 
and B(A) are known. These two functions are known since we assume in problem (1P4) 
that the functions a(t) and b(t) are known. Since the function G(A) is meromorphic, 
and known everywhere except possibly at a discrete set, it is known everywhere. The 
zeros of the function G(A) are the eigenvalues of the problem (3.42) with boundary con-
ditions v. (0, A) = v(1, A) = 0, while the poles of G are the eigenvalues of the problem 
(3.42) with boundary conditions v1 (0, A) = v(1, A) = 0. Therefore the function G(A) 
determines uniquely the two spectra of the operator in (3.42). By the classical result 
concerning uniqueness of recovery of q(x) from two spectra (with the same boundary 
condition on one of the ends of the interval) (see, e.g., [3], [4] or [71) the conclusion of 
Theorem 3.7 follows. Note that other boundary conditions can be treated similarly. 

Theorem 3.7 is proved in [1: pp. 159 - 164] by a different argument and with 
additional assumptions on b(t) and q(x). In [1] the uniqueness theorem for inverse 
problem of finding the potential from the knowledge of two spectra was used.
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4. Classical inverse problems 

In this section we give a very short proof of the uniqueness of the solutions to two 
classical inverse problems: 

a) inverse scattering on the half-axis, 
and

b) inverse spectral problem. 

We will give a proof for problem a), and the proof for problem b) with q E Li,i(R+) 
is the same, because, as shown in [7], in both problems the data are equivalent to the 
following data:

{f(k), Ai, s,, 1	j	J}.	 (4.1) 

Here f(k) is the Jost function, A i are positive numbers which determine the bound 
states of the corresponding one-dimensional Schroedinger operator on the half-axis, and 
si are the normalizing constants defined in [7: p. 255/Formula (53)]. We wish to prove 
the following 

Theorem 4.1. If q,, (in = 1,2) generate the same data (4.1), then qi = q. 
Proof. We assume that q,, E L 1,1 (R+). Recall that A, and the number J in (4.1) 

are uniquely defined by 1(k), which is an analytic in C.. function. Namely, ?*A, are 
the zeros of 1(k) and J is the number of these zeros. Therefore the data (4.1) can be 
written as

If (k), Si, 1	.j !^ J}.	 (4.2) 

Denote by fm(r, k) the Jost solution (see formula (2.5)) corresponding to the potential 
qm (r). Then (3.8) holds and we wish to derive (3.11) (with x = r). To do this, we 
derive (3.13) and then use Theorem 2.1 to obtain (3.11). The basic point is to prove 
that the non-integral term in (3.12) vanishes if the data (4.2) are the same for q and 
q. This term can be written as 

—f(0,k)f1(k) + f2(k)f;(0,k),	 (4.3) 

since at infinity the boundary term in (3.12) vanishes. If the data (4.2) are the same 
for q and q, then f, (k) = f2 (k), and what remains to be proved is that 

f(O,k) = f2 (0, k).	 (4.4) 

Indeed, if (4.4) is proved, then quantity (4.3) vanishes, and the proof is complete. 
However, (4.4) is a direct consequence of the assumption that the data (4.1) for q 

and q2 are the same. We shall now prove this last claim and then the proof is finished. 
To prove that f(0, k) = f(O, k), start with the Wronskian formula f'(O, k)f(—k) - 

f(k)f'(0, —k) = 2ik and write it as f'(O, k) = S(—k)f'(0, —k) + This Riemann 
problem is solvable by construction. If we prove that it has at most one solution, then 
the proof of Theorem 4.1 is complete. Suppose there are two solutions w 1 and W2,



344	A. G. Ramm 

Wm := f(O,k) (rn = 1, 2), note that, as was proved above, f 1 (k) =f2 (k) =1(k), and 
let w := w,— w 2 . Then

w(k) w(—k) 
f(k) = f(	

w(cc) 0.	 (4.4)


The relation w() = 0 can be easily derived from formula (2.5) and from the relation 
f, (k) f2 (k), which we have already proved. Moreover, is analytic in C+ because 
f(O,zk) = f(0,zk,), as follows from the assumption that s j are the same for 11 and 
12 . Recall that [7: p. 255/Formula (53)]

af —2ik3 - 

	

S3 - 
j(ik)f'(0,ik)	

I ak 

so that f'(0,zk) are uniquely determined by s3 and 1(k). Therefore the Riemann 
problem (4.4') implies	= 0, and w(k) = 0. Theorem 4.1 is proved I 

An alternative proof of the relation f(0, k) = f(O, k) can be based on the Marchen-
ko equation as follows. Note that if the data (4.1) are the same, then the function 

F(r) :=	sieir +f [ _ e ikr dk	 (4.5) 
2 7r 

is the same for qj and q. One has (see [7: p. 254/Formula (49)]) 

	

f'(O, k) = ik — A(0, 0) + f Al (y)e iky 	 (4.6) 

where A'(y) := A(0, y), A(0, 0) = — limk....,,0 ik[f(k) — 1], and A(x, y) is the kernel from 
formula (2.5), in which the subindex j is dropped (or [7: p. 254/Formula (49)]). Thus, 
(4.4) is proved if one proves that 

•	 B1 = B2 ,	 (4.7) 

where 
•	 Bm := A' (y)	(rn = 1,2).	 (4.8) 

To prove (4.7), differentiate the Marchenko equation 

F(x + y) + A(x, ) + 1 00
 

A(x, t)F(t + y)dt = 0	(y > x > 0) 

(see [7: p. 267/Equation (23)]), take x = 0 and get 

F'(y) + A'(y) — A(0, 0)F(y) + 1, 00 A'(t)F(t + y)di = 0.	(4.9) 

If the data are the same, then F'(y) and A(0, 0) are the same. Subtract from equation 
(4.9) corresponding to q = q i this equation corresponding to q = 42, to get 

CO 

•	B(y) + j B(t)F(t + y)di 0.	 (4.10) 

Here B := B 1 — B2 . Equation (4.10) has only the trivial solution (see, e.g., [7: p. 269]). 
Thus, B = 0, and the proof is complete I 

The argument used in the proof of Theorem 4.1 is borrowed from [12].
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5. Inverse problems with mixed data 
Suppose q E V [0, 1] is real-valued, u solves (2.1) on the interval [0, 1], u(0, k) = 0 (or 
u'(0, k) = hou(O,k)) and u(1, k) = 0 (or u'(1, k) + h i u(1,k) = 0), where h 0 and h 1 are 
some constants. Let {A}> 0 be the eigenvalues of the operator (2.1) corresponding 
to the above boundary conditions, which we take, for example, to be the Dirichiet 
conditions. Fix an arbitrary number 0 < b < 1, assume that q(x) is known for b x 1 
and the set p,. := {Am( n )} fl >O is known, where !!4,i a, a > 0. We first 
consider in Theorem 5.1 the simpler case a > 2b and then treat the more difficult 
limiting case a = 2b. 

Theorem 5.1. If a > 2b, then the above data determine q(x) on (0, b] uniquely. 

Proof. Suppose there are two potentials q , q2 with the same data. Then, as in the 
proof of Theorem 3.1, one gets 

6 / p(x) 2 (x,k) 2 (x,k)dx := g(k) = 0 at k = k	I/2 
m(n)' P :=	- q.	(5.1) 

Jo 

Here RjVj = 0, ç(0,k) = 0 (j = 1,2), Vj := -, where Oi are defined by formula 
(2.14). It follows from (2.14) and (5.1) that g(k) is an entire function of exponential 
type and g(k)I	c	Denote by n(r) the number of zeros of g(k) in the disk 
Iki	r, and by

1	'	i8 In gre h(9) : hg (0) := limr....	
r	2b1 sin 91 

the indicator of the entire function g(k). It is known [2: Formula (4.16)] that 

1 
hnr_. 

n(r)	J h(9)d9<_	 (5.2) 

where the estimate Ih(9)I < 2bI sin OI was used. Since (for the Dirichlet conditions) 

±m(n)7r j-'	as n —	,	 (5.3) 
or 

one gets from (5.2) the inequality	or 

a <2b.	 (5.4) 

Thus, if g(k)	0, then a 2b. Therefore, if a > 2b, then g(k) 0, and Theorem 2.2

implies p = 0, i.e. q = q. Theorem 5.1 is proved I 

Below we consider the case a = 2b. Let us discuss some of the applications of 
Theorem 5.1. 

Theorem 5.1 with a > 2b implies rough versions of the results in [14], and the limit-
ing case of Theorem 5.1 with or = 2b yields many of the results in [14]. The limiting case 
a = 2b is treated in Theorem 5.2 below. Suppose that q(x) is known on [, i], that is, 
b and and a> . Then q(x) is uniquely determined on [0, ]. In particular, Theorem
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5.2, proved below, yields the classical Borg's theorem about uniqueness of the recovery 
of the potential and of the boundary conditions for the one-dimensional problem on a 
finite interval from two spectra, and the result of Hochstadt-Lieberman (see [14]) about 
the uniqueness of the recovery of the potential if this potential is known on a half-
interval and one spectrum is known. By spectrum here we mean the set of eigenvalues 
corresponding to some selfadjoint boundary conditions of the type mentioned above. In 
[14] the main tool is the Weyl function and its analytic properties. 

Let us consider now the limiting case a = 2b. We will need for this case the 
additional assumption

n 
m(n) = — 11 + 0(1)]	( -Y > 1).	 (5.5)
a 

z Define G(z) := fl,_1 (1 —	
2 

fl-), z = k . Then w(z) := g(z)G —i (z) is an entire function, 

g(.)[ < l IrnI;I) and the order of G equals , IG(z)I < c 2 exp(c3 Izj), where 
ci > 0 are constants and mi is the imaginary part. The estimate for G is a consequence 
of the known result that the order of an entire function which is a canonical product 
constructed from its zeros z, IznI —+oo, equals to the exponent of convergence of the 
series	 where the exponent of convergence is the infimum of s > 0 for which 
the above series converges (see 12: Section 1.5]). Since k	cn2 as n —	, it follows

that the order of G equals 1 , as claimed above. 

A Phragmen-Lindelöf theorem (see [2: Section 1.14]) says: 

If an entire function w(z)I	cec2I	(0 < p < 1) and sup	w(iy)I	c, then

w(z) = const, and if, in addition, w(iy) — 0 as y — oo, then w(z) 0. 

The functions g, C are of order p = 1 < 1 arid therefore w is of order p	(see [2:

Section 1.9]). Moreover, one can derive the estimate 

Iw(iy)I = Ig(iy)G(iy)I	---	as II —	.	 (5.6) 
II 2 

Thus w(z) 0 by the above Phragmen-Lindelöf theorem. Therefore g(z) = 0, and, by 
property C (Theorem 2.2), p(x) = 0. We have established the conclusion of Theorem 
5.1 also in the limiting case, a = 2b under the additional assumption (5.5). 

Let us outline a proof of estimate (5.6). This estimate is a consequence of the 
following lemma. 

Lemma 5.1. If condition (5.5) holds and or = 2b, then the estimate 

T - IsIn(azY) G_ 1 (H <c	 (5.7) 
I	a(zy) 

is valid. 

Here and below c> 0 stand for various constants.
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Proof of Lemma 5.1. To check (5.7), denote v, :=	and use the infinite

products for the function san(a(iy4) and for the function G. This yields 

T2 = fl 1 + 
1 +

An 

If a> c> 0, then and if 0 < a < c, then '° <I Therefore 1+c	C'	 1+c - 

	

cc	2 
T2< H ,2<no 

	

2	fl 
n= 1	I 

provided that

	

p2	 00 

	

where	IaI<oo. 

The Dirichiet eigenvalues A n of the Schrödinger operator on the interval [0, 1] have 
asymptotics

	

An '(nir)2	
(ni 

where c is some constant. Thus 

	

(n.)2[1+0(I)]	'1' 
+c+O(—)	(y>1) a2 

so that (5.8) holds if -y > 1, which is assumption (5.5). Therefore (5.7) is established 
and the proof of Lemma 5.1 is complete I 

An estimate similar to (5.7) is used in [14]. 
Let us formulate the result we have proved: 

Theorem 5.2. If a 2b and (5.5) holds, then the knowledge of q(x) on the interval 
[b, 1] and of the subset of ezgenvalues {A m(n) } n > O determine q(x) on [0,b] uniquely. 

An alternative proof of Theorem 5.2 can be sketched: there exists a sequence of 
circles Izi = rn -, no such that w(z) - 0 as Izi = rn -, no provided (5.5) holds; 
existence of such a sequence is discussed in [4: pp. 33, 242], Lemma 3.4.2 in [4: p. 
2421 can be used in this context. From this and the maximum principle it follows that 
w(z) 0. The rest of the argument is the same as above.

(5.8)
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