
Zeitschrift für Analysis und ihre Anwendungen 

Journal for Analysis and its Applications


Volume 18 (1999), No. 2, 379-391 

Nonlinear Singular Integral Equations

Involving the Hilbert Transform in 


Clifford Analysis 
S. Bernstein 

Dedicated to Prof. L. von Wolfersdorf on the occasion of his 65th birthday 

Abstract. We apply operator-theoretical methods for monotone and maximal monotone oper-
ators to prove the existence of solutions for nonlinear singular integral and integro-differential 
equations involving the Hilbert transform in the Clifford algebra C, 0 . Properties of the Hilbert 
transform are proved using Clifford analysis. We generalize well-known results concerning the 
complex Hilbert transform and the singular Cauchy integral operator to higher dimensions. 
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1. Introduction 

Clifford analysis is a generalization of complex function theory to higher dimensions. 
Therefore it is natural to look for similarities. Methods of monotone operator theory 
as given in [6, 71 have been applied to nonlinear singular integral equations on the 
unit circle and on the real line. The basic property used here is the monotonicity, i.e. 
positivity of the Hilbert transform. To get an overview of these results we recommend 
the papers [17, 181. 

A generalization from the real line to the complex plane is done in [1). Singular 
integral operators, especially the Cauchy transform, play an important role in quater-
nionic and Clifford analysis. We want to give some outline about Clifford analysis and 
singular integral operators. 

A foundation of Clifford analysis was done in [5], quaternionic analysis is treated 
extensively in [9] and more recently in [10, 11]. These last books explain also some rela-
tions to physical problems. Connections between harmonic and monogenic functions are 
discussed in [8]. The Cauchy transform and some classes of singular integral operators 
and associated equations in a quaternionic context were investigated in [15) concerning 
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Fredhoim property. Cauchy transform and convolution singular integral operators on 
Lipschitz surfaces using Clifford analytical techniques were treated in [12, 131. A good 
overview of monotonicity principles and their application to operator equations is given 
in [191. Special nonlinear singular integral equations were considered in [3, 41. 

Our paper is organized as follows. First, in Section 2, we review some basic prop-
erties of Clifford algebras, Clifford function theory and related function spaces. Then, 
in Section 3, we prove mapping and monotonicity properties of the Hilbert transform 
and related operators, especially the Nemyckii operator. In the final Section 4 we ap-
ply monotone operator theory to several kind of nonlinear singular integral equations 
involving the Hubert transform. 

2. Preliminaries 

We shall briefly review some basic definitions and properties of the function theory 
corresponding to the Clifford algebra. For a more detailed investigation of this matters, 
we refer to [5, 8 - 11]. 

Let {e 1 ,e 2 ,. .. ,em} be an orthonórmal basis in R. Consider the 2'-dimensional 
real Clifford algebra CErn,o generated by e 1 ,.. . , e,, according to the multiplication rules 

e 1 e3 + ee2 = 261eo 

where e 0 is the identity of Cm,o. The elements ej (J = ( h i ,... , hk} c {1,.. . ,m}) 
define a basis OfCm,o where ej = (1 h 1 < . . . m) and co = co. Thus, 
an arbitrary element a E C,,,,0 can be represented as 

	

a=>aJeJ	(ajER). 

Especially, the elements i E R m will be identified with E,1, xe Cm,0 . We want 
to denote by Sea = a 0 e0 = a0 the scalar part of a and by Veca = a - Sca the 
(multi—) vectorpart. 

We introduce an automorphism called reversion. The reversed element a of a is 
given by & = >ajêj where 6 0 = e0 , ê3 e3 and ëj = eh k	e 2 . ê 1 . Then by 

	

[a,b] = Sc&b = Scab = E aj bi	and	ja l 2 = Scãa = Scaà 

the scalar product and norm are given in Cm,o and we have especially x =	=

IX 12.

We suppose G C R to be a domain with a smooth boundary r. We consider 
functions f defined on G with values in Cm,o. These functions can be written as 

f(x) =	fj (x)e j	(x E G).
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Properties such as continuity, differentiability, integrability, and so on, which are as-
cribed to f have to be possessed by all components fj(x). In this way the usual Banach 
spaces of these functions are denoted by C°, L2 , H' and H. Further,

au 
H'(G) = { U E L2 (G): -- E L2(G)l 

and H0'(G) is the closure of C'°(G) in H'. We now define the Dirac operator D by 

D = ek Xk 

We consider in G the equation
(Du)(x) =0 

and look for its solutions which are called left-monogenic functions in G. 
Now we define the Cauchy kernel in R m by 

1  
c(x)

x	 2ir = -	(x 0) with Urn = 
Um IXIm	 r(!fl 

It is well known that e (a fundamental solution of D) is monogenic in Rm \ {0}. Using 
the function e we introduce the integral operators 

(TGU)(x) = IG 
e(x - y)u(y) dy 

(Fru)(x) = - j e(x - y)n(y)u(y)dI' 

(Sru)(x) = - f 2e(x - y)n(y)u(y) dF

(x E R) (Teodorescu transform) 

(x F)	(Cauchy type operator) 

(x E F)' (singular integral operator) 

where n(y) = j2 e 1 ri i (y) is the exterior unit vector to F at the point y. The integral 
which defines the operator Sr has to be taken in the sense of the Cauchy principal 
value. We remark that the operators Fr, Sr, Pr and Qr are defined in spaces of Holder 
continuous functions. It is possible to extend these operators to Sobolev spaces in 
the classical way by approximation (with Holder continuous functions). We omit the 
detailed discussion here. 

We introduce weighted L 2 -spaces. Let G be a bounded or unbounded smooth do-
main in R' and

L 2 '(G,cemo) := {	(1 + x 2 )u E L2(G,Crn,O)} 

These spaces are (real) Hilbert spaces with the scalar product 

	

(u,v) Q	ScJ(1 + 1x1 2 ) au(x)v(x)dx = I
G 

(1 + IxI2)tu(x),v(x)]dx
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and the norm is II u II = /(u, u). We set (.,) = (., .)o and II II = II b. Further, we 
will use the weighted Sobolev spaces 

H(G,cem,o) 

{u: (1 + I x I 2 ) u E L2 (G,Cemo) and (1 + bxb 2 )+Du e L2(G,Cm,o)}. 

It is easy to see that if G is a bounded domain, these weighted spaces coincide with 
L2 (G, Cm,o) and H'(G, Cm,o), respectively. 

From t21 we immediately get the following statements. 

Lemma 1. Let u E H' ,O- 1 (G,Cm, 0 ) (—+ 1 <a < ). Then we have: 

(i) Fru + TDu =	I x E ll 
U forxEG \

	
(Borel-Pompeiu formula). 1 

(ii) DTGU= { u in G  0 in R7'\ 

(iii) DFru = 0 in G U (R m \ ). 
Lemma 2 (Plemelj-Sokhotzkij formulas). Let u E C°'°(G,Cem,o) (0 < a < 1). 

Then we have 

(1) limcz ...eEr(Fru)(x) = Pru() 
(ii) lima \z E r(Fru ) (x ) = -Qru() 

for any e E r. 

The operator P := (I + Si-) denotes the projection onto the space of all Cm,0- 
valued functions which have a left monogenic extension into the domain G. Further, 
Qr — Si-) denotes the projection onto the space of all Cm,o-valued functions 
which have a left monogenic extension into the domain R m \ and vanish at infinity. 

Corollary 1. Let u E L2(r,C&,2,0). Then the equations 
(1) Su = u 

(ii) Fr Pru Fi-u 
(iii) Pu = Pi-u 
(iv) Q 2 u Qru 

are valid on r. 

Corollary 2. Let u E H"°(G,Cm,o) (— + 1 <a < v-). Then 
(i) TGD U = u in 	4=. tru E imQi-
(ii) TDu = u in Rm.
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3. Monogenicity and Hubert transform 

The main properties of the usual one-dimensional Hubert transform are the relation to 
boundary values of holomorphic functions and the connection of conjugated harmonic 
functions. Both properties are also fulfilled by the Hubert transform in Clifford analysis 
which has been studied be many authors, e.g., in the books [8] and [11]. We want to 
show that the Hilbert transform used by us connects conjugated harmonic functions 
and we will further use this property. 

Lemma 3. Let W E H1'°(lR',C+lo) be a monogenic function. Then there 
exist U,V E H'°(Rt',C,0) such that W = U +e+ i V and AU = AV = 0. 

Proof. Because of C,,.f1 , 0 = Cri,o + e+iC,o there exist U, V E Cri,o such that 
W = U + e+iV. We want to denote by D the Dirac operator in R Th , i.e. D = n	a Then aZk

(	 a	 __ 
( D+en+Ia	W	D+e+i 

DU—e+iDV+e+i a
	a 

a+1	 (1)


__ f DU +TV =0 azn 
aza	lLTDV=O. 

	

Thus AU=	= 0 in R 1 where A is the Laplacian in R' I 

Let C be a bounded or unbounded smooth domain in R". Then we define the Hubert 
transform by

(HGU)(X) 
= 

IG 2e(x - y)u(y) dy. 

If G is the hole space R'1 , we denote the Hilbert transform by H. If we interpret 
G C Rn as a subset of the boundary Rn of R+I with outer normal —e+i, we get 
HG( —e +)u = SGU. 

3.1 Properties of HG, H and HD. Here, we want to summarize properties of the 
Hilbert transform H as a singular integral operator and the integro-differential operator 
HD.

Theorem 1. We have the following mapping properties: 

• HG: L2 '(C,C ,0 ) - L2°(G,Ce,0) 
2a(ur , ce ,0 )	L2'(R",C,,,0) ( H: L	

<a < 

{ (HG U,v) = — (u,HGv)	 u 
(ii) for all	 (-< a < (Hu,v) = —(u,Hv)	 I v E L2''(C,Ce0) 

(iii) (Hu, u) = 0 and (Hu, u) = 0 for all u E L2a(G,C0) (0 < a < !) 

(iv) H2 = —I on L2.(G,Ce,0) (- <a <
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Proof. Property (i) follows from the fact that H is a singular integral operator, 
see for example [14:p. 284] or [16:p. 205]. To prove property (ii) let x E G be fixed and 
Y € G variable and put for N> 1

Iu(y) ifly - xI> - N 
I- — 

if Iy - x I< .. 

Then IIuNtdI -* 0 as N -* oo and so 11w N — w il - 0 as N - oo where w N(x ) = 

fG u N( y ) e ( x - y) dy and w(x) = fG ü(y)e(x - y ) dy. This and Holders inequality lead 
to 

• f w(x)v(x) = lim J w N( x )v ( x ) d = urn IG f UN(y)e(X—y)dyV(X)dx. 
G	 N—.coG	 N -.00Q 

In the last integral the order of integration can be reversed and because of 

UN(y)C(xy)V(X) = ü(y)e(TJ)vN(z) 

we get

f
w(x)v(x)dx = lim fG f (y)e(TTy)dyvN(x)dx


	

G	 N-.0OG 

=Ju(y)f_c(Y_x)v(x)dxdy. 

Property (iii) follows from 

(Hu, u) = —(u,HGU) = —(HGU,U). 

For the second relation we use the embedding 

L2'(R',C,0) C L 2 (R',C,) C L2_0(Rz,Ct,o). 

Thus H maps L20(Rt%,C,o) into L2(R',C,0) ( > a 0). To prove property 
(iv) we remember that S 2 = land thus H 2 = — H(—en+i)H(—en+i)u = —S 2 u = 

Lemma 4. Let u € L2c(R2,C,o) (- < Or < ). Then there exists a v € 
L2'°(R',C,o) such that w = u + e+iv € imPRn. 

Proof. Assume w = u + e+iv E imi. Then 

	

Sw = w on IR" 	H(en+i)w H(—e+i)(u + e+iv) = w = u + Cn+1V 

H(vcn+iu)en+iHuHvzru+en+iv 
I—Hv=u	 (2) 

Hu=v. 

Now, set v = Hu. Then Hv = H 2 = —u and going backwards inside the relations 
given before we obtain the desired relation I
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Theorem 2. Let u,v E H(R,C 0 ). Then 

	

(HDu,v) = (u,DHv)	and	(—H Du, u) > 0. 
Proof. First of all we have 

(Du, v) = SC  ek—u(x)v(x)dx 

	

k=I	ôXk 

SCEJa 

	

=	-Ü(x)êkv(x)dx 

	

k=1	ôXk 

= —Sc f'n ü(x)ek--v(x)dx 
 axk k=I  

= —(u, Dv). 

Putting this together with Theorem 1/(i) we get (HDu, v) = —(Du, Hv) = (u, DHv). 
Now, let be u E H1_(lRn,C,o). Then using Lemma 3 and Lemma 4 we have with 

v :=,Hu E H"(R',Ce 0 ) that w = u + e+iv = trW=tr(U + e+ 1 V) where W 
is a monogenic function in R'. Therefore if U,V E C2 (R  we conclude 
from (1) and (2) 

a U	=tr a 
U=trDV=DV I	=DtrV=Dv=DHu 

ôX	
I
z,=O	5 + 1	 zn+I=u 

and thus

(—HDu,u) = (u,—DHu) 

=_(u	
a 

	

zn+1=o,	z+i=o 

Uj ' Uj = -	
zn+t=o ôx 1	z^i=O R.

n+I 2 =	UjiU	
,. 

dx +	
j	 Ui'/ dx ax k=1 J 

because the first integral is zero due to AU = 0. The space C 2 (i,C 0 ) is dense in 
H' - (R,Ce 0 ) and we get the desired relation U 

3.2 The Nemyckii operator. We want to study two types of non-singular integral 
equations. First, we require the properties of the so-called Nemyckii operator F in a 
Clifford-analysis context. This operator is defined as 

	

( cIu)(x) = c(x,uo(x),ui(x),... , u N( x )) = c(x,u(x))	(N = 2's)
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with u = >j Uj ( X ) Cj. We make the following assumptions: 

(AC) Carathéodory condition: : C x C, ,0 -* C,o is a given function, where G 
is a non-empty, measurable set in R' (n > 1). Moreover, 

X - (x, tz) is measurable on C for all u E ce,0 
u - (x, u) is continuous on C ,o for almost all x E C. 

We call p a Carathéodory function if W fulfills (AC). 
(Ac) Growth condition: For all (x, u) E G x C ,0 and c E R 

(1+ x I 2)_(x , u )I	a(x) + bIuI(1 + pxI2) 

where b is a fixed positive number and a E L2 t(C) is a real-valued non-negative func-
tion.

Proposition 1. Under the two assumptions (AC) and (Aa) the following state-
ments are valid: 

(i) (Continuity and boundedness of 1). The Nemyckii operator I) : L' , — '(G, Ce,0) 
-* L2a (G , Ce O ) is continuous and bounded with 

lIIIL 2 ,	C (1I a IIL 2,_	+ IuIIL2,_O) 

and

	

(u, u) = Scf((x))u(x)dx	for all u E 

(ii) (Monotonicity of 4). The function	is monotone with respect to u, i.e. 

[(x, u) - (z, v), u - v] ^: 0 

for all u,v E L 2 ' (G,C 0 ) implies 1 is monotone. 
(iii) (Strictly monotonicity of (1). The function p is strictly monotone with respect 

to u, i.e.
[ço(x, u) - (x, v), u - vi > 0 

for all u,v E L2 ' (G,C ,0 ) implies c1 is strictly monotone. 
(iv) (Coerciveness of (1). The inequality 

[ça(x, u), u] > d(1 + I x I 2 )iu I 2 + g(x) 

where g E L'(G) implies I is coercive and (u,u) ^! d II u II	+ fg(x)dx for all 
u E L2'(G,Ce,0).
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4. Monotoriicity principles for integral operators 
Monotonicity principles went back to Brèzis, Browder and Minty. A comprehensive 
description of these principles is done in [19]. In our considerations we will use the 
following theorem on maximal monotone operators by Browder [7). 

Theorem 3. Let X be a real (separable) reflexive Banach space and A = A 1 + A2 
where 0 E Dom(A 1 ) and A 1 : Dom(A i ) C X - X is maximal monotone, and A2 
X - X is bounded, monotone, coercive and (hemi-) continuous. Then A is surjectzve. 
If A is strictly monotone, then A is injective. 

This theorem also holds if A = A2 . In our setting X = X = L2 (G,C 0 ) or 
X = L2 '(G,C 0 ) and X = L2(G,Ce,0). 

4.1 Integral equations. To apply monotonicity principles to this integral equations 
we only use that the Hilbert transform is a linear, bounded and positive operator, which 
also implies monotonicity. 

Theorem 4 (Hammerstein-type equations). Let G be a bounded or unbounded 
smooth domain and W be a monotone, coercive Carathéodory function on G x C,0 
satisfying assumption (Aa) with a = 0 and let K be a linear bounded, positive operator 
from L2 (G,C ,0 ) - L2 (G,C ,o). Then 

u + (AH + K)u I 

has a solution u E L2 (G,C ,o) for any I E L2 (G,Ce ,0 ) and each .X E R. If 11 or K 
are strictly monotone, this solution is unique. 

Proof. The operator .XHG + K is linear bounded and monotone, the Nemyckii 
operator 4 is monotone, bounded and coercive. Both operators map L2 (G, Ce,, , o) - 
L2 (G,Ce ,0 ). Now, an application of [19: Theorem 32.B] gives the desired result. I 

Theorem 5. Let G be a bounded or unbounded smooth domain and W be a mono-
tone, coercive Carathéodory function on G x C,, 0 and K a linear bounded, positive 
operator from L 2 '(G,C ,o) - L2 "(G,C ,o) ( > a 0). Then 

u + AHcu + Ku = g 

has a solution  E L2a(G,Ce0) ( > a 0) for any E L2°(G,Ce,0) ( > a 0) 
and each fixed .\ E R". This solution is unique if + ,\H + K is strictly monotone. 

Proof. The operator AHG + K L2a(G,C,o) L2'"(G,C0) ( > a 0) is 
linear bounded and monotone, the properties of the Carathéodory function imply that 
the Nemyckii operator 1 : L20 (G , Ce ,0 ) - L2'(G,C,0) ( > a 0) is monotone, 
bounded, coercive and continuous. Thus c1 + \H + K fulfills the assumptions of 
Theorem 3. I 

4.2 Maximal monotone operators and integro-differential equations. For the 
consideration of integro-differential equations we will use the property of maximal mono-
tonicity.
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Definition 1 (see [7]). A subset M C X x X is said to be a monotone set if for 
each pairs {u 1 , w1 }, {u 2 , w2 1 e M we have (w2 - Wi, U2 - u i ) ^! 0. Such a set M is said 
to be maximal monotone if it is maximal among monotone sets in the sense of inclusion, 
and a mapping A is said to be maximal monotone if its graph is a maximal monotone 
set.

Theorem 6. Let G be a smooth domain in R' and - a real-valued, continuous, 
positive function and let C, c> 0 be constants such that 

c < inf(1 + xI 2 ) 7(x) < sup (' + IxI 2 ) 7(x)	C. 
zEG	 zEG 

Then the operator 

A = D +7(x)I,	Dom(A) = ju E H"(G , C no)I tru E imQr} 

is a maximal monotone mapping Dom(A) - L 2(G , C€ 0 ) . JIG = R", then Dom(A) 
H1_i(R,C(,o). 

Proof. The operator 7(x)I maps L2_(G,C,o) uniquely onto L2 (G , Ce 0 ) be-
cause of

II7( X )u II = 1C,
+ IxI2)I7(x)I2Iu(x)I2dx 

15 sup {(i + 1x12)17(x)12 IG + 'I 2	u(x)l2dx 
XEG 

<CIIuII2 

From Theorem 2 weget that (Du, u) = 0. Hence 

(Du + 7(x)u, u) (Du, u) + (7(z)u, u) = (7(x)u, u) 
= f -y(x) lu(x )l'dx > 0. 

To prove maximal monotonicity we show the existence of a uniquely determined 
inverse operator with domain L2_(G,C,o). From [2:p.74] we know that TG maps 
L2 (G , C ,0 ) into L2 ' (G, C ,0 ). It is easily seen that (Tcu,u) = 0. Therefore, the 
operator

	

7'(x)J + TG: L2 (G , Ce 0 )	L2(G,C,o) 

is linear, bounded, strictly monotone and coercive due to 


(7 (x)v + Tv,v)= (7'(x)v,v) 

J -Y- I(X)(I + I12)-(1 + IxI2) 

^ kflv. 

Now, because of tr u E im Qr we have 

Du+-y(x)u=f	u+Tc7(x)uTaf	(7'(x)I+T)7(x)u=TGJ.
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There exists a unique v E L2(G,C,0) such that (7'(x)I + TG)V = TGf, and there 
exists a unique u E L2_ (G, Ce ,0 ) with u = -y'(x)v. Thus 

U + TG .-y(x)u = TGI 

has a unique solution u. Moreover, u = —TG (y(x)u - f) and hence tru E imQr and


Du = —y(x)u + I E L2(G,Ce,o) 

is well-defined I 

Theorem 7. Let G be a bounded domain and a be a monotone, coercive Carathéo-
dory function on G  ce ,0 satisfying assumption (Aa) with a = 0 and K be a linear 
bounded, positive operator from L2 (G,Ce ,0 ) - L2 (G,Ce ,0 ). Then 

.:u + (AH + K)u + Du + 7(X)u = g 

has a unique solution u E L 2 (G,C 0 ) for any g E L2 (G,Ct ,0 ) and each A E R'1. 

Proof. Because G is a bounded domain we have L2 '(G, C,, ,0 ) L2a(G , ce,0) 
L2 (G,C ,0 ). The operator D + 7(x)I is maximal monotone Dom(D + 7(x)I) C 
L2 (G,C ,0 ) - L2 (G, C ,0 ), the operator AHG + K is a linear bounded, positive opera-
tor and the Nemyckii operator 4 is monotone, bounded, coercive and continuous. Now, 
apply Theorem 3.1 

Theorem 8. Let G be a bounded or unbounded smooth domain and p be a mono-
tone, coercive Carathéodory function on G x C€,, ,0 satisfying assumption (Aa) with a = 
- and K a linear bounded, positive operator from L 2 (G,C ,0 ) - L24(G,Ce,0). 
Then

(Du +Ku+Du+7(x)u_—f 

has a unique solution u  {u E H' ,— 12- (G, Ctn,O)l trueimQr-} for any fEL24(G,C,o). 

Proof. We recall that the operator D + 7(x)I is maximal monotone, the operator 
K is supposed to be linear bounded and positive, the Nemyckii operator is, due to the 
properties of the Carathéodory function W, bounded, continuous and coercive. Using 
Theorem 3 gives the desired result. I 

Theorem 9. The operator 

—HD : H'	(R'1,C,0)c L2_4(RTh,Ce,0) 

is a maximal monotone mapping. 

Proof. From Theorem 2 we get the monotonicity of —HD and from Theorem 1/(iv) 
we know that —H is invertible and its inverse is given by H. Using Corollary 2 we get 

—HDu = f	Du = Hf	u = TDu = THI 

Thus for arbitrary f  L2 (R , Ce ,0 ) there exists a unique u E H''(R", Ce 0 ) such 
that —HDu = f I
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Theorem 10. Let cJ be a monotone, coercive Carathéodory function on R n x C?7,,o 
satisfying assumption (Aa) with c = - and K a linear bounded, positive operator from 
L2_+ ( Rn ,C4,0) -* L2 4(R 1% ,C 0 ) . Then 

4u + Ku - HDu = f 

has a solution u E H'(R,Ce 0 ) for any I E L2(R,Ce,0). This solution is 
unique if I or K are strictly monotone. 

Proof. The operator —HD : Dom(—HD) C L2_.}(Rhl,Ce0) 
is maximal monotone. The operator iD + K L2_ (Rn , Ce ,0 )	L(R,Ce,0) 
bounded, monotone, coercive and continuous. Now apply Theorem 3.1 

Theorem 11. For it E R the operator 

YD - HD H1'-4(l71,Ce0) C L2(R71,Ce,0)	L'(R",Ce,,,0) 

is a maximal monotone mapping. 

Proof. We have already seen that pD - HD is monotone. Now we want to show 
that there exist an inverse operator. We have 

uDu - HDu = (uI - H)Du = f	(MI - H)v = f in L2_(G,Ce,0). 

The operator MI - H is invertible and its inverse is given by j jiI + H). Thus 

Du = v = 1
	

2 (+H)f	u = TDu = 1 1 2 (pT+TH)f E H'(R,Ce,0) 

for any I E L2_(Rn,Ce,0) I 

Theorem 12. Let 4 be a monotone, coercive Carathéodory function on R' 1 x C,,,o 
satisfying assumption (Aa) with a= - and K a linear bounded, positive operator from 
L2_(Rn,ce,0)	L'(R",Ctn,Ô). Then 

u + Ku + zDu - HDu = f 

has a solution u e H'(R,Ce ,0 ) for any f E L2(R,Ce,0) and each ji e R. This 
solution is unique if 1 or K are strictly monotone. 

Proof. The operator uD—HD is a maximal monotone operator H' ,— (R", Ce ,0 ) c 
L2_ 4(Rt2 , Ce ,0 ) - L2 (R n , Ce ,0 ) . The remaining operator + K is bounded, mono-
tone, coercive and continuous. Thus an application of Theorem 3 completes the proof. I 

Remark. We dealt with the Clifford algebra C ,0 , i.e. e 2 = +1. This seems to be 
unusual. But the operators HG and H are not monotone if we use U0, . Nevertheless 
the operators iHG and iH are monotone in spaces over the complexified Clifford algebras 
Ce0,(C).
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