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Iterated Integral Operators in Clifford Analysis

H. Begehr

Dedicated to L. von Wolfersdorf on the occasion of his 65th birtﬁday

Abstract. Integral representation formulas of Cauchy-Pompeiu type expressing Clifford-alge-
bra-valued functions in domains of R™ through its boundary values and its first order deriva-
tives in form of the Dirac operator are iterated in order to get higher order Cauchy-Pompeiu
formulas. In the most general representation formulas obtained the Dirac operator is replaced
by products of powers of the Dirac and the Laplace operator. Boundary values of lower order
operators are involved too. In particular the integral operators provide particular solutions to
the inhomogeneous equations 3w = f, A*w = g and 8A*w = h. The main subject of this
paper is to develop the representation formulas. Properties of the integral operators are not
studied here. )
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1. Introduction

Any point z € R™ (2 < m) with an orthonormal basis {ex : 1 < k <'m} is represented
as r =), , Txex. By the convention R

€1 1 .
ejex + exej = —265; (2<5,k< m)

a Clifford algebra is introduced (see [6, 9 - 12, 15}) consisting of elements
a= Z aseq
A

where the sum is taken over all ordered subsets 4 = {ar,a2,...,ak} of {2,3,...,m}
with2 <o) <az < - < af <m and
€A = €q,€a; " €ay-

Moreover, in the case A = @ the basis element ey is understood to be e;. If the
coefficients a4-are complex rather than real, then the respective algebra is denoted by
Crm. One denotes for a = 3~ , aseq the complex conjugate as

_ — e =e =1
a=ZA:AA where {ET=—8k (2<k<m)
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and €4€p = €4 €5, and one defines a norm in C,, by

%
ol = (¥ leal)
A
which via
lalo := 27 |a]

becomes an algebra norm. R™ is embedded into C,,. In the sequal these elements are
denoted by ' '

We remark that then

The Dirac operator d and its complex conjugate 9 given by
= a = 7] = 0
= — d 0= +—-— —
0=) ag, @ 5o~ 2 %0y

corresponding to the Cauchy-Riemann and anti-Cauchy-Riemann operator

moimtiy) w0 eim )
in C, respectively, are divisors of the Laplace operator
- = 5
A=080=00= kZ::l o
We note that for any 2, or any 2 # 0 and a € R
0z2=20=2-m, 0z=z0=m
O|z)* = 12|10 =22, Oz|* = |2|°0 = a|z|* %2
0|z)? = |20 =25, 0l|z|* = |2|°0 = az|* "%z

8(zlz™™) = (z12]"™)9 = 0.
Lemma 1. The Dirac operator acting on polynomials follows the rules
k-2
8z* =759 = (m+2(k-1)zF"! +(m—2)2 ka_z'"z" for2<k
v=0
k-1
9z = k0 =(2-m) ZE"'""lz" for 1 < k.

v=0
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Proof. For the first formula observe
02" =220 = [7(Z+2)]0 — |2’ = m(Z +2) + 22 — 22 = (m + 2)7 + (m — 2)z
and by induction

7410 = [24(z + )j0 - [*~|+1%)0

k-2
= (m + 2(l€ - l))fk_l(f-f- z) + (m _ 2)2 ng—2—y2u(s+ z) + 22;:
. v=0
k-3
- (m + 2(_k — 2))?’°_2|z|2 —(m-2)z Z 2"‘3—VZV|2|2 _ 2Ek_2|z|7
: v=0 -
k-2 k-2 k=3
=(m+ 21:);" +(m—-2)z [ Zsk—l—uzu + sz—z-uzuﬂ _ ka—2—uzy+]]
v=0 v=0 v=0
k—1
= (m +2k)z* + (m - 2)z ZE"““’z“,
v=0

Similarly, from
) 0z=20=2-m

and

o = Mz + 2)]0 - [*|21%)0

k-1 k=2
=(@2-m)) T E ) 42— (2-m) Y BT - 22k
v=0 v=0

k-1 k-1 k-2
— (2 _ m)[zzk—uzu + sz—u—lzv-f-l _ § :ovzk—u—lzu-}-l}
v=0 v=0

v=0

k
=(2-m) Z zhv
v=0

the second formula follows B
Corollary 1. The Dirac operator satisfies
AF* 4 2%) = (7" + 2F)a = 2k T+

for1 < k.

For any integral representation the Stokes theorem is a fundamental tool. In Clifford
analysis it has the following form (see [10, 12, 14, 16]).
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Lemma 2. Let D be a bounded smooth domain in R™ and f,g € C(D;Cn) N
CY(D;Cn). Then

/ {(f0)g + f(3g)} dv = / f dég
D oD
/ {(fB)g + f(Bg)} dv = / f d3y.
D oD

Remarks. Here dv is the volume element of D while df := 7Aido with 7 :=
S re i nkex is the directed area element of D where (ni,...,nm,) is the outward di-
rected normal vector on 8D and do is the area element on 8D. Moreover, d6 = ndo.
By the usual method from (1.1) the representation formulae of Cauchy-Pompeiu type

(1.1)

(-2 1 (—z
wie) = o= [ AR dsowlo) - o [ w0 do)

(—z =

(12)
RN Uy I TN
o ot 06) = o [ Bu(6) )

w(z) = -1—

follow for w € C(D;Cm) N CY(D;C,n). Here wy, is the area of the unit sphere in R™.
Dual formulas are

1 .
w(z) = — /w«)da(c)K ~on (Oa)lc lmd(o (12)

w(z) = — / w<<)da(<>| / (w (c)a>|C = (0)

The operator

1 -2z —
T1() = - [ FmfQd0) (S € LiDiCm)
wm Jp | — 2]
is known to provide a particular weak solution to the inhomogeneous Dirac equation
Oow=f in D

(see [14]) while the boundary integral in the first formula of (1.2), obviously, is a left-
monogenic function, i.e. a solution to the related homogeneous equation

Ow=0 in D (and in R™\D as well).

Iterating these representation formulas similarly as in [1 - 5, 7, 8] leads to higher order
representation formulas. They provide general solutions to equations of the kinds

o w = f, Arw = f, tAkw = f.

The first kind of equation is treated in [16] in the homogeneous case. The second one is
the inhomogeneous polyharmonic equation for C,,-valued functions. A representation
formula for the third kind of equation seems to be involved in general.
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2. Higher order Dirac equation

Iterating the first formula of (1.2) leads to a representation of solutions to the inhomo-
geneous equation

*w=f in D (2.1)
where D is a bounded smooth domain in R™ and &k € N.

Lemma 3. For z,( € D with z # ( and k € Ny

oo L (=2 . (=0 -C+¢=0F
wed) = oo [ 0 >
satisfies -
¢0(Z1<) =0

6z¢k(Z,E) = O
¢k(z,g)3g= —éx-1(2,() for k€N
$x(2,0)0% = (<1)*¢0(2,0) =0 for k € No.

Proof. From (1.1) and 6 zI"‘ =0

$o(50) = /[(ICé—_jm ‘) |<< Z<|~ Icf'" <a‘| E? )]d"«):o

follows in the usual way by first applying (1.1) for D, = D\{|¢ — 2| < €}. The second
equation establishing the left-monogenicity of ¢ is obvious. For the remaining relations
observe

57z +2)* _ a(2:;,)"::~ _#Z(z+3)* 5= op 22 +3z)k! ‘
|z|™ |z|™ |z[™ ||
Hence,
o 2(z + ) _ Z(z +2) 9% = okp 2
|z|™ |z|™ |z

Gr+1 Z(z +2)* _ e +3)* =0
lz[™ |z[™ '

‘Applying the first formula in (1.2) for z,{ € D with z # Zgives

(z=QG=C+z-0)F
26k! |z = (|m
=z ((=O(-C+¢-Or
_¢"(Z 9~ /ch—zl"‘ 2k=1(k — 1)|¢ = |

(2.3)

dv(¢).

Using these formulas after having differentiated (2.2) leads to the last two formulas 8
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Definition 1. Let D C R™ be bounded and f € L1(D;C,,). Then for k € N

k -2z -2z z)k-!
Tuftey = CL [ C A= I sy auce.

For k = 1 this operator T; is the Pompeiu operator T, satisfying 8T f = f (see [14]).
Obviously, if Tof := f, then 8Tk f = Tk, f for k € N.

Theorem 1. Let D C R™ be bounded and smooth and w € C¥(D;C,,) for k € N.
Then for 2 € D

= K -z 2z
TERS Do af RS USLLLELB 10PN

aD 2epl € — 2|™

(2.4)
G ) (R ) s
ooy o a0 WO ()
Remarks. 1) An analogous formula is
k-1
e (=1 C-2)({—z+C—2)* EE5
v pz=o el B T QLR O .
(-1 [ (-2)C—z+(—2)*"
T om /D 261k — 1)1 |C — z|™ a w(()dv(()..
2) Denoting p, := 9*w and :
(=D [ (=aC—z+(-2)" o
u(z) = wm Jap 2uut | — z|™ da(¢) pu(C)
for 0 < p < k, then
k-1
w = Z(p,‘ + Ti pk. (2.5)
u=0

Here the 0*¢, are left -regular and 8*Tipr = pi. Thus Tip is a particular solution to
8*w = p while Z# o Pu is a solution to the related homogeneous equation 8w = 0.
(2.5) turns out to be the general solution to 8w = py.

In order to express the ¢, as some power series with left-regular coefficients one
observes

C=z+ -2 =D (-1 C+O* (2 +2)".

Therefore

O L i S
ou) = Y [ A @ a0 p ) 4 2)

=0 m

=Y anu(2)E+2)

=0
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where the a; ,, obviously, are left-regular coefficients. So (2.5) has the form

k-1

wz)= Y a(D)E+2) +Thp (o= 0w)

r=0
where the coefficients a, are left-regular. Observe
0z+z2) =2r(z+2)""!
O(z+2)"=2"7! '

367

Proof of Theorem 1. For k = 1 formula (2.4) coincides with the first Cauchy-

Pompeiu formula (1.2). For k = 2 use this formula again to get

_L —C_— w 2w v
o) = = [ S dsouc) - & [ w0 wio
Hence, o
w(z) = o= [ Ada ()
-wim [ 12,0 d8(0) ou(()
- /D $1(2,0) 8%w(d) dv(0)
with

sox_ 1 [ T=z (-¢
Ol A
By the Pompeiu formula (1.2)

(-0G=-(+2-0)
2]z =

dv(().

= :1(21,0) + $:1(2,0)
and from the Green formula (1.1) and Lemma 3
/ $1(2,0)d5({) 0w(() = / [(61(2,0)82) 00(T) + 81(2, P w(D)] du(O)
aD D
= [ #1200 u(@an@).

This shows ) -
w(z) = o= [ Fmda¢e()
_L ((_Z)(C z+< z) 5 w
L d5(0) du(C)
(C-2)C—z+C—2)
+ o [ e )

= o + @1 + T20%w
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where g is left-regular, i.e. 9po =0, and ¢, satisfies 92p; = 0.
Assume now w € C*~1(D;C,,) is represented as

k=2
w= Zcp,, 4+ T 01w

u=0

where -
(=1)~ ((—2)(—2z+(—2)*

wm  Jap 26puty( = 2|m

wu(z) = da(¢) 8*w(().

Then applying this representation to dw for w € C*¥(D;C,,)
k-2
ow =Y Gu+Te18'w
#=0

where

(-1 [ DT+
Wm Jap 20pl |¢ - 2™

and the first formula from (1.2)

Fulz) = d3(¢) 8" w(C)

w =g + Tlaw
where . —
2) = — ST as
onle) = o [ A (0wl
gives
k-2
w=po+ Y i, + T Teo10%w.
u=0
From (2.3)
Tigu(2)
(L1 T €@ =T o o s
= — = dv(¢) do'(¢) 0"
B e e T v COLLGL AR

1 [E=0E=C+z-0p*
L

= - O |da(0) 8+ w((
Wi 204 (p - 1)C = 2™ d"‘“("’o] %) @

and from the first formula (1.1) and Lemma 3
[ burr(2:00d8(0) ()
aD
= [ [@m1(5:000 81 u(0) + uaa(2,0) 021 0)] ()
= [ [emr(2, 007 70(0) = 642,08 (0] (),
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Hence,
k=2 k-1 1
Y Ti8u= Y eut o= [ deale,0) 0 u(Q)du(c).
u=0 pu=1 Wm D
Moreover, from (2.3)
TlTk_lakw(z)

=(-1>*/L/ (=2 ((-QQC-¢+C-¢F
Wm Jowm S =2 2k=2(k — 2)1|¢ — ¢|m

dv(¢) 8*w(¢) dv(()

- 1 N S ) GRSt sl PO
= wm/D[m_l( Q- TR *w(¢) dv(q).

This shows \
-1
w= Z ©Ou + Tkakw,
u=0
ie. (2.4)1

3. Integral representations in terms of powers of the Laplacian

As the Laplace operator is the product of 3 and § a representation formula in terms of
the Laplacian can be obtained by iterating both formulas (1.2). In this section 2 < m
is assumed. The case m = 2 is well-known.

Theorem 2. Let D C R™ be a bounded and smooth domain and w € C*D;C,,).
Then for z € D
1 -z
w(z) = o= [ A da(0(0)

wm Jap |{ — z|™

A
=/ 4570 duw(¢) (3.1)

Wm 2—-m
1 ¢ — 2>~
— [ = dv(().
+Wm /D o Aw(() dv(¢)
Remark. Formula (3.1) has the form w = ¢o + ¢; + S;Aw with a left-regular

function o and o, with left anti-regular d-derivative 9y, i.e. 3(8p1) = 0. Sy is the
well-known potential operator

Siple) = = /D L2 0 avc) (o Lu(Dica).

Proof of Theorem 2. Applying the second formula (1.2) to dw gives

ou) = o | a0 0u(0) - = [ ST Aw@ o)

wm Jop |¢ - 2|
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Thus together with the first formula (1.2)

L[ (-2 .
w(z) = wm Jop € = 2|™ WO
1
_w—m . ¥i(z, C)dU(C)aw(C)
+ L / ¥1(2,$) Aw({) dv(0)
Wm JD
with 7
_1 [ (-2 ¢-¢
w0 =00 f e =g
follows. Setting
T—2 2-m
wied= o [ gm0y ar

then for z,EE D with z # Efrom (1.2)

|z — (2™

9 _ =¢1(2,Z)+J1(2,Z)

is seen. (1.1) then leads to
[ 12 0d5@0u(®) = [ (410,05 0u() + 202 ) D] (D)
aD D

As z,/;,(z,Z)a_Z = ¢o(z,{) = 0 (see Lemma 3) this proves (3.1) B
In order to generalize (3.1) the next lemma will be used.

Lemma 4. For1<kand z#0

. k
AR = 2k k- ) [ (20 = m) |27

v=2
Ak|z|2k—m = 0.
Proof. Obviously, the formula holds for ¥ = 1. Then arguing inductively

Ak|z|2(k+l)—m — Ak_15(2(k + 1) _ m) lZIZk—mz

= AF1(2(k + 1) — m) 2k |22
k+1
=24k [J(2v = m) |27,

v=2

This is the first formula for k£ + 1 rather than for k. Because of harmonicity of the
right-hand side of the first formula the second follows immediately B
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Theorem 3. Let D C R™ be a bounded smooth domain and w € C?¥(D;C,,) for
1 <k. Then

k (TN = z[2w=1)-m
ma=z{ié (€= 2)i — =72 d5() A+~ w(()

soi Lwm Jop 261 (u — 1 [TSZ (20 = m)

_ b ¢ = 2)2Hmm . .
Wm /ao TG = D @ =) P08 (C)} (
R ¢ — 2|2k—™ f( ) do

Tom /D2"_'(k—1)!nt=l(2y_m)A (€) dv(¢)-

Proof. For k = 1 this is just formula (3.1). Let now w € C*(D;C,,). Then from
(3.1) applied as well to Aw as to w one has
w(z) = go(2) + 1(2)
1 .~ ~
v [ @600 au(d)
Wm JaD
1 g =
- — | W¥i(z,¢)d5(C) A w(()

Wm JaD

+w_1m/0q/,(z,<~)A2w(E)dv(f)

with . _
SR U R R
‘PO(Z) o= Wm LD |<~ Zlm (C) (C)
—z 2-m
w@%=~LL;57%;—ﬁ«WMO
I¢ = 2*™ (-¢
G Eben / 7—m fogm

- 22 m 2-m
¥(2,0) = /'C A NS
where @1(2,5) = 5‘:\111(2,6). From (1.2) observing
Ale*™™ = 04 — m)2|2|*"™] = 2(4 — m) |z *~™

it follows for z # Z

P U N - SN Ty, o
AT = o oo e PO 5 i)
B I ey (o) S i
/ao 2-m 450 2(2 —m)

\1’1(2,5)
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and by differentiating

Tz ~_22—m - o .

e 8,08+ (e D%+ 12,0
where ) ,. P

~ ~,__1_ I = 2P = (C = Ol = (P

(Pl(zac) = ,/;D 29— m d (C) 2(2 _ m)

1 (-2 & ¢ = (-

V(s 0) = wm/z;DlC—ZV" G —me—m)

Thus

w(z) = wo(2) + ¢1(2)

L (E—Z)|Z—z|2‘"“5~ " .
i Wm JaD B(Q—m) _ d (C)A ©)
N

m Jap 2(4 — m)(2 —m) da(¢) 0Aw(()

R ¢ — 2zt o
s /D S A (O

because by (1.1)
RS - @,;z,c)) 3| i (¢) duw(¢)
_/ (81(2,0) = $1(2,0)) d5(0) 0Aw(()
oD
+ /D (81(2,0) - ©1(2,0)) Aw(¢) ()
-/ [(&,(Z,g)_\fu(z,c))a@T]Aw(odv(o

=0

as again using (1.1)
(3:(2,0) - 01, 0)) a7
L[ K=z = (¢ 1 (== .- |< <|2'"
= —— d — _—_—
| 0 e as(¢) Bt —

Wm 2-m | wm Jap 1€ — 2™

O P I T S =y N [t
= — 17) - — dv
wm/,)[< i } (©)

=0.

This proves (3.2) in the case k = 2.
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In order to prove (3.2) for any k > 1 assume it holds for k- 1. Applying this formula
for Aw leads to

Au(z) = 1/ =2 45(0) duw(()

¢ - |
W (€= 2)¢ - dé B,
i 2_: o oo BT ) 0O A0

¢ — z)2#—™ o
— ‘; (_Z /('JD 2#—1(# - 1)' H5=1(2V — m) dU(C)aA w(()
L I¢ — Z|2(k_1)—m , )
' /D TP pae e Sl

Inserting this into (3.1) gives

w(z) = wim /aD |C2 _zl " dé(¢) w(¢) - 1 /80 ¢ - z|m'" 430 Bw(C)
k—1 1 _ 5 5 _ _ 3
Wim z g Fw(() - — z, a(¢) A w
+“z=:1{wm /aucbu( 1) da(() A*w(() o /BD U,(z,0)d5(C) A (C)}

L / ¥y (2,0) A*w(0) dv(0)
Wm D

with

o1 =P (= QIE - gpe
(I)“+1(z,().—;/D 2—m 2wl [P (ov — )dv(C)

0<p<Lk-2)
~o_ 1 [lg-2pfm ¢ — ¢
\p”(z,().—;/D 2-m 25 1(g—1)! 5=1(2,,_m)dv(o
(1<pu<k-1)

satisfying W,,(z,Z)%: ®,(2,() for 1 < p <k — 1. Formula (3.1) shows for 1 € Ny
€ = z|2tD—m
2t T8 (2w —m)
=% oy _JC= gD
u(Z ¢):= / ¢ — z|m da(() ou 'H““(QV m)

1 ¢ —zf*~m i3 ¢—QI¢—¢2+m™
/ Sk i I (C)Q(u |I'I)u=l(2,,_m)'

Tu(2,0) + Bu(2,0) + Tulz,0)

with

ﬂ(z ¢):=

By differentiation for 1 < p <k -1

Wm JaD

C=DE-sP™ o o 5 ae
2T 2o =) = D5 0% + 320 + 22,0
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follows. Thus

C_
w(z) = / e G0

! IC le "
oD

DT
+ Z Wm /GD 20! TI0_,(2v — m) d5(¢) A% w(()

d(¢) dw(¢)

= I — z[utD-m

- L/
=i wm Jop 20 u 021 (20 — m)
1 IC _ z|2k—m x
— A d
" /u 2k=1(k — )I[]5_, (20 — m) w(Q) du(0),

d#(¢) 8a*w(C)

i.e. (3.2) follows observing
k-1

> { /w (B4 + 0,)(2,€) B¢ |d&(C) A*w(C)

n=1

- / (@, + ifu)(z,c)dE@aA"w(c)}
apD

+ / (Bacr + Tar)(20) Akw(()du(()
D

k-1 - -

-3 L@+ 86080 80000
+ (@ + 8,003 ) 08k ()
- (@ + 8.0, 07 ) 02* ()
@+ B <‘)A"+‘w<<>}dv(c)
+ / (Brcs + Teir)(2, Q) Arw(Q)du(C)

D
- /D (o + To)(z, ¢) w(¢) du(¢)

Here

(;IS# + E’#)(ZaOAC = (:I;u—l + @#—1)(270 -
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and
(%0 + To)(2,0) ~
1 / (=2 o I—¢P ™ 1 / (2" —— (¢
= dg < + _— dU =
(op N Grs

wm Jap I€ — z|™ Wm 2-m I¢—¢|m

=0

is used and (1.1) applied B

4. General representation

In the same way as (2.4) and (3.2) are proved by iteration these two representations
could be used to develop a general formula. Because this seems to be involved when
done at once one prefers a step by step procedure. We are not able to give the general
formula but progressing as indicated one can get any kind of representation desired.

On the other hand such a representation formula is not of too much of interest.
Rather than representing a function w from C*+¢(D;C,,) through its derivatives of
the kind A¥*@w in D and its lower order derivatives A*d*w (0<k<k0<A<?
on 8D one could just use A¥*3w in D and A*w (0 <k <k+%)ondD for £ even and

AT 0w in D and Afw, A"0w (0< &k <k+ I_Tl) on 0D for £ odd, respectively.

Consider the area integral

_ 1 ¢ — z|2k—m k(0 do
Ik(z>—wm/l)2k_l(k_l)!n,:=l(zu_m)a () do(C)

in (3.2) and assume w € C?**!(D;C,,). By (1.2) then

1 (€ —2)[¢ — 2>~
L(z) = —
K2 =33 Joo 2k M-, (2 —m)

L[ TRk

wm Jp 2KK' T5_ (20 — m)

dé(¢) A w(()

da*w(¢) dv(¢)

follows when as usual first the'domain D, = {( € D : € < |( — 2|} is considered. Thus

k

L[ (D A
W=D o | T @ oy 98O

u=0

: 1 |<—Z|2“_m = u—1 41
_,gu’—m/f;o 21 (n = DI (v = m) 206 98" w(() (41)

1 [ =2~ aprm
wm Jp 26K T]E_ (20 — m)

aAkw(() dv(().-
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Denote the last area integral by Irxi(z). Then by (1.2) for w € C**+1)(D;C,,) n
C*(D;Cwm)

1 (Z——Z)ZIC i

|z|2(k+l) m . .
2k+1(k + 1) ][5} (20 — )]da(OaA w(d)
_ L/ (€= 2)%I¢ — 2|
wm Jp | 26+1(k + )5, (20 — m)
|Z|2(k+l)—m -_
26+1(k + 1) [T5 L (20 — )}a Atw(Q)dv(C).

This area integral Ix,(2) is for w € C2:+D+Y(D. C,, ) N C**:+)(D; C,)
_ (C=2)°|¢ — 2** ™

Ikg(z) = — r

wm Jap [ 2K42(k + 2)![], -, (2v — m)

[2(C=2) + (€ + 2)] ¢ — 2|2k+D-m
2k+2(k + 2) [, 25 (2v — m)

_ L/ (= 2)p[¢ - 2f2t~m
wm Jp | 2k+2(k + 2)! H5=1(2V _m)
[2(C=2) + (¢ - 2)]|¢ — z[**ktD-m

2k+2(k+2)!nk+l(2y )

]dc(() *A*w(¢)

&° A*w(¢) dv(().

Assuming w € C?F+3)(D;C, ) N C¥H*+D+1(D C,,) the area integral Ixs(z) here is

¢ = 204|¢ = z|2k—m
fsl)= oo /aD [2'=+3((Ck + ;) K[['; ll(zu —m)
4 BE=2) +2¢ - 2 + (¢ = 2)’] ¢ = 2D
2k+3(k 4+ 3) ]2 (20 — m)
¢ — z|2(k+2)—m
26+3(k + N[22 (2v — m

rv=3

_ L/ (€= 2)*g — 2>~
wm Jp | 2643k 4+ ) []E_, (2v — m)
[3(CT2)2 +2|¢C -2 + - 2)2] I¢ - le(k+1)_m
* k+1
2k+3(k + YN[, 2,(2v — m)
g = opk+2)-m
2k+3(k + 3)| I-Ik+2(2 )

)} d5(¢) 8° A*w(()

9* A*w(¢) dv(¢).
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proving these formulas Lemma 1 and Corollary 1 are useful.

A dual formula to (4.1) as analogously one to (2.4) can be given where 8 is replaced

byaand(—zby(—z
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