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Dedicated to L. von Wolfersdorf on the occasion of his 65th birthday 

Abstract. Integral representation formulas of Cauchy-Pompeiu type expressing Clifford-alge-
bra-valued functions in domains of R through its boundary values and its first order deriva-
tives in form of the Dirac operator are iterated in order to get higher order Cauchy-Pompeiu 
formulas. In the most general representation formulas obtained the Dirac operator is replaced 
by products of powers of the Dirac and the Laplace operator. Boundary values of lower order 
operators are involved too. In particular the integral operators provide particular solutions to 
the inhomogeneous equations 8kw = j AkW = g and 8&'w = h. The main subject of this 
paper is to develop the representation formulas. Properties of the integral operators are not 
studied here. 
Keywords: Cauchy-Pompeiu representations, Dirac operator, Laplace operator, Clifford anal-

ysis 
AMS subject classification: 31 B 10, 31 B 30, 30 C 30 

1. Introduction 
Any point x E 1K tm (2 <m) with an orthonormal basis {ek : 1 < /c <m} is represented 
as x =F', X k ek . By the convention 

ej=l 

e1 ek + e k ej = 26jk (2 < j,k < in) 

a Clifford algebra is introduced (see [6, 9 - 12, 151) consisting of elements 

a=>2aACA 

where the sum is taken over all ordered subsets A = {a i , a2 ,.. . , ak} of {2, 3,. . . , m} 
with 2<a 1 <a2< ... <ak<mand 

e A = e 01 e 02 - 

Moreover, in the case A = 0 the basis element e0 is understood to be e 1 . If the 
coefficients a fl . are complex rather than real, then the respective algebra is denoted by 
Cm. One denotes for a = EA a A e A the complex conjugate as 

- v-'___	 1T=ei =1 a =	aA e4	where	
= — C (2 < k < in) 
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and	=	and one defines a norm in Cm by 

al := (>IaAI2)4 

which via
lab := 2i 1a1 

becomes an algebra norm. IR is embedded into Cm. In the sequal these elements are 
denoted by

rn 
Z = 1: X k e k- 

We remark that then

z = xI — 	x k e k,	ZZ — ZZ =	= 

	

= -	+ 2x 1 I: xkek,	= -	- 2x 1	xkek. 

The Dirac operator 0 and its complex conjugate Ô given by 

S=
 

e k	and	=	-	e,
k=2	Xk k=1	

xk

corresponding to the Cauchy-Riemann and anti- Cauchy- Riemann operator 

	

a	is	.0	 310	.0 
and

az 2 ax	19Y 

in C, respectively, are divisors of the Laplace operator 
M a2 

= a = a = > 49X2 

We note that for any z, or any z 54 0 and a E R 

Oz=zO=2—m,	0=0=m 

5 1 z 1 2	z 1 23 = 2z,	01z1 = lzl a O = alzla_2z 

lz1 2 = 1 z 1 2Ô = 2,	olzl a = l z l Ô = alzl2 
0(lzb_ m ) = ( Izl_ m )0 = 0. 

Lemma 1. The Dirac operator acting on polynomials follows the rules 

= yka = (m + 2(k - l))k_I + (m - 2)z_ 2_P z v for 2< k 

0zk=zk3=(2_m)_1z for l<k.
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Proof. For the first formula observe 

= T2 a= [1( + z)]ô - 1 z 1 2ô = m(1 + z) + 21— 2z = (m + 2)1 + (m - 2)z 

and by induction 

1k+i3 =	+ z)]ô - E1'1IzI2]ô 

= (m + 2(k -	 + z) + (m - 2)z	 + z) + 21k 

- (m + 2(k - 2))yk_21z12 - (in - 2)z	 - 2yk_2p12 

=(m+2k)1k+(rn_2)z[E1k_1_vzP+12_z+I _:lk_2_Uzh 

= (in + 2k)lk + (m - 2)z 1k_I_zP 

Similarly, from
az = za = 2 - in 

and

= [z k (l - - z)]3 - [zk_hIzI2]3 

= (2 - m)	1kv-i z"(1 + z) + 2z k -(2 - m)	lk_P_2 z v lI2 - 2z k 

_ ovzk__1zh 

	

:	 1 

= (2 - m) 

the second formula follows I 

Corollary 1. The Dirac operator satisfies 

+ z') = (1k + z k )a = 2klk_1 

for 1 < k. 

For any integral representation the Stokes theorem is a fundamental tool. In Clifford 
analysis it has the following form (see [10, 12, 14, 16]).
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Lemma 2. Let D be a bounded smooth domain in Rm and f,g E C(T;Cm) fl 
C'(D;Cm). Then

ID {(fS)g + f(Sg)}dv = f D 
f d6g

(1.1) 

JD {(fThg +f( g )) dv= f fdg. 

Remarks. Here dv is the volume element of D while dd	lida with ii 
n k e k is the directed area element of SD where (n 1 ,... , n,1 ) is the outward di-

rected normal vector on SD and do, is the area element on SD. Moreover, eo, = ri do 
By the usual method from (1.1) the representation formulae of Cauchy-Pompeiu type 

	

W(Z) z-=	 d __-f	)w(()	if 
(r 

3 __	--	 w)v(() 
Wm a K zI m	 Wm D K - zlm	d	

(1.2) _____	 1 
f 

(—z 
W(Z) 	f	(—z d(()w(()------ nK_nl m Wm JaD K - zim WM 

follow for w E C(;Cm) fl C'(D;Cm). Here Wm is the area of the unit sphere in Rm 
Dual formulas are 

1 1,1	 1 4(w(C)a)
WmD	K - zi m - 	Zdv(()w(z) = 	w(C)d(()

LO. 	K - zIm  

	

1	I•	 1	P 

D	 (_zlm	(w(),	
l

dv). W(Z)
 

	

Wm
	w(() d6(()

D	K_zm 

The operator

ir 

	

Tf(z)	
JD K - zImf'	(1€ Li(;Cm)) 

is known to provide a particular weak solution to the inhomogeneous Dirac equation 

Sw=f in D 

(see [14]) while the boundary integral in the first formula of (1.2), obviously, is a left-
monogenic function, i.e. a solution to the related homogeneous equation 

Sw = 0	in D (and in Rm \D as well). 

Iterating these representation formulas similarly as in 11 - 5, 7, 8] leads to higher order 
representation formulas. They provide general solutions to equations of the kinds 

= 1	= f,	= 

The first kind of equation is treated in [16] in the homogeneous case. The second one is 
the inhomogeneous polyharmonic equation for Cm-valued functions. A representation 
formula for the third kind of equation seems to be involved in general.
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2. Higher order Dirac equation 

Iterating the first formula of (1.2) leads to a representation of solutions to the inhomo-
geneous equation

ôkf	in D	 (2.1) 

where D is a bounded smooth domain in R m and k E N.

Lemma 3. For z,( ED with z 0 ç and k EN0 

1 JaD 

	 + ( -k(Z,(  :=— 
Wm 	K - zi m	 2kk! K - Im	

(2.2) 

satisfies
O(z,() = 0 

Ozcbk(z, () = 0

k_1(Z,() for k EN 

= (...l)0(z , 6=0    for k E N0. 

Proof. From (1.1) and	= 0 

95 0 	
m ID [(i 0) 

T +	

(1çIm)Ith0  m K_(I m K_zlm 

follows in the usual way by first applying (1.1) for D = - zI e}. The second 
equation establishing the left- monogenici ty of cbk is obvious. For the remaining relations 
observe

3(2xi)' = (z+	
a=2k . IzIm	IzIm	Izim	 Izim 

Hence,

IzIm	Izim	 IzIm 
5k+1 (z +	- (z +	

- 0 IzIm	-	IzI m	- 

Applying the first formula in (1.2) for z, (E D with z 54 (gives 

2'k! Iz - ( Im
-	 (2.3) 

-	1 [ (—z ((_((_((_()k_I 
k Z, 

ç - WmJD IC - zi m	2 k—l (k - 1)! IC - Im 
dv). 

Using these formulas after having differentiated (2.2) leads to the last two formulas I
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Definition 1. Let D C W' be bounded and f E L i (;Cm). Then for k E N 

(-1)' 

ID ()(+ ( - Tkf( z ) :=	 2'(k Wm	 _ 1)!I(_zlm	
f((dv((). 

For k = 1 this operator T1 is the Pompeiu operator T, satisfying OTf = I (see [14]). 
Obviously, if Tof := f, then OTkf = Tk_If for k e N. 

Theorem 1. Let D C R m be bounded and smooth and w E C k (D;Cm ) for k E N. 
Then for z E D

( — W(Z) =	
( 1 

JaD	

z + z- 

m 	2/L! K — zlm
(2.4) 

+ (_1)k [
( — z)k okw(()dv((). 

Wm JD 2k1(k — 1)! K — zim 

Remarks. 1) An analogous formula is 

W (z) =	 ii ((- z ) ( ( — z + ( — Z d(()w(() 
Wm	8D	2! K -. ZIm	

(2.4)' 
+ (_1)k J ((- z)(	+ ( — z)c	

k(() dv((). 
m	D 2 k- 1 (k — 1)! ( — rim 

2) Denoting p, := &w and 

(-1y	 d(()p,(() 
Wm J8D	2! K — rim 

for 0	i < k, then

=+
	 (2.5) 

Here the &o are left-regular and 0'Tkpk = Pk . Thus Tkp is a particular solution to 
0cw = p while	is a solution to the related homogeneous equation &w	0. 
(2.5) turns out to be the general solution to 0kw = Pk. 

In order to express the V, as some power series with left-regular coefficients one 
observes

+ (— Z)" 	(_1)T( + ()	+	. 

Therefore

(z) 
=(_)p-r

 I	( — z (+() Td)p(()(+z)T 
Wm	 DiC2im 

p
a,.,(z) ( + 

rrO
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where the a 7- , , obviously, are left-regular coefficients. So (2.5) has the form 

	

w(z) 
=

a 7-(z)( + z) T + Tkp	(p := akw) 

where the coefficients a r are left-regular. Observe 

O(+z) 7- =2r(+z) 7-

Proof of Theorem 1. For k = 1 formula (2.4) coincides with the first Cauchy-
Pompeiu formula (1.2). For k = 2 use this formula again to get 

ôw(z)	
1	(Z	 1	_______ 

	

da)aw)--	 ô2w)dv). 
Wm fD IC - zi m	 m ID K - zim 

Hence,

W(Z) -
1 f	

d6(() w(() 
U'- aD K - zlm 

1	I 

- Wm JÔD 
it 

+— I	(z,a2w(dv(c) 
Wm JD 

with
1	f ( —Z

 (z,)=  
Wm JD K_zl m K_(Im 

By the Pompelu formula (1.2) 

(z–)(z–+ z - () = + 
2Iz_(Im 

and from the Green formula (1.1) and Lemma 3 

faD (z, )dd() ôw() =

 

Doi(z, 	) ôw() + &(z, )o2w()] dv(()  

=I D  &(z, 32w(dv). 

This shows
w(z)

1	_____ - 
WmfôDlC_ZIm 

– -	 da(w(() 

- _j__	()(( z + ( - z) da(() ôw(() 
Wm .9D	21(_zlm 

+	 f ()(	+(- z)a2w(() dv
mD	2I(_zlm 

= 2O + QI + T252w
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where g is left-regular, i.e. 3o = 0, and V, satisfies 32	= 
Assume now w  C' - '(D; C.) is represented as 

1:
=

+ Tk_13k_Iw 

where
(_1)0 f ((_z)(C_z+(_z)L 

dg(O 3'w). 
Wm JD	2i! ( - zim 

Then applying this representation to 3w for w E Ck(; Cm) 

3w 
=

+ Tk_IDkw 

where
(z) =

Wm JaD 

and the first formula from (1.2)

(( - z)(( - z + ( - 
2 1 L! IC - zlm

d(() 3L+1 w(() 

w = + T13w 

where
po(z) 
= 1 faD IC - 

zm d(() w(() 
WM 

gives

W = +	 + TiTki3kw. 

From (2.3) 

Ti(z)

________	 )IL	 -. = H'
	fD IC zlm	2l CIm!  

	 dv(()d)3w(C) 
Wm LD -	 K- 

1 t 1(z-(z-(+z--' = -
	faD [ 2+i( + 1)! I- ZIm - 

^ i (z)] d(()&w(C), 

and from the first formula (1.1) and Lemma 3 

1D 
+1(z,()dd(()0w(C) 

=f [(+(z, 0) &w(C) + + i (z, a +2 w(()] dv(() 
D 

= I 
D 

[^I(z,()aM+2w(() - 0"( Z 'C)&'w(C)] dv((). 
J
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Hence,
k-2	k-i 

=	--- I Urn ii) 

Moreover, from (2.3) 

Ti Tk - ak w( z) 
= ()k	

I
()k.2 dv)3kw()dv() 

Urn	Urn K - zlrn 2k- 2 (k - 2)! K - cIm D	D 
-	

J [k1Z	
- ( z -	 z - )

k-1 1ak 

	

Urn D	2'i(k -1)! 1, - lm -j 

This shows

=+ Tkakw, 

i.e. (2.4) 1 

3. Integral representations in terms of powers of the Laplacian 

As the Laplace operator is the product of ô and a a representation formula in terms of 
the Laplacian can be obtained by iterating both formulas (1.2). In this section 2 < m 
is assumed. The case m = 2 is well-known. 

Theorem 2. Let DC Rm be a bounded and smooth domain and w  C2(D;Crn). 
Then for z E D

( _ Zd6)W(() 
Urn 3D (Z 

rn
 

- 1 

J 
K - zI2m 

dôw(()	(3.1) Urn 3D 2—rn 
1
 ID 

(_ 2-m 
+ —"

 2-rn 

Remark. Formula (3.1) has the form w = p0 + i + S 1 Aw with a left-regular 
function po and with left anti-regular a-derivative ôço 1 , i.e. O(3) = 0. Si is the 
well-known potential operator 

Sip(z) = K - z2_m p)dv(()	(p E Li(;Crn)). Urn D 2-rn 
Proof of Theorem 2. Applying the second formula (1.2) to Ow gives 

______ 

	

Ow(z) = I [	C- Z d.5(() a,(() -	JD K - zI' Aw(() dv). Urn JEW K - zIm
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Thus together with the first formula (1.2)

d6(() w(() 
Wm aDI(_ZIm 

— ---- f	 (z,()dê(()öw() 
W1 

+-- ID
z,w()dv() 

Wm 

with
1f —( :=	JD K — Z m	imd 

follows. Setting
1 f  

J8D K _- z 	2—rn 

then for z,(E D with z (from (1.2) 

Iz_I2m
=  

2—rn	
&(z,() +b1(z,() 

is seen. (1.1) then leads to 

1a
01(z, ) d)5w(() = I D	

D [( (z, ) ) ôw() + bi (z, () w)] dv). 

As 0 1 (z,c)= Oo(z,() = 0 (see Lemma 3) this proves (3.1) 

In order to generalize (3.1) the next lemma will be used. 

Lemma 4. For 1 <k and z 54 0 

&_ h I zI 2k_m = 2'(k — 1)!	— rn) z12_, 

,k1I2k_m = 0. 

Proof. Obviously, the formula holds for k = 1. Then arguing inductively 

k112kfI)m =	—(2(k + 1) — rn) I z12c_mz

= Ak_l(2(k + 1) — m) 2k 1Z I2k_m 

k+1 
= 2 c k! 11 (2v— rn) z12_m. 

=2 

This is the first formula for k + 1 rather than for k. Because of harmonicity of the 
right-hand side of the first formula the second follows immediately U
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Theorem 3. Let D c Rm be a bounded smooth domain and w E C 2k(;Cm ) for 
1 <k. Them

k	 - zI2(L_1)_m 

	

Ir 2'( —1)! fl(2u -	
d)w(() 

1 I	 K_zI2_m 

- Wm J8D 2M'(p - 1)! fl1(2	
d6)5-1w)}	(3.2)

u—rn) 

1 r	K - zI2c_m 
+	/ Wm JD 2 c_ I(k - 1)! fl.. 1 (2u - m) 

Proof. Fork = 1 this is just formula (3.1). Let now w  C4 (; Cm). Then from 
(3.1) applied as well to Lw as to w one has 

W(Z) = p 0 (z) + wi(z) 

+--J'a WmD 

--i-- I
 Wm JOD 

+ --- f i(z,2w()dv() 
Q1 D 

with

if (— p 0 (z) :=	z dd)w(()
Wm aDK_zIm 

i r I(_z12m 
2—rn d6(() (9w(() 

Z12m	
dv(() 

WTnJD 2—rn I_cIm 

I f K - zI2m K - I2m dv(() 

mJD 2rn	2—rn 

where 1 1 (z,() = i3-'4'i(z,c). From (1.2) observing 

'. I z I" = Z)J(4 - rn) Z1Z1 2_m ] = 2(4 - in) 1z12_m 

it follows for z 0 ( 

I  -	 1 f (z dd(()	K - 
2(4—m)(2—rn) Wm	IC_zi m	2(4—in)(2—m) 

1 f K - z12_rn dd(() — ) — 
WM JOD 2—rn	 2(2—rn)

+ i(z,()
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and by differentiating 

(—z)I— ZI2m—(z,()+	+ 41 1 (z, 2(2—rn)	 ( 

where

1 

	

fa 
K - zI 2m	 I2m 

m D 2 	
d(()	

2(2 - m) 

1 	K—Cl4m 
WrnJôD K_zl m	2(4—rn)(2—rn)

Thus
W ( Z ) = po(z) + p1(z) 

1 
J ((—z)K—z12m + 

Wm 8D	2(2--)	
d(() w(() 

1	I_zI4_m 

-	ÔD 2(4 - ?,n)(2 -
	d)Ow(()
in) 

1 fD	

Z4_m

	:2(4 m)(2 - in) -	
2w() dv(()

because by (1.1)

f { ( i (z,) - i (z)) ]dê(w(C) 

- J (3 i (z,) - 

+ IDi(z,() - 1(z,)2w)dv(() 

= ID [ (	
- 

=0 

as again using (1.1) 

(1(z,) - 

—	1 f K—z12m 
- WmJ8D 2—rn 

1 
ID—K-z12_m 

 2—rn

dd()	
jav 

	
_ K - zlm d(() 2—rn 
K - 

z	 K_c12_ml 
(rn - I(_zIm	

2—rn dv(() 

0. 

This proves (3.2) in the case k = 2.
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In order to prove (3.2) for any k > 1 assume it holds fork – i. Applying this formula 
for 1w leads to

1 
fw(z)

	

	 (–z d(()iw(() 
– Wrn 3D K – zIrn 

k-2 +E L	()I( – zI2
d(() LVw(() 

Wm 18D 2 P jz! fl 1 (2v – rn) 

k-I 

– i – faD 2	
K –, zI2_m 

'( - 1)! fl 1 (2ti – m) d) 3&w(() 

1  
+	

K – z12(k-1)_m	
w)dv). 

Lom — D 2 c_2(k – 2)! fl I (2v – in) 

Inserting this into (3.1) gives 

K —z12  

	

w(z) 
= Wrn ZD 2–	

dd)w(() -	f 
K – Z12_m dê)ôw(() 

Urn D 2–rn 
k-i I 

	

+ v') -i-- I	(z,)dê()&w() – --- I lWmJ3D	 'rnJ3D 

1	-. 
+	j 

Urn JD 

with

J K—  z12_m ( —c:) I- (12,. -m 

Urn D 2 771 2i! fl's 1(2v –

	

(0	<k –2) f IC-I_dv(() 
UrnD 2 in 2i(1 1)! fl 1 (2v – in) 

(1 < M <k – 1) 

	

satisfying 'P,(z)ô-=	(z,() for 1 <	k – i. Formula (3.1) shows for ,u EN0 

_ =	(z, () +	(z, () +	(z, () 
2 P ! fl(2ti – n) 

with

1 faD	
z dff(()

 K - zi rn	2p! fl(2v - in) Urn
12-rn	(— K- I2M mfl 

:= ---- 
I ' -	dd(( 

	

Urn JaD 2–rn	2! fl 1 (2u — in) 

By differentiation for 1 <	k — 1 

((— z) K- zI2m 
2! fl 1 (2v — in) = "(z, ()+ (z, (3-+	z, ()
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follows. Thus

:-::- 

	

W(Z)	
1 

J ai, W m	K - 
zim dê(() w(() 

1	K-z12m 

- 	JaD 2—rn

- +>--J ( 
k-i	

)K zI 2 m
dê(() Aw(() 

Wm 3D 2! fl1(z ,	z/ in)  

k-I
d)aAw(() -	J... 

JaD 
IC - zI2(+1)m 

 2 1 ! fl 1 (2v - in) 

1 
f kw(() dv((), 

Wm D 2k(k - 1)! fl.. 1 (2v - m) 

i.e. (3.2) follows observing 

{ 
I [( + 

- !3D + 
) (z)d3&w)} 

+ Lk1 + 

E= 1D {( + i  

+ (( + 

-	+ 

- op, + 

+I	+ 'Pk-1)(z, Akw(()dv(() 

4(s. 
=	

+ o)(z,w)dv(() 

=0. 

Here

(	+	)(z, ()	= (-i +	- i )(z,
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and

ON + 'I'o)(Z, 

= WTfl IaD	

I_cI2_m	1 I K —z 1 2m	c-c +—	 da(() 2—rn	-'m ÔD 2—rn	K- (IM 
=0 

is used and (1.1) applied U 

4. General representation 

In the same way as (2.4) and (3.2) are proved by iteration these two representations 
could be used to develop a general formula. Because this seems to be involved when 
done at once one prefers a step by step procedure. We are not able to give the general 
formula but progressing as indicated one can get any kind of representation desired. 

On the other hand such a representation formula is not of too much of interest., 
Rather than representing a function w from C2t(D;C rn ) through its derivatives of 
the kind M31w in D and its lower order derivatives /&'w (0 ic < k, 0 A < £) 
on aD one could just use z'w in D and A.'w (0 < ,c < k + f) on ÔD for e even and 

in D and 1w, Li'ôw (0 i < k + L.i) on ÔD for £ odd, respectively. 
Consider the area integral 

1 f K — zI2l_m Akw)dv(() Ik(Z) =

	

	JD 2 k_I (k — 1)! fl k 1 (2 — m) 

in (3.2) and assume w E C 2 (D;Crn). By (1.2) then 

k-rn 
Ik(Z) — _±. f	K — z12	

dê(() kw(() 
Wrn 0D 2kk! fl 1 (2u — m) 

1	 ) K — z12k-rn akw(() dv(() 
— Wrn I 2kk!fl1(2_rn) 

follows when as usual first the'domain D = {( E D : e < K — z I} is considered. Thus 

k	
() K — z12M_m W(Z) =	

IaD 2! fl 1
(2v - rn) dd(() Lw(() 

k 
—	 K 

LD 2 1	
— zI2P_m 

(2v	
d5)ôA''w(()	(4.1) 

(ji-1)!fl.,1—rrz) 

1 1 () K — z12k_m 
— m JD 2k! fl 1 (2v — rn)
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Denote the last area integral by IkI( z ) . Then by (1.2) for w E C2(k+1 )(D;Cm ) fl 
C2k(T; Cm)

1 j [
	

( 

	

(Z)	
)2I( - z12k_m 

	

IkI	
Wrn 8D 2 k + 1 (k + 1)! fl_ 1 (2v - m) 

+
IzI2+_m	

1 I 
2k+I(k + 1)! fl(2v - ?n)j dê() aw(() 

2 1 !
	

(— zI 2k-rn 

[ -	D 2k+1(k + 1)! fl.. 1 (2v - m) 

+	 0 w dv 
IzI2(k+m	1 2 k + I (k + 1)!fl(2 v m)j  

This area integral Ik2(z) is for w  C2( ' ) (D; Cm) fl C2(k+1)(; Cm) 

()3K_zI2k_m 
1k2 ( Z ) =	

JaD [2k+2 (k + 2)! fl 1 (2v - in) 

+ [2(( — Z) + (( + z)] K - ZI2(k+1)rnld(()Ô2k(. 
 2k+2(k+2)!flt(2L,_m) 

. ID [
_() I( - zI2m 

	

-	
2k+2(k + 2)! fl... 1 (2v - in) 

+
[2(( — z + (( - z)] K - ZI2(k+1)_m]O3k(d(() 

2k+2(k + 2)! flt(2v - in) 

Assuming w E C22 (D;Cm)n C2(k+l)+l (D;Cm) the area integral Ik3(z) here is 

1	1 1	()4I(_ZI2k_m 

	

1k3( Z ) =	
faD L2 k + 3 k + 3)! fl,, 1(2v 

+ [3(( _ . )2 + 2K - z12 + (( - z)2] K - 

2k+3(k + 3)! flt(2v - m) 

1 
+ 2k+3(k+3)!	

(2 - m)j d(() a3w(() fl  
1	r Z)41( - zI2m 

- Wrn ID L2 k + 3 k + 3)! fl 1 (2u - in) 

+ (3()2 + 2K - z12 + (( - z)21 K - 

2k+3(k + 3)! fl(2v - in) 

+	
K - zl2(2)m	1 94w(() dv). 

2 k+3(k + 3) 1 fl(2v - m)j
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For proving these formulas  Lemma 1 and Corollary 1 are useful. 

A dual formula to (4.1) as analogously one to (2.4) can be given where 3 is replaced 
by 3 and (- z by (- z. 
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