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Abstract. We prove a global in time existence and uniqueness theorem for the identification 
of a relaxation kernel h entering a hyperbolic integro- differential equation, related to a convex 
cylinder with a smooth lateral surface, when the coefficient h is assumed to depend on time and 
one space variable and general additional conditions are provided. A continuous dependence 
result for the identification problem is also stated. Finally, a separate proof concerning the 
existence and uniqueness of the solution to the related direct integro-differential problem is 
also given in a suitable functional space. Moreover, the dependence of such a solution with 
respect to the relaxation kernel is fully analysed. 
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1. Introduction 

This paper is concerned with the identification of a unknown coefficient h (the relaxation 
coefficient, depending on time and one space variable) appearing in the following integro-
differential equation related to the convex cylinder ci = (0, £) x w C R Th (n > 2), w being 
an open bounded convex set in R` of class C": 

Du(t, x, y) + Au(t, x, y) + f h(t - s, x)Bu(s, x, y) ds

(1.1) 

+/ Dh(t - s, Cu (s, x, y)ds = f(t, x, y) 

for all (t,x,y) E [0,T] xci. Here 
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A = —D[ai,i(x)D] 

-	D [a, , , +i (x, y)D3] -
	

[ai+i,i(x, y)D] 

n—I 
-

	

	
(1.2)

+a, (x,y)D  

+	a i + j (x,y)D +ao(x,y) 

B = D[bi,1(x,y)D] 

-	D[b(x, y)D 1 ] -	D[b1 + ,1 (x, y)D] 

n—i	
(1.3) 

- i	 + b1(x,y)D 

+b1+(x,y)D, +bo(x,y) 

C = c 1 (x, y)D +	c i +(x, y)D + co(x, y).	.	 (1.4) 

We note that C is a linear (formal) first-order differential operator, while A and B are 
two linear (formal) second-order operators with principal parts in divergence form. We 
emphasize that the coefficient a 1,1 in A depends on x only, instead of on the pair (x, y) 
as in the general case. The operator A is uniformly elliptic, i.e. 

n 
a i I1 2 < >	at,(x,y),e, '.5 012 1 ^ 1	 (1.5) 

for all (x,y,) E (0,) x w x R'1 where a 1 >0 and a2 >0 with a 1	a2 are two given
constants. 

We now prescribe the usual initial-boundary value conditions 

u(0,x,y) = u0(x,y)	((X) Y) E )	 (1.6) 

Dt u(0,x,y) = u i (x,y)	((x,y) e I)	 (1.7) 
au	

x, y) = 
au2

x, y)	((t, x, y) [0, T] x O)	 (1.8) 
VA	 OLIA 

where u0,u1	- R and u2 [0,T] x n - R are given (smooth) functions and VA 
denotes the conormal vector associated with A and Q.
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To determine the relaxation coefficient h we assume that the two pieces of additional 
information

[u(t, )](x) = (t, x)	((t, x) E [0, TI x (0, e))	 (1.9) 

1P lu ( t , • ) ] = OW	(t E [0, TI)	 (1.10) 

are available where	is a linear operator acting on the variable y only, while 'P is a 
linear, functional acting on all the space variables. Examples of admissible cJ and 'P are 

c[vj(x)=j\(x,1/)v(x,y)dy (xE(0,))	 (1.11) 

'P[VI =jp(x,)v(x,)dxd	 (1.12) 

where ) .' -* IR and p: Q - R denote two (smooth) assigned functions. 
We observe that our choice not to explicitly define operator cI and functional 'P 

allows a large variety of applications, the actual choice of 4 and 'P being left to the 
user. Then we observe that our data have to fulfil the consistency conditions 

Ouj (x, y) = D---(0,x,y)	((x,y) E 3l)	 (1.13) —
oVA 

D(0,x) = [u](x)	 (x E [0, el)	 (1.14) 

D(0) = 'P[tz]
	

(1.15)

for  = 1, 2. 

Remark 1.1. Further consistency conditions may occur in some specific cases (cf. 
Section 2/Remark 2.1). 

Finally, we observe that the determination of the relaxation kernel h (depending on 
time and one space variable, the axial one) is of interest in applied problems related to 
stratified media. In this case the operators A, B and C often take the particular forms 

A = — D0(11(yo)D0) - > 

B = -
ij=O 

C = - 

where yo = x and D 0 = D. 

The class of problems dealt with in this paper seems, at present, not to have been 
widely investigated, in contrast to the case where the relaxation kernel depends on time,
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only (cf., e.g., [4 - 6, 8, 9, 14 - 161). Therefore this paper wants to contribute to develop 
the studies in this area. We observe that some related papers are [2, 11, 12]. In [2] 
and [11] the authors deal with the problem of the diffusion of electromagnetic waves 
in dispersive media and are concerned with the determination of a relaxation kernel 
depending on time and one space variable. The same identification problem is treated 
in [12], but relatively to stratified viscoelastic materials and specific assumptions on the 
data.

We conclude this section by noting that Theorems 2.1 and 2.2 in Section 2 report 
the main results involving the identification problem. They are concerned with a global 
existence and uniqueness result as well as a global continuous dependence result for the 
solution (u,h) to the identification problem (1.1), (1.6) - (1.10). Furthermore, some 
applications, related to the specific operator it , and functional 'I' defined by (1.11) and 
(1.12), are reported in Section 6. 

Finally, the well-posedness of the direct problem (1.1), (1.6) - (1.8) is ensured by 
Theorem 4.2 in Section 4, which provides also the continuous dependence of the solution 
u on the relaxation kernel h. 

2. The main result 

We state in this section our global in time existence and uniqueness results related to 
problem (1.1), (1.6) - (1.10). For this purpose we assume that the coefficients of our 
operators A, B and C enjoy, in addition to (1.5), also the properties 

01,1 E C''([0,]), aij , bij E C°"(?), a 1 = a ,1 (i,j = 2,.. . ,n)	(2.1) 
D 1 ai1 E C°"(), DD,a i ,+ i E L(l)	(j = 1,... ,n —1)	(2.2) 
a,b3 , c3 E L°°(1l)	 (j = 0,... ,n).	(2.3) 

Here C,I (0), 0 being an open bounded set in R d , denotes the subspace of all functions 
in C(0) whose derivatives of order m can be extended to 0 by Lipschitz continuous 
functions. 

We now recall that the open set w is convex and assume that the operator and 
the functional 'I' enjoy the properties 

E flr(Hi (c);Hi (0,e)) and WE L2 (c)*	 (2.4) 

[hu] = h4'[uj for all (h, u) E L2 (0,) x L2 (fZ)	 (2.5) 

= [u(ke,.)](ke) for all u E L2(w,H'(0,))	 (2.6) 

= I [Du]( k ) + ' o,k[u ( k , S)], 40, E L2(w)*	
(2.7) 

for all u E L2(w,H'(0,)) and k = 0,1 

on H2 (11)	 (2.8) VA
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, € £(H 4 ((0,) x a);L2(0,e)), (1 2 e £(H'(cl);L2(0,t))	(2.9) 

'I'A	'F,- + 'I'2 on H 2 (cl), 'F 1 e H(Ocl, 'P 2 € H'()	(2.10) 

where
Al = -D[a i , i (x)D1 j

	
(2.11) 

Moreover, £(X;Y), X * and H m (0) denote the Banach space of all linear bounded 
operators between the Banach spaces X and Y, the dual space to X and the Sobolev 
space of order m related to L2 (0), respectively. 

Assume now that the data	 related to the identification problem
(1.1), (1.6) - (1.10), enjoy the properties 

I € W2,1 ((0, T); L 2 (1)), u0 € H2 (Q), u i E H2 (), u2 € U4,1 (T, 1) (2.12) 
Au 0 - 1(0,.,.) € H' (Q), D,(Du2 + Aou 2 ) E W2"((0,T);L2(1))	(2.13) 
W E U4"(T,(0,e)), 7& € W' , (0, T)	 (2.14) 

where A0 denotes the principal part of the operator A (cf. (1.2)) and the Banach spaces 
U 3 ' P (T, 0), 0 being an open set in Rd, are defined for any s € N fl [2, +oo) by 

U(T,0) = 

I W 3 ' 7'((0, T); L2 (0)) fl W'' "((0, T); H'(0)) fl 1'V-2'P((0, T); H 2 (0))	(2.15)

1 C 8 ([0, T]; L 2 (0)) fl C''([O, T]; H' (0)) fl C 2 ([0, T]; H2(0)) 

according as p E [1, +oo) or p = +. 

Remark 2.1. From assumptions (2.6), (2.7) we easily derive the chain of equalities 

1' [-(t . .	= - U, )I (ks) 
)I(ke)	

0'(i, 
 

ôVA

=	(k)[D1 u(t, k, )](k) 

+	[	
a, , ,+(kt,	u(t, ke, .)] (ks)	

(2.16) 

= a,,i(ke)D1'[u(t, ., .)](k) - a,,,(ke)o[u(t, ., .)](ke) 

+ 4, [	
ai,i+j(ke,.)Du(i,.)](ke) 

fort € [0,T] and k = 0, 1. Observe that, if the vector valued function (a, ,2 ,... ,ai,) 
vanishes everywhere on 10, } x w and 4 commutes with D 1 at x = k (k = 0, 1), then 
from (2.16) we easily deduce the consistency condition 

f [.!(t, •, .)] (kr) = a,,,(ke)Dcp(t, k)	(t € [0, T]; k = 0,1)	.	1 (2.17) 
if a1, =0 on {0,e} x  (j = 2,...,n) and commutes with D at x = ke.J
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On the contrary, if (a i , 2 ,... ,a, , ) does not coincide with the null function on (0, el >< 

or does not commute with Dx at x = U (k = 0, 1), then condition (2.16) prescribes 
the values of two (known) functionals, related to , 1 0 and the unknown u, on the bases 
of the cylinder Q. 

Finally, assume that u 0 satisfies the conditions 

rn i (uo)(x) := 1[Cuo](x )I ^! WI, > 0 (x E [0,])	 (2.18) 

m2(uo) := 'I'[J(uo)] 0 0	 (2.19)

for some constant WI, > 0 where

	

4[Buo](x) Cuo(x,Y))
	

- fo x  41 [Buo]( ^
) d5 J(uo)(x,y) = 

Buo(xY) -jCuo](x) 	[Cuo]() ) 

Remark 2.2. According to properties (2.3) - (2.4) we easily get the equations 

	

/ fo x 4 [Buo](e) d )(B	'[Buo] [J(uo)](x) = exp -
	'[C]()	- 

[Cuo] Ctzo)(x) = 0 

for x e (0, t). Consequently, in order that assumption (2.19) may be satisfied, the 
functional 'I' must be linearly functionally independent of the operator 1 in the sense 
that there exists no functional A E L2 (0,	with 'I' = A. Otherwise, we should get 
%P[J(uo)]	0. In particular, when c1 and 'I' admit the integral representations (1.11) 
and (1.12), this means that no function p of the form p(x,y) = p,(x)A(x,y) is allowed. 

Remark 2.3. When admits the representation (1.11), a necessary condition for 
assumption (2.18) to be satisfied is that there exists no x0 E [0,] such that A(xo,y) = 0 
for any y E U. 

We can now state the two main results of this paper involving our identification 
problem: a global existence and uniqueness theorem and the corresponding continuous 
dependence result. 

Theorem 2.1. Let assumptions (1.5) and (2.1)—(2.1O) be fulfilled. Assume further 
that the data enjoy properties (2.12) - (2.14), fulfil the consistency conditions (1.13) - 
(1.15), (2.17) and the inequalities (2.18) and (2.19). Then problem (1.1), (1.6) - (1.10) 
admits a unique solution (u, h) E U3'(T, ) x W' "((0, T); H' (0, £)). 

Theorem 2.2. Let (fj ,uo ,j ,u i,j ,u 2,j ,ç,) (j = 1,2) be two siziuplets satisfying 
properties (2.12) - (2.14), (2.18), (2.19) with 

0 < WI,	inf [mi(uo,,)(x),rnj(uo,2)(x)1 z E[0,1] 

as well as consistency conditions (1.13) - (1.15), (2.17). Then the solutions (u,, h,) 
corresponding to the data (f3, uo, u1 ,, u23,	, ,b,) (j = 1,2) satisfy the estimate 

II L 2 - U, IIU 3.°°(T,cl) + 1I h2 - h 1 11W1.'((0,T);H'(Q,t)) 
C(T,WI,,W12 )	 (2.20) 

X 1111(12 - fl, U O,2 - tLO , l, U1,2 -	U2,2 - U2,1, P2 - W1, 02 - &i )I
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where
0 <1 :S min ( 1 m2( uo,1)I, 1m2(uo2)I) 

and

ID(f u 0 , U1, U2, , ) III	If II w 2 .' ((O,T);L2(fl)) +	IIuiIIH(0) 

+ 11 U 211u 4,I (T,ul) + II Au 2 - 1(0, )IIn'(	(2.21) 

± II D i(Du 2 + Au2)II W2.I ((O,T);L2(fl)) 

+ Iko 11U4, ' (T,(o,t)) + Ikl' II w4.i (o,T) 
Remark 2.4. To prove our existence and uniqueness result it is essential that 

condition (2.18) should be satisfied. This explains why we have chosen a particular 
non-smooth domain - a cylinder - instead of a general regular one. Indeed, assume 
for a moment that our domain were smooth and of the form Q = UZE1O,J (x) with 
mn_ i ((x)) - 0 x - 0 or x - £, m . - I denoting the (n - 1)-dimensional Lebesgue 
measure. 

We could replace condition (1.11) in a natural way with the following 

[v)(x) = I.W A(x, y)v(x, y) dy	(x E (0,e)) 

In this case, for regular kernels A, 4[vJ would not be bounded away from 0 for any 
function v. As a consequence, if we would want to deal with smooth domains, they 
should be of barrel type, only. Moreover, such a choice would cause a remarkable 
complication in the treatment of our identification problem (cf. assumption (2.7)). 

Remark 2.5. Note that estimate (2.20) takes into account all the metric spaces 
involved in conditions (2.12)-(2.14). Moreover, if and i2 are lower uniform bounds 
for m i (uo) and m2 (uo) as u 0 runs on the set of all admissible uo, (2.20) ensures that 
the mapping data - solution is Lipschitz continuous when the set of data is provided 
with the metrics induced by the norm in (2.21). 

To conclude this section we observe that, because of its length, we are forced to 
give only a very short outline of the proof of Theorem 2.2 (cf. the end of section 6). 
However, we note that Theorem 2.2 could be proved following the same ideas as in the 
proof of the existence and uniqueness Theorem 2.1. About the proof of the latter we 
want to give here a short outline as well as some comments. 

i) Section 3 will be devoted to transforming our original problem into an equivalent 
one for a triplet (v, k0 , k 1 ), where v = D i u. It will consist of an integro-differential 
equation for v as well as of a fixed-point system for (ko,k 1 ). This process will explain 
also the necessity of the additional condition (1.12), which, at a first sight, might seem 
superfluous. 

ii) In Section 4 we shall solve the (direct) integro- differential problem for v in 
a functional space ensuring the maximal spatial regularity allowed in a non-smooth 
situation as ours is. For this purpose we recall that, according to the results • in [7: 
Theorem 3.2.1.31, the maximal spatial regularity for u, in a (general) convex cylinder,
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is expressed by the membership in H2 (fZ). Moreover, some basic weighted estimates 
will be proved. In particular they will establish the continuous dependence of v on the 
relaxation kernel h. 

iii) In Section 5 we will transform the problem for (v, k0 , k 1 ) in a system of operator 
fixed-point equations for the pair (k0 , k,). Such a system will be solved (in suitable 
weighted spaces) using the Banach's Contraction Principle. 

iv) Section 6 will be devoted to determining suitable conditions on the kernels \ 
and p in order the explicit operator and 'I' defined by (1.11) and ( .1.12) may satisfy 
the basic conditions (2.4) - (2.10). 

3. An equivalence result 

Assume that (u, ii) E U3 '°°(T, l) x W" ((0, T); H' (0, £)) (cf. (2.15)) is a solution to the 
identification problem (1.1), (1.6) - (1.10) and introduce the new unknown function 

	

v(t,x,y) = D t u(i,x,y)	u(t,x,y) = uo(x,y) + j v(s,x,y)ds	(3.1) 

Then the pair (v, h) E U2 '(T,) x W"((O,T);H1(0,.)) solves the following system 
of equations:

Dv(i, x, y) + Av(i, x, y) 

+ f h(t - s, x)Bv(s, x, y) ds 

	

t	 (3.2) 

+ I Dh(t - s, x)Cv(s, x, y)ds 
 

+Dh(t,x)Cuo(x,y) + h(t, x)Buo (x, y) = D i i (t,x,y) 

for (t,x,y) E [0,T] x 

v(0,x,y) = u 1 (x,y) ((X, Y) E Q)	 (3.3) 

Dt v(0, x, y) = —Auo(x, y) + 1(0, x, y) ((x, y) E )	 (3.4) 
c9u2 

—(t,x,y) = D 1 —(t,x,y)	X, Y) E [0,T] x	 (3.5) 
oVA	 OVA 

D1 h(t, x)[Cuo](x) + h(t, x)[Buo](x) 

= —D(i, x) - D 1 A 1 (t, x) - , [DI 2-(t, )1 (x)
aVA 

	

- 2 [v(t, .)](x) 
- 

f h(t - s, x)[Bv(s, .)](x) ds	 (3.6) 

- 

j 
D1 h(t - s,x)[Cv(s, .)](x) ds + [D 1 f(t, .)](x) 

:= N, (v, h)(t, x)
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for (t, x) E [0,Tj x (0, e) 

'P [Dh(t, .)Cuo] + 'P[h(t, .)Buo] 

= —Db(t) - 'P 1 [D1	
•,OVA 

— 'P2[v(t, •,	- 'P 110 h(t - s, .)Bv(s, , ) dsJ	 (3.7) 

- f t [ 	
D1 h(t - s, )Cv(s, •, .) ds] + 'P[Dif(t,., 

N2 (v, h)(t) 

for t E [0,T]. We note that equations (3.6) and (3.7) can be derived applying the 
operator 4) and the functional 'P to both members in (3.2) and using assumptions (2.4) 
- (2.10). 

Assume now that (v, h) e U2 —(T, 1) x W 1,1 ((0, T); H' (0, £)) is a solution to prob-
lem (3.2) - (3.7) and introduce the function u e U30(T,) defined in (3.1). Owing to 
consistency conditions (1.13), from (3.2) - (3.4) we immediately deduce that u solves 
equations (1 -1), (1.6) - (1.8). We integrate, then, with respect to i equation (3.6) (where 
we have set v = D i u) and use identity (2.8) and consistency conditions (1.13) - (1.15). 
We get the equation 

D(t, x) + 4)[Au(t, .)](x) + f h(t - s, x)4)[Bu(s, .)](x)ds
(3.8) 

+
 I

Dh(t - s, x)4)[Cu(s, .)](x) ds = 4)[f (t, .)](x) 

for (t, x) E [0,T] x (0, f). Apply now operator 4) to both members in (1.1) and subtract 
memberwise (3.8) from the equation just found. We easily get the equation 

D4)[u(t, .)j(x) = D(t, x)	 (3.9) 

for (t, x) E [0, T] x (0, t). Using conditions (1.6), (1.7) and (1.14), we deduce that u 
satisfies the additional information (1.9). Performing similar computations, we can show 
that u satisfies also equation (1.10). Summing up, we have shown that the identification 
problems (1.1), (1.6) - (1.10) and (3.2) - (3.7) are equivalent. 

Setting t = 0 in equations (3.6) and (3.7) we get the following (operator) differential 
system for h(0, .): 

Dh(0,x)4)[Cuo](x) + h(0,x)4)[Buo](x)
= —Dç(0,x) - DA1(0,z) 

—4) 1 D, (91`2 ( t , .)] (x) - $2 [uI ]( x ) + 4) [ Dtf(0 , .)](x) 
OVA 

£ 1 (x)	 (3.10)
'J.1 [D1 h(0, .)Cuo + h(0, .)Buo] 

= —D 3 0(o) - 'P [D 1 ±(0, )] - 'P 2[u il + 'P[D1f(0,., )].	(3.11)
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Integrating the differential equation in (3.10), we obtain the following general integral 
depending on an arbitrary constant c (cf. assumption (2.18)): 

fox [Buo](C) de)
h(0,x) CCXV (-

(3.12) IX	

( 

JZ 
4[Buo](C) \

	£'(i) 

	

+	exp -	[Cuo](C)	[Cuo]( 
d1 

'C) 
d I .

where
ei(x) = - D(0, x) - D t A i o(0, x) -	[D 

0U2 
_(o, •)] (x) 
OVA	 (3.13) 

- 42[uI](X) + '[Djf(0, .)](x) 

for x E [0,]. Substituting this representation of h(0,) into (3.11) and using condition 
(2.19), we can easily compute c as 

C = [1n2(U0)j-1
Ott2	1 

{ -
	D(0) - Ti [D1 

OVA 
(0,.,.)I - 2 [ U1 ] + [Dtf(0..)]}	

(3.14) 

where

	

________	 EBuo1(x) - Cuo(x,y) 
£ 1 (x) + (Buo(x,y) 

£2(x,y) - [Cuo](x) 

I exp ( f jBuo](C) 
dC	

£(ii)	
(3.15)

(D[CU0j(x) CU 0(x ' 
Y)) 

JO 	fCuoj(C) ) [Cuo(i) 

for (x, y) E Il). Hence, from (3.12) and (3.14) we derive the initial value for h(0,.) 

h(0, x) =	 'i mj(uo)]' {
	

2] -. Db(0)	P -	0U2 
I OVA 

f' - W 2 [u i ] + [Dtf(0, , .)]	
c1[Buo](C) de 

} 
ex (- J X 

1cuoIu 1	(3.16) 

+ exp [Buo](C) 

de)	

e1() 
O 
/	( I	[Cuoj(C)	[Cuo]() J 

ho(x) 

Introduce then the new unknowns 

ko(t) = h(t, 0)  

	

k i (t,x) = Dh(t,x) }	
h(t,x) = ko(t) + J k i( t ,e) de := H(k)(i,x)	(3.17) 

0 

for (t, x) E [0,T] x (0,e).
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Remark 3.1. Since h(0,.) = h 0 , we immediately derive the initial conditions 

ko(0) = ho(0) ) 

ki(0,.)=Dho.
(3.18) 

These conditions, in turn, implies the equation H(k)(0,) = h0. 

We use now definitions (3.17) and solve system (3.6) -(3.7) fork = (ko,k 1 ) in terms 
of the right-hand sides (Ni (v, H(k)), N2 (v, H(k))). Explicitly, we get the system 

k i (t,x)[Cuo](x) + [Buo](x)1 * ki(t,x) 
= _ko(t) c [Buo](x) + N 1 (v, H(k))(t, x)	 (3.19)

'I'[k 1 (t, .)Cuo] + 'FRi * k 1 )(t, .)Buoj + ko(t)W[Buo] 

= N2 (v, H(k))(t)	 (3.20)

for t E [0, TI and x E (0, ) where we have set 

1 * ki(t,x) = f X 

k1(t,)de.	 (3.21) 

First we consider the integral equation 

	

k i (t,x) c1[Cuo](x) + c1[Buo](x)1 * k i (i,x) = f(t,x)	 (3.22) 

I being a prescribed function in L'((O,T) x (0, t)). Since u0 satisfies (2.18) and 1 
k 1 (t ) 0) = 0 for any t e [0,T], integrating the first-order differential equation (3.22) for 
1 * k 1 , we get the simple integral equation 

1 * k i (t,x) = Lf(i,x)	 (3.23)

the linear operator L being defined by 

1Lf(t X

	
[Buo1(r) \ f(t,) d

	 (3.24), x) =	exp (-
	[Cuo](r) dr) [cuoj(e)

A direct inspection shows that function k 1 defined by 

ki(t,x)
1	

f(t x)	
[Buo](x) 

=	 Lf(t,x)	 (3.25) [Cuo](x)	'	[Cuo)(x) 

on [0, T] x (0, ) satisfies (3.23) and solves the integral equation (3.22). From (3.19) and 
(3.25) we easily deduce that k 1 solves the equation 

k i (t,x) =	
(Buo](x)

{L[Buo](x) - 11 + N3(v,k)(t,x)	(3.26) [Cuo](x)
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on [0,T] x (O,) where

1 
N3 (v, k)(t, x) =

[Cuo](x)	 (3.27) 
X {IV, (v, H(k))(t, x) - [Buo](x)LNi (v, H(k))(t, x)}. 

Consequently, recalling the formulas

/ IZ 

	

1 - L[Buo](x) = exp (	 4[Buo)(r) dr)
 [Cuo](r) 

i 4[ 
[Cuo] 
Buo 4[Buo)(r) dr 

fox 
(L[Buo] - 1))(x) = —1 + eXp ( 

	[Cuo](r) ) \  

for x E [0, £] from (3.20) and (3.26) it is easy to derive that k0 solves the equation (cf. 
(2.18) - (2.19)): 

ko(t)m 2 (uo) = - 'J.'[N3 (v, k)(t, .)Cuo] 

- I'1 * N(v, k)(t, .)Buo] + N2 (v, H(k))(t)	(1 E [0, T])	(3.28) 
:= N4 (v, k)(t). 

From property (2.19) and equations (3.26) and (3.28) we conclude that the pair (k0 , k1) 
solves the fixed point system 

k0 (t) = m2 (uo)' N4 (v, k)(t) := N5 (v, k)(t)) 

(t, x) = Ji (uo)(x)Ns(v, k)(t) + N3 (v, k)(t, x) := N6 (v, k)(t, x)	
(3.29) 

for tE [0, T] and x E (0,e) where 

Ji(uo)(x)	
0 

	

_'tBuo](x)	
/	

4[Buo]() 

	

exp I -	[CuoJ(e) dc). 

	

- 4[CuoJ(x)	\  

4. Estimates for the direct wave problem 

In this section first we consider the hyperbolic direct problem 

Dv(t,x,y) + Aov(t,x,y)

v(0, x, y)

Dtv(0,x,y) 
i3v

x, y)

f(t,x,y)	((t,x,y) E t0, T1 x Il) 

vo(x,y)	((x,y) E 

v i (x,y)	((x)y)Ecl)	 (4.1) 

0V2	 I x, Y) E [0,T] x ul) 
j
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where A 0 denotes the principal part of operator A (cf. (1.2)). As far as the data are 
concerned, we make the assumptions 

vo E H2 (ci), v1 E H'(cl), v2 E U200(T,cl)	
4.2 

Dv2 +A0 v2 , f E W"((0,T);L2(ci)).  

Moreover, functions v0 and v2 have to satisfy the consistency conditions 
9v0	c9v2 

	

= —(0,x,y)	((x, y) E oIl).	 (4.3) 
UI/A 

Before stating Theorem 4.1 we introduce yet the notation 

	

II V IIs,0 = II V IIH . ( 0)	(s E N). 
Theorem 4.1. Under assumptions (4.2) - (4.3) the direct problem (4.1) admits a 

unique solution v = Lo(f) + L i (vo,v i ,v2 ) E U2 '(T,Il) (cf. (2.15)), where L0 (f) and 
L i (vo,v 1 , v2 ) solve problem (4.1) with (vo,v i ,v2 ) = (0,0,0) and f = 0, respectively. 
Moreover, the linear operators L0 and L 1 satisfy the estimate 

II DLo(f)( t , , •) IIo,n + II D 1 L0(f)( t , , ) IIi,o 

+ II L0(f)( t , ., ) II,n + lIDLi(vo, v1 , v2 )(t, •, )IIo,o 

+ II D i L 1(vo, v 1 , v2 )(t, , )IIi,ci + II L 1(vo, v i , v2 )(t, ., )112,17	 (44) 
c 1 (T){ 11111w'.' ((0,i);L2(0)) + 111(0, ' )IIo,o + Il vo 112,0 + Il v i 111 ,0 

+ 11 v2( t , )IIu 2 .(i,n) + II Dv2 + Aov2I1w.I((o,l);L2(0))'} 

for any t E (0,T]. Here c1 denotes a positive, continuous and non-decreasing function 
of T, depending also on R and w. 

Proof. Assume that v E U2 '(T, ci) is a solution to problem (4.1). Then the 
function z = v - v2 solves problem (4.1) with (f,vo,v i ,v2 ) replaced by (f,o,i3O), 
where

1= f - Dv2 - A0v2 

= VO - v2(0, .),
Ul = v 1 - Div2(0,.). 

We note that the quadruplet (f,zo,z i3 O) fulfils properties (4.2)- (4.3) with v2 = 0. An 
application of the Faedo-Galerkin approximation method leads to the following integral 
inequality for the approximating sequence {Zm }, where the positive constant c2 depends 
on a 1 and a2 only (cf. (1.5)) while the two sequences {zo,m} and {zi,m} approximate 
o and U, in H'(Il) and L2 (Il), respectively: 

II D t zm( t , ) II,ci + Ikm(t , ) Il, 

C2 IIzi,mlIL + IlZ0,mII,0	 (45) 

+2 j lIf(s , )Ilo,n (IIm(,)II, + Ikrn(s ,_
)11 2 ,n)

 ds} 

for a.e. t € (0,T) and all in € N. 
We now consider the following simple variant of [1: Theorem 4.91.



420	A. Lorenzi 

Lemma 4.1. Let L be a non-negative C([0, TI) -function, and let b and k be non-
negative L' (0, T) -functions satisfying 

ft 
< a + J b(s)(s) ds ± J k(s)o(s)" ds	(t E [0, T]) 

0	 0 

where p E (0, 1) and a > 0 are given constants. Then for all t E [0, T] 

(t) <exp (10 b(s)ds)

(4.6) 
[al_P + (1 - p) f k(s)exp (( - 1) f b() do,  dsj 

P.



	

From (4.5) -(4.6) (with(p,b)	(,0)) we easily obtain the estimate 

II Dt Zin( t , ) IIn + Ikm(, 
. )III 

	

max (1, C2){ 11	
11	+ Iko,rnII	

+ (f t II1(s , )IIods) I 
for a.e. t E (0, T). According to this estimate, [3: Theorem 3.4.11 and [17: Corollary 
to Theorem 1 in Chaper 5, Appendix] we can select a subsequence in n{Zm). (still 
denoted by {Zm}) and a function z E W 1c ((0 , T); L2 (Q)) fl L' ((0, T); H'())) such 
that

Zm - z	weakly * in L((0, T); H' (a)) 

Dtzm —p Dz weakly * in L°°((0,T);L2(cl)). 

In particular, from these convergences we deduce that z satisfies a similar estimate with 
the same constant 2c 2 max (1,c2). 

Following the same procedure as in [3: Chapter 3/Theorem 4.1] we can prove that 
is the unique weak solution to problem (4.1) in L((0, T); H' (1))flW' '((0, T); L2()). 
Moreover, a regularity procedure as in [10: Theorem 3.8.2] shows that z actually belongs 
to U"°°(T, ). Then, reasoning as in [10: Theorem 5.2.1] (cf. also [13: Theorem 30.4]) 
we conclude that z belongs to U2 '(T, l) and satisfies	- 

Dz(t, -)I,	+ II Dt z ( t , ) II	+ II z ( t , .)112

2 c3 (T){ IIIIv ' ( ( 0,t);L2(0)) + If(° )IL + II vo II2, + I1IIo }	
(4.7) 

for all t E [0, T] where the positive constant c 3 is a non-decreasing and continuous 
function of T, depending also on £ and w. Consequently, z turns out to be a strong 
solution to problem (4.1). In particular, A0 z e C([0,T];L2()) and satisfies 

II A o z( t , ) IIo,o 

<C4 (T){ IIfMW 1 ,((O,t; L 2 (0)) + 111(0, )I[o,o + II0II2,0 + Il ' 111,0 }	
(4.8)
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for all t E [0,T]. Since ci = (0,) x w is convex and A0 z + z E C([0,T];L2(ci)), from 
[7: Theorem 3.2.1.3] we deduce that z belongs to C([0,T];H2(cl)) and satisfies the 
estimates 

II z ( i , ) II2,0 < csII Ao z ( t , •) + z(t, )IIo,o	cs(II Ao z( t , ) IIo,o + II z ( t , ) IIo,ci)	(4.9) 

for all t E [0,T], the constant c5 > 0 depending only on £ and w. 
Finally, from the equation v = w + v2 we conclude that v belongs to U2 '(T, ci) and 

solves problem (4.1). Moreover, v admits the representation v L0 (f) + Li(vo)vi,v2) 
and, owing to estimates (4.7) - (4.9), the linear operators L0 and L 1 satisfy (4.4). We 
conclude by observing that L0 (f) and L i (vo,v i ,v2 ) solve problem (4.1) with (vo,vi,v2) 
= (0,0,0) and f = 0, respectively I 

We are now in a position to solve our direct integro-differential problem (3.2) - (3.5), 
which we rewrite in the form 

Dv(i,x,y) + Aov(t,x,y) = M(v,h)(i,x,y) + D,f(t,x,y)	(4.10)

for all (t, x, y) E [0, T] x ci with 

v(0,x,y)=uj(x,y)	 ((x)y)Eci)	 'I 

D t v(0,x,y) = —Auo(x,y) +f(0,x,y)	((X, Y) E ci)	1	(4.11) 

av (t,x,y) = D 
ôu2 

(i,x,y)	 ((t,x,y) e [0,T] x oci). J t9ZIAO 

Operator M is defined by (cf. (3.2)) 

M(v, h)(t, x, y) = —Asv(t, x, y) - j h(t - s, x)Bv(s, x, y) ds 

	

— j D
1 h(i - s, x)Cv(s, x, y) ds	 (4.12) 

- Dh(t,x)Cuo(x,y) — h(t, x)Buo (x, y). 

where

A5 =ai(x,y)D1+ai+(x,y)D +ao(x,y)

We then introduce the complete metric spaces of admissible unknowns v and kernels h 

V(A,T) = {v E U 00 (T, cZ) : v satisfies (4.11)}
(4.13) 

7(A, T) = {h E W"((0,T);H'(O,e)) : h(0,.) = ho} 

for all A E R. Here U'°°(T, ci) and W"((0, T); H' (0, £)) (s E N) denote the weighted 
Banach spaces obtained from U'(T,ci) (cf. (2.15)) and W"((0,T);H'(0,)) by in-
troducing the weight function t — For instance, the norm in W"((0,T);X), X 
being any Banach space, is defined by 

II U IIW((oT);X) 
=

II' IIL'((O,T);X;edt) 
=	

IIIIL((O,T);X) 
j=0
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Remark 4.1. It is immediate to check that the weighted norm above is equivalent 
to the usual one. Moreover, we observe that, for any pair (v, h) E V(A, T) x 7I(A, T), 
the initial value of M(v, h) is independent of (v, h): in fact (cf. (3.16)), it is given by 

M(v,h)(O,x,y) = —A 5 u 1 (x,y) - Dho(x)Cu0 (x,y) - ho(x)Buo(x,y)
(4.14) 

:= M(uo,ui,ho)(x,y) 

for all (x, Y) E Q . 

Lemma 4.2. Operator M maps V(), T) x fl(.\,T) into W," — ((O, T); L 2 (Q)) and 
satisfies the following estimates for any p E [1, +oo], where c6 and C7 are continuous and 
non-decreasing functions of the norms in L OO (Q) of the coefficients a3 (j = 0,. . . , n) 

II M ( 1 , h)IIWi.P((0T).L2())  

<	
(4.15) 

C6 (i + II hoIIH I (o,,) + II uoI!11 2 (o) + II h II W'((O,T);H1(O,t))) IIVIIU2.P(Tg) 

for all (v, h) E V(A, T) x 1((.A, T) and 

J.M(v2 , h 2 ) - M(,,,, h 1 )II W,9((O,T);L2(fl)) 

<C7 (i + II hoII,I l (o,) + Iu0IIH2() 

+	11 hill w' ((0,T);111(0t))) 11V2 - VI IIU(T,fl) 
1=1 

+	II V iII 2.P (T) II h 2 - h1 IIw' ((O,T);H'(o,t)) 

for all (v2 ,h2 ),(v i ,h i ) E V(A,T) x 

Proof. First we observe that, according to assumptions (2.1) - (2.3), (2.12) - (2.14) 
and (2.19) function h 0 defined by (3.16) belongs to H'(0, e). Then we note that the 
properties stated in the lemma are implied by definition (4.12), Young's theorem on 
convolutions and by the formula 

DM(-, h)(t, x, y) 

= —A5Dtv(t,x,y) - J D i h(t - s, x)Bv(s, x, y) ds 

- ho(x)Bv(t,x,y)	DDh(t - s, x)Cv(s, x, y) ds 

- Dh0 (x)Cv(t,x,y) - DDh(t,x)Cu 0 (x,y) - Dj h(t, x)Buo(x, y) 

for all t e (0, T) and all (v, h) E V(T, A)xll(T,.\). For this purpose we need the following 
estimates which rely on the well-known continuous embeddings L(O, £) L2 (0, £) 
L'(0, t) ( denotes pointwise multiplication) and H'(O,e) 

IIfII L 2 (Q)	III L(O,) 11111 0(1Z)	c i o(e)IIg H'(O,t) 11111 0()	(4.16)
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for all I E L2 (Q) and all g E H'((0,)), and 

I19fIIL2(c)	IIgIIL(o,e) (j IIf(, Y)IIoo(o,e) d)

2  

(f" H IIf( Y)II
2 

I(o,)dY	
(4.17) 

) 

< c i o(t)g L2(0,t)IIfIIL2(;H1(0,t)) 

for all f E L2(;H'(0,e)) and all g E L2(0,t). 
Performing standard, but boring computations, which take into account that convolu-
tions commute with functions i	we easily derive the assertion. I 

We are now in a position to solve our direct integro- differential problem. For this 
purpose we introduce the normed space 9 related to our data by 

1(1, U0, U1, u2) E W2 ' 1 ((0, T); L2 (cl)) x H2 (l) x H2 (cl) x U"' (T, ) ) 
= Auo — 1( 0 ,.,.) E H'(), D(Du 2 +A0 u 2 ) E W2"((0,T);L2(1))	(4.18) 

I. (f,u 0 , u 1 , u 2 ) satisfies consistency conditions (1.13)	 J 

The norm in 9 is defined by 

II(f U0, UI, u2)IIc = Ufli W'' ((0,T);L2(12)) + Il uoll H 2 (1l) + 11 11 11 H2(1Z) 

• 11 U 211U 4.I (T11) + II Auo - 1(0,., )IIH'(n) 

• II Dt(Dui2 + Aou2)11w2,1((o,T);L2(0)). 

Remark 4.2. It is immediate to check that g is actually a Banach space. 

Theorem 4.2. For any h E 7i(A,T) and any quadruplet (f,uo,u i ,u 2 ) E 9 there 
exist two positive, continuous and non-decreasing functions c 10 and c11 such that for 
any

A > max (c9 (T), c i o(T))(1 + II(f uo, U 1, u2)IIc + II hIIi ((0T);H1(0,e)))	(4.19) 

problem (4.10)—(4.i1) admits a unique solution v = V(h) E U,, (T,1l). Moreover, the 
nonlinear operator V satisfies the following estimates for any p e [1, +oo], where c11 
and c 12 denote positive, continuous and non-decreasing functions: 

V( h)	, (To) 

[i - cg(T)(i + II(f Uo, U1 U 2)II g + IIhIIw.1((o,T);H1(o,t))A'J 
—1	

(4.20) 

x Acii (T)(i + II(f, uo, U 1, U 2)110) I&,uo,uI,u2110
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for all h E fl(A, T) and 

II V ( h2) — V(hl)11u2.P(Tn) 

A— P C 12 (T) 1  — max (c9(T),cio(T))A
-I	 (4.21) 

(i + II(f u 0 , u 1 , U2)IIC + Tax IIhiIIw1((o,T);Hl(o,t)))] 

X (1 + II(f, uo, u 1, u2)II0)II(f, uo, u i, u2)II9IIh2 — hlIIWl.I((OT).H1(Ot)) 
for all h 1 , h 2 E 7-I(A, T). The latter estimate holds if A satisfies (4.19), with 

IIhIw1((oT);Ht(Ot))	replaced with	max II h II	((oT);H'(ol))• 

Remark 4.3. According to remark 4.1 we easily conclude that the direct problem 
(4.10), (4.11) is uniquely solvable and its solution v belongs to the (non-weighted) space 
U2 P(T, I) and depends continuously on the relaxation kernel h e W 1 ' 1 ((0, T);'H' (0, £)). 
The same technique used here would allow to solve the direct problem (1.1), (1.6) - (1.8) 
in the same space U2 ' P (T, l) under the simpler assumption h E L'((O, T); H 1 (0, £)), since 
in this case no preliminary differentiation with respect to t is needed. 

Proof. First we note that the quadruplet 

(M(v, h) + Dgf, u 1 ,—Au 0 + f(0,,), Dtu2) 

relative to problem (4.10) - (4.11) satisfies consistency condition (4.3) for any pair 
(v, h) E V(.X, T) >< ?i(A, T) by virtue of conditions (1.13) and formula (4.14). Hence, the 
integro- differential problem (4.10) - (4.11) is equivalent to the fixed-point equation 

	

v = Lo(M(v,h)) + {Lo(Djf) + L 1 (u 1 ,f(0,.) - Au0,Du2))	
(4.22) 

M(v, h) + w. 

We note that, according to Theorem 4.1, M(v,h) + w belongs to V(A,T) for any pair 
(v, h) E V(A,T) x 71(A, T). Moreover, from Lemma- 4.2 and estimate - (4-4) we easily 
deduce the following inequalities for any p E [1, +): 

IIM(V2, h2)— )4 (v 1, h I)u2,p (T0) 
2 

= et 
[

DM(v2 , h 2 )(t,.) - DM(vi 
j=o	

, i)(t, )I
IILP(0,T) 

<c1 (T) 
[f 

e_A(t_3)e_A3 (MM(v2, h2 )(s,.) — M(v i , h 1 )(s,	L2ffl) 

+ DM(v2 , h 2 )(s,.) - Dt M(v i , h 1 )(s, ) L2(n)) ds]	 (4.23) 
IILP(O,,.) 

^ c1 (T)A' 1vf(V2, h2 ) - .M(v i , h1 )I 11,P((O,T);L2(f1)) 

c i o(T)A' Ki + II(f	 1<i<2 
uo, u 1 , u2)lIc + max II h II Ai,i ((OT);HI(O,t))) 

X IJ V2 — Vi IIU(T,n) + max II vuII U(T,Q) II h2 - h1 IIW1((O,T);HI(0,t))]
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for all (v2 ,h2 ),(v i ,h i ) E V(A,T) x fl(A,T), c 1 0 being a positive, continuous and non-
decreasing function. From estimates (4.23) with p = +oc we conclude that, for any fixed 
h E ?-A, T), the operator v —* M(v, h)+w maps V(A, T) into itself and is a contraction 
mapping for any A satisfying (4.19). Consequently, an application of Banach's fixed-
point theorem ensures that equation (4.22) admits a unique global in time solution 
v = V(h,f,uo,u i ,u2 ) := V(h). 

In order to derive estimate (4.21) we consider the following inequalities, where we 
make use of identity (4.14): 

M(v, h)ju2.P(To) 
2 

=
 [e
	IlDM(v, h)(t, .)IIH 2 j () 1 II 

j=O	 LP(O,T) . 

<ci(T) [
	
e	t_3)eA5 (II M(v , h)(s, )IIp() 

+ IDM(v, h)(s, .)11L 2 (0)) ds + e_ AI IIM(uo, U 1 I ho)IIL2()] LP(O,T)	
(4.24) 

<ei(T)A' II M( v , h)II W i.P (( o T) . L 2 ()) + ci(T)(pA)	II M (uo, Ui, ho)11L2(0) 

<cg(T)A -1 (i + II(f u0, U1, u2)IIQ + II h IIw 1 ((o,T); y1 (o,t)) lVIIu2(To) 

+ c 13 (T)A	(1 + II(f Uo, U 1, u 2)IIc) II(f uo, Ui, u2)II9 

for all (v, h) E V(.X,T) x ((A, T), c 13 being a positive, continuous and non-decreasing 
function. From (4.19), (4.22), (4.24) and the equation 

	

V(h) = M(V(h), h) + w	 (4.25)

we easily derive estimate (4.20). In fact, for any p E [1, +] we have 

I 2 

(
II Dw IIP (( o T)Hi(o )) )

	

	(pA)	11W11u2.P(To) 
j=0	 (4.26)

<ci(T)(pA)II(f,uo,ui,u2)IIc 

for all (f,u 0 , u 1 , u 2 ) € g . Finally, we observe that estimate (4.21) follows from the 
equation

V(112) — V(h 1 ) = M(V(h2),h2)— M(V(h1),h1) 

and the relationships (4.20), (4.23) and (4.24) I
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5. Solving the identification problem (3.2) - (3.7) 

In this section first we introduce the complete metric space 

1k = (k0 ,k 1 ) E W"(O,T) x W"((O,T);L2(O,)) 
r, T) 

=	II koIIw .1 ( o,T) + Ilk, lIw'((0,T);L2(0,e)) < r: } 

for A E IR+ and r E R U {+} and the non-linear. operator 

W(k) = W(k, 1 uo, ui, u2) := V(H(k), f, uo,ti1 , u2). 

We recall that W(k) solves the operator equation (cf. (4.25) and (3.17)) 

W(k) = M(W(k), H(k)) + w.	 (5.1) 

Assume now that k = (k0 ,k 1 ) E W"(O,T) x W'((O,T);L2(O,)) is a solution to 
problem (3.29). In particular, k belongs to ftC(A,r,T) for any fixed positive r and any 
large enough A. It is then an easy task to check that such a k solves the following 
fixed-point problem, equivalent to (3.29), 

k EA(A,r,T) 

	

ko(t)	N5(W(k),k)(t) = N5 (M(W(k), H(k)) + w,k)(t) 

N5 (k)(t)	 (5.2) 
k i (t,x) = N6(W(k),k)(t,x) = N6 (M(W(k), H(k)) + w, k) (t, x)  

96(k)(t,x) 

for all t E [0, Tj and x E x (0, £). Moreover, we introduce the nonlinear operators (cf. 
(3.6) - (3.7) and (3.27) - (3.28)) 

{ N3(M(w(k),H(k)) + w,H(k)) for j = 1,2 
= Ni (M(W(k), H(k)) + w, k)	for j = 3,4,5,6.	

(5.3) 

We begin by estimating operator H defined in (3.17). 

Lemma 5.1. Operator H maps continuously W'(0,T) x W.'((0,T);L2(0,)) 
into W"((0,T); H'(0,)) and satisfies the estimate 

H(ko, k1 )llW ,1 ((O,T);H'(O,t)) 

I1 k0 II w' (aT) +(1 + 1') 12 Ilk, llW1((0,T);L2(0,t)) 

Proof. It is an immediate consequence of definition (3.17) 1
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We introduce now the bilinear operators 13 and C defined on 
u2 ' OO (T,Q) x W"((O,T);H'(O,e)) 

(cf. (4.13)) by

8(v, h)(t, x, y)	f h(t - s, x)Bv(s, x, y) ds 

C(v, h)(t, x, y) = f Dh(t - s, x)Cv(s, x, y) ds. 

Lemma 5.2. The integral operators 13 and C are continuous from 

V\ ((0, T); H 2 (1l)) x W,\"' ((0, T); H'(0, )) - W"((0, T); L2()). 
Moreover, the estimates 

II D ' B(t', h)IIL((o,T);L2(ç)) 

C4 {i II h (0 , )lI L(O,t) + li h il W' ((O,T);ff'	} II v L ((O,T);H2(n)) 

II D ' C( v , h)IILI((OT);L2(ç)) 

C15 {iII Dx h (0 , • )11L 2 (ot) + IIhIIWi.1((OT)H1(01)) } IIVIIL((o,T);H2(0)) 

hold true for j = 0, 1 where c 14 and c15 depend only on the norms in L°°(S1) of the 
coefficients b ,3 , b3 , b0 and c3 , co, respectively. 

Proof. From the formulas 

D' S(v, h)(t, x, y) = jh(0, x)Bv(t, x, y) + J Dh(t - s, x)Bv(s, x, y) ds 

where j = 0, 1 we deduce the estimates 

II D8(v , h)(t, ., )IIL'() 

II B IIC(H 2 (n);L 2 (n ) ) { II h ( O , )IIL(o,)lI v ( t ,	• )I H2(fl) 

+ fo II Dh(t - s, )IIL ( o t)II v ( s , ., )IIH 2 () ds} 

for all t E [0, T] which immediately imply (5.4) 1 . Likewise, from 

DC(v,h)(t,x,y) = jDh(0,r)Cv(t,x,y) + I Dj DZ h(t - s, x)Cv(s, x, y) ds 

where j = 0, 1 and from (4.16) and (4.17) we deduce 

II DC( v , h)(t, ., )IIL2(n) 

i II D r h( 0 , .)11L 2 ((o £))II CV( t , ., 

+ f II DDz h( - s, .)11L 2 ((O £))II CV( S , , )IIn'	ds

for all t E [0, T] which easily imply ( 5 .4 )2 1
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From now on we shall assume that our data belong the following metric space 
D(p) (p E R) related to the space G defined by (4.18): 

(f,uo)ui,u2,,) E g xU4"(T,(0,)) x W4"(O,T) 
D(p) =	(f,uo,u i ,u2 ,ço,-4') satisfies (1.13)— (1.15) and (2.17) 

II(f	u1, u2)IIc + IPIIu.'(T,(o,)) + III'II w4. 'io,i-	P 
From the definition (3.16) of h0 and property (2.18) we immediately derive the estimate 

II hoIIH L (o,e)	m1'C16(P) 

for all (f,uo,ui,u2,y,T/.') E 'D(P), c 16 being a continuous and non-decreasing function. 
Consequently, from (4.26) with p = 1 we derive 

lI D	II L((o,;H2iffl))	c i (T)pA'	 (5.5) 

for all (f,uo,u i ,u2 ,p,) E D(p). 
Lemma 5.3. Let (f,uo,ui,u2,,) E D(p) and let 

	

A > max (c9 (T), c i o(T)) [1 + p + c i7 ()r]	 (5.6) 

where CI 7(t) = max (e,(1 +e)). Then operators N, (j = 1,2) defined by (5.3)1 
satisfy the following estimates for any k, k', k 2 E *c(A, r, T) and j = 1,2: 

ll N ( k) - YjIIK(A,cc,T)	Ac18(A1,r,T,p)	
() 

1I 9 ( k2 ) - Nj(k ')llK(A,,T)	A 1 c 19 (A',r,T,p)llk2 - k' IIK(,r,T) J 
where

1(t, x) = —Do(t, x) - DA 1 o(t, x) —	[D-(t, )] (x) 

- 4 2 [w(t, .)j(x) + 4EDif(t, .)j(x) 

3	 1 
= —D (t) - 'Ill	

U2 D j —(t, .,
UVA 

— I.' 2 [w(t, ., .)] + W[Djf(t, ., 

for all t e [0, TI and x E (0, £). The functions c 18 and c19 are non-negative, continuous 
and non-decreasing in each of their arguments. 

Proof. First we notice that from estimates (4.20), (4.21), (4.23), (4.24) and defi-
nition (5.1) we easily derive the following estimates for any A satisfying (5.6) and any 
(f,u0,ui,u2,,) e 

ll A4 ( 4'( k ), H(k))11142.I(Tn 

c9 (T)(1 + p + ll H ( 1C )llw 1 ((o,T);H 1 (o,t))	IlTV(k)llu1(T,) 

+ c 14 (T)p(1 + p)	 (5.9) 
<A 1 p(1 + p){c ii (T)c9 (T)(1 + p + ci7()r) 

x [i - cs(T)(1 + p + c17(t)r)'\']	+ c14(T)}
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and

.M(W(k2), H(k2 )) - i14(W(k'), H(k'))	
(T, 0) 

c i o(T)A	 max IIH(ki)IIw1((0,7);H1(0re)) < ' K1 + p + 
1<i<2 

x II W ( k2 ) - I'V(k' )IIU.1(T,O) 

+ max IIW(kt)I <i<2	IU(T,I) II H Ck2 ) - H(k' )II W'((O,T);tf'(O,))1	(5.10) 

cio(T)	Il/c2 - k' llA(A,r,T) { c 12 (T)(1 +-p + c i7 ()r)c17 ()(1 + p)p 

[i — max (c9(T),cio(T))' (1 +p+c17(f)r)]2 

+ci1(T)[1_c9(T)(1+p+c17()r)A]'(1+p)p} 

for all k, k', k2 E AC(A,r, T). Consider now the following equations (cf. (5.3)), where 
functions i and c2 are defined by (5.8): 

N1 (k)(t, x) =	(t, x) - 12 [.A4 (W(k), H(k)) (1, •)] (x) 

- 1 [8 (Jvf(T'V(k), H(k))) (t, .)] (x) 

	

- C1 [C(A4('V(k), H(k)))(t, .)] (x)	 (5.11) 
- .I [!3(w, H(k))(i, .)] (x) - 1 [C(w, H(k))(t, .)] (x) 

(t, x) + N7 (k)(t, x) 

and
N2(k)(t) = cp2 (i) - '2 [8(A4(147(k), H(k))(t, 

— 'J/[13(M(w,H(k))(t,.,.)] 

- 'I' [C(Jvi(W(k), H(k)))(i, •, •)]	 (5.12) 
- 'P [B(w, H(k))(t, .,.)] - 'P [C(w, H(k))(t, ., 

2 (t,x) + N8(k)(t,x) 

for all t C [0,T] and all x C (0,), as well as the identity 

H [e(A4(I'v(k2), H(k2 )), H(k 2 ))] - H [E(A4(14T(k' ), H(k')), H(k'))] 

= fl[E(M(w(k2 ) , H(k 2 )) - M(W(kd),H(k1)),H(k2))]	 (5.13) 
+ H[E(M(W(k1),H(k1)),H(k2) - H(kI))] 

for all He {4I2,4',W2} and E C {13,C,I}, I denoting the identity operator. Finally, 
from (5.9) - (5.13), (5.5), Lemma 5.2 and assumptions (2.4) and (2.8) - (2.10) we easily 
derive estimates (5.7) 1
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Lemma 5.4. For any T E R the operator L defined by (3.24) belongs to 

C(W1((O, T); L 2 (O, i)); W' 1 ((O, T); H'(O, £))) 

and its norm does not exceed c20(p,?i'), c20 being a continuous and non-decreasing 
function in each of its arguments. 

Proof. It immediately follows from definition (3.24) U 

Lemma 5.5. The operators N, (j	3,4,5,6) defined by (5.3)2 satisfy the esti-



mates

	

IIv(k) - jIIK(A,00,T ) !^	c20(A',r,T,p) 

II j (k 2 ) - i(k' )II(A,,T)	'c21(A' , r, T, p )11 k2 - k' IIK(A,r,T) }	
(5.14) 

for all-k, k 1 , k 2 E 1A, r, T) with 

3(t,x) =	I 

[Cuo](x) 
{ci (t, x) - 4[Buoj(x)L i (t, x)} 

= —[ 3 (t, )Cuo] - [1 * 3 (t, .)B-o] + 2(t) I (5.15) 
5 (t) = m2(uo)'4(t) 

6(t,x) = J 1 (uo)(x) 5 (t) + 3 (t,x).	 J 
The functions c20 and c21 are non-negative, continuous and non-decreasing in each of 
their arguments. 

Proof. From definitions ( 5. 3)2, (3.27) - (3.29) we easily deduce the following rela-
tionships, where t E [O,Tj and x E (O,) (cf. (5.11) - (5.12) and (5.15)): 

N3 (v, k)(t, x) = 3 (t, x) 
+	1  

uoj(x){7(k)(t, x) - [Buo](x)LI 7 (k)(t, x)} [C 

3 (t, x) + N9 (k)(t, x) 

N4 (k)(t) = 4 (t) - W[99 (k)(t, .)Cuo] - 'I'[l * N9 (k)(t, )Buo) + N8(k)(t) 

4 (t) + N10(k)(t) 

N5 (k)(t) = 4 (t) + m2(uo) ' N10 (k)(t) := c 5 (t) + 91 (k)(t) 

N6 (k)(t, x) = J 1 (uo)(x)J 1 1 (k)(t) + Ng(k)(t, x). 

Finally, from these relationships, equations N,(k) -	= N6+(k) (j	1,2) and
Lemmas 5.1 - 5.4 we easily derive estimates (5.14) I 

We are now in a position to prove Theorem 2.1.
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Proof of Theorem 2.1. From definitions (5.8) and (5.15) and estimates (4.16) and 
(4.17) we easily deduce that functions and '2,'4,W5 belong to W"((O,T); 
L2 (0,)) and W"(O,T), respectively. We now observe that Lemma 5.5 easily implies 

Il .1V5( k )II W,' (0, T) + II \T6 ( k )IIw. ,1 ((0,T);L2(0,t)) 

IIP5II WA''(OT) + II'P6II W ((o,T)L2(o,t)) + 2A' c20 (A' , i-, T, p) 

II'P5II W' . ' (0, T) + II'P6II W'.' ((0,T);L2(0,t)) + 2A' c20 (A' , r, T, p) 

for all k E X(A,r,T) and 

lI 1T5( k2 )	N5 ( k )IIw I (oT) + 1196 (k) - N6(k1)HW1((0T);L2(0t)) 

< 2'c21(A',r,T,p)11k 2	k'IIK(A,r,T) 

for all k',k2 E K.(A,r,T). Then for any fixed 

> r0	Il'P5 lw'.' (0,7') + 1I 176 lw'. ' ((0,T);L2(0,t)), 

choose A E R+ to be a solution to the system of inequalities 

'7511W'.' ((0,T)) + II 1P6 lw'.' ((0,T);L2(O,t)) + A' c2o(A' , r, T, p)	r  

2A'c21 (A',r,T,p) < 1 • 

Then the vector operator N = (91, 96) maps C(A,r,T) into itself and turns out to be 
a contraction mapping in AC(A, r, T), for any fixed r > r0 and A large enough. Con-
sequently, problem (5.2) admits a unique solution in W,"(O,T) x W"((O,T); L2(O, 

Outline of the proof of Theorem 2.2. We limit ourselves to stating that the 
proof is a consequence of the techniques developed in Sections 4 and 5 if we take into 
account the following fixed-point system (cf. (5.2)) 

k,k E K(A,r,T) 

k0 (t) - lco(i) = N5 (k)(t) - N5 (k)(i) (t E (0, T])	 (5.16) 
k 1 (t, x) - k 1 (t, x) = N6 (k)(i, x) - 1V5 (k)(t, x) ((t, x) e [0,T] x (0j)) 

Consequently the basic task consists in estimating the right hand sides inr(516) in terms 
of the difference k - k in the weighted Banach space K(A, r, T) U
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6. Analysing the specific additional conditions (1.11), (1.12) 

In the case of the specific operators 4 and 'I' (cf. (1.11) - (1.12)) the results in Theorem 
2.1 hold true, if we assume that the functions A and p satisfy the properties 

A,pEC°"(Q)	and	DAC().	 (6.1) 

Remark 6.1. We recall that (cf. remark 2.1) the further consistency conditions 
(2.17) may occur when the vector valued function (a i,2 ,... ,a i ,) vanishes everywhere 
on {0,} x and the operators o,k (k = 0,1) reduce to the null operator. The latter 
property occurs when D.X = 0 on {0,e} x c, since 

O,k[v] = 
L D

r A(ke, y)v(ke, y) dy	(k = 0, 1). 

We observe now that, in the present case, conditions (2.18) and (2.19) can be rewrit-
ten in the explicit forms 

LA(x, y)Cuo(x, y) d > Tff i	(x E 

and

1( 0'	
P(x,Y)(Buo(x,Y)_ fA(x,y)Buo(x,ij)di7 

fA(x,y)Cuo(x,r)dqCuo(xY)) xw

xexp ( Jz ^A_
'A(x,71)Buo(e,77)d7,ddd ^ rn 

-	 (x,ii)Cuo(e,ij)dii )	I 

for some constants TYT j > 0 and TTT2 > 0. 

Lemma 6.1. Conditions (2.4)—(2.10) are satisfied under assumptions (2.1)—(2.3), 
(6.1) and the following

v(y)a,j(x,y) =0	 (6.2) 

on (0, 1) x Ow, ii denoting the outward normal unit vector related to Ow. 

Remark 6.2. Property (6.2) is trivially satisfied if we assume that the coefficients 
a1,3 (j 2,... ,n) vanish on (0,1) x Ow. Consequently, Theorems 2.1 and 2.2 holds true 
with conditions (2.4)-(2.10) being replaced with (6.1), (6.2). 

Proof of Lemma 6.1. First we observe that the operator A admits the decompo-
sition

A I:= A3
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where
A1 = —D1[ai,i(x)D1] 

A2 = 

A3 =
(6.3) 

A4 = -	Dy[ai+i+j(x, y)D] 
t,j=1 

A5 = a i (x,y)D + E a i +(x ) y)D 1 +ao(x,y) 

Differentiating under the integral sign, integrating by parts and using the identity 
gDf = D (fg ) - fDg from definition (1.11) and assumptions (2.12), (6.1) and (6.2) 
we easily get the equations for any w E H 2 (Q), ii standing for the outward normal unit 
vector related to Ow: 

[A i w](x) = A i [wJ(x) + 2a 1i (x)j DA(x, y)Dw(x, y)dy 

+1 [a i,i (x)DA(x,y) + ai(x)DA(x,y)]w(x,y)dy 

[A2 w1(x) = -	I A(x, y)a i,i +j (x, y)D 1 D1 w(x, y) dy 
• j=1  

- f 3=1 

=	J [Dv(ai,i+iA)(x,)Dzw(x,y)
	

(6.4) 
3=1 

—.\(x,)D1aii+j(x,y)D1w(x,y)]dy 

[A 3 w](x) =	
J 

a i+i,i( x , y)D A(x, y)Dw(x, y) dy 
i=1 w 

[A4w](x) = 1W (x,y)
i,j=1 

n-I +	Jai+ii+j(x,)Dv1(x,y)D1w(x,y)dtj. 

From (6.4) we easily derive that ' admits decomposition (2.4), I i and 2 being defined,
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for z E L2 (ôl) and w E H'(), respectively, by 

[z](x)	-	f A(z, y)z(x, y) da(y) 

and
2 [w](x) 

= f J2aI,I(x)D,A(x,y)D,w(x,y) 

+ [a i,i (x)DA(x, y) + a 1 (x)D.X(x, y)]w(x, y) 

+	{Dy(ai,i+iA)(x, y)Dw(x, y ) - (x, y)Da i i +(x, y)D 1 w(x, 01 

+ 

+

• A(x,y)ai(x,y)Dw(x,y) 

• A(x,	ai+(x, y)D w(x, y) + (x, y)ao(x, y)w(x, y)^dy. 

From here we can easily check that 4i and 2 enjoy the properties in (2.4) - (2.9). 
We-now observe that the functional 'P defined by (1.12) fulfil the properties in (2.4) 

and (2.10) by virtue of (6.1). More exactly, for any z E L2 (ô1) and w E H'(1), 
respectively, we get 

=	(_i)k f p(k,y)z(k,y)dy -
	

p(x,y)z(x,y)dxda(y) 
k=o

	
fO,t) xc% 

and

'P 2 [w] = f D. p(x, ) [a l,l (x)Dw(x y) + E a i,i +(x, y)D 1 w(x,	dxdy 

+ j { Dp(x, Y) [a i + ii (x y)D1 w(x, y) 

+E ai+ii+j(xY)Dw(xY)] 

+ p(x, )[a i (x, y)Dw(x, y) 

+	a i +(x, y)D w(x, y) + ao(x, y)w(x, )] I dxdy.
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Thus the statement is proved I 
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