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On the Controllability 
of a Slowly Rotating Timoshenko Beam 

W. Krabs and G. M. Sklyar 

Abstract. We consider a slowly rotating Timoshenko beam in a horizontal plane whose move-
ment is controlled by the angular acceleration of the disk of a driving motor into which the 
beam is clamped. The problem to be solved is to transfer the beam from a position of rest 
into a position of rest under a given angle within a given time. We show that this problem is 
solvable, if the time of rotation prescribed is large enough. 
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1. Introduction: the model and the problem of controllability 

The control of rotating beams has been the subject of several investigations during the 
last two decades. The majority of publications concentrated on the Euler beam model. 
So Sakawa and co-authors in [9] derived a nonlinear model of a rotating Euler beam in a 
horizontal plane and investigated the problem of controllability computationally. This 
model was picked up by Krabs in [5] and treated by theoretical methods. In particular, 
an iteration method for the solution of the problem of controllability was developed 
and investigated with respect to convergence. In [6] it was shown, however, that exact 
controllability is not possible, but that the solution method developed in [5] leads to 
approximative solutions of sufficient accuracy for practical purposes already after two 
steps. 

In [1, 21 a linear model for a rotating Euler beam in a horizontal plane was derived. 
This model was investigated by Leugering in [7, 8] and by Krabs in[4]. 

Recently Xiao-Jin Xiong in his PhD thesis [10] derived a nonlinear model for a ro-
tating Timoshenko beam in a horizontal plane, proved the well-posedness of its model 
equations, and gave a numerical method for solving the problem of controllability to-
gether with numerical examples. He also linearized the problem for the case of a slowly 
moving beam where in a dimension-free formulation the deflection w(x, t) of the center 
line of the beam at the location x E [0, 11 and time i > 0 and the rotation angle (x, t) 
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of the cross section area at x and t are governed by the two differential equations 

1b (x, t) - w"(x, t) - C(z, t) = —9(t)(r + x) 'I 

(x, t) -	x, 1) + (x, t) + w'(x, t) = ö(t)	
(x E (0, 1), t > 0)	(1.1) 

where ti' w, = and w' = w, = , 9 is the rotation angle of the motor disk, 
9 = , and r is the radius of the disk. In addition, we have boundary conditions of the 
form

w(0,t) = e(0,0 = 0 

	

w'(1 1 0 +(1.0 =0	(t 20).	 (1.2) 

We assume the beam to be in the position of rest at t = 0 which leads to the initial 
conditions

	

w(x,0) = tb(x,0) = e(x,0) = e(x,O) = 0 (x E (0,1]) j	(13) 
9(0)=0(0)=0.	 J 

The motion of the beam is controlled by the acceleration 8(t) of the rotation angle of 
the motor disk. 

In this paper we consider the following 

Problem of Controllability: Given T > 0 and 9T E R, find 

9 E H(0,T) = JOE H 2 (0,T)I9(0) =9(0) =0) 

such that

(1.4) 
9(T)=0 J 

and the "solution" (w, C) of problem (1.1) - (1.3) satisfies the end conditions 

w(x,T) = ti'(x,T) = (x, T) = 4(x, T) = 0	(x e [0,1]).	 (1.5) 

In addition to 9, Xiao-Jin Xiong also considers boundary control of the form 

w'(l, t) + (1, t) = u(t)	or C(1,t) = u(t)	for t 2 0 

where u = u(t) is a second control function taken from a suitable function space. Instead 
of (1.5) he considers end conditions of the form 

w(x,T) = -T(X), tb(x,T) = WT(X) 
e(x,T) = eT(x),	(x, T) = &(x) j	

(x E [0,T])	(1.6) 

where WT, w' and F,'r, CT are chosen in suitable function spaces. He shows that con-
trollability is possible, if T > 0 is large enough.
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2. On the solution of the model equations 
Let H = L2 ((0, 1),R 2). Then we define a linear operator A : D(A) -p H by 

A(y)=(Y
,—Y" — z") (2.1) 

for () E D(A) where 

D(A) 
= ^(Y) € H2 ((0, 1),R2) 

(0) = z(0) = 0	

}.	
(2.2) z	 y'(l) + z(1) = 0, z'(l) = 0 

With this operator (1.1) can be rewritten in the form 

((.'i)) +A(w(.t)) - ( fl 
(., t) ( t)	- f(, t))	(t >0)	 (2.3)


where
fi(x,t) = _9(t)(r+x)}	

(x € (0,1),t >0). 
f2 (x,t) = 9(t) 

Let () € D(A) be given. Then it follows that 

( ( Y ) ,A ())H = 
J (y'(x) + z(x)) 2 dx + f z'(x) 2 dz 20 
0	 0 

and "= 0" if and only if y = z	0. Let ('), () E D(A) be given. Then it follows

that

((Yl 
J 

A(Y2	 (A(Y(Y 2
Zi	\Z2J/ 	 ZjJ	 Z2J)H 

Hence A is positive and self-adjoint. This implies that A has an orthonormal sequence 
of eigenelements (') € D(A) (j E N), and a corresponding sequence of eigenvalues zj 

.\, E R of finite multiplicity such that

as j —+ oo. 

The unique weak solution of (2.3) under the initial conditions (1.3) is then given by 

(w(x,t)'\ = fi(.,$)'\ (
Yj\\ 

ds'
co	t 

e(x,t))	*/sin(i_s)((f),),	)	
(2.4) 

for x E (0, 1) and t 2 0, and its time derivative reads 

(th(x,t)\	 jcos(t_s)(f2(.$))	
zj)/ 

ds 
H	zj•	(2.5) (x,t))
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Next we investigate the eigenvalue problem 

—y"(x) - z'(x) = Ay(x) } 

—z" (x) + y'(x) + z(x) = A z(x)	
(x E (0, 1))	 (2.6)a 

and
y(0)=z(0)=O 1 

y'(l) + z(1) = 0, Z'(1) = o. f	
(2.6)b 

Since we know according to (2.1) and (2.2) that the operator A on D(A) is positive and 
selfadjoint, this problem can only have a non-trivial solution, if A is real and positive. 
In addition we have 

Lemma 2.1. The smallest eigenvalue A 1 of the operator A satisfies the estimate


A 1 > 1. 

Proof. Let () E D(A). Then 

(( Y ) , A
 ())H = 

f (y'(x) + z(x)) 2 dx + fzl(x)2dx 

0	 0 

Since y(0) = z(0) = 0, the functions y(x), z(x) satisfy Friedrichs' inequalities of the 
form

Iy2(x)dx =

	
(f Y

1 (s)ds) dx f xf y'(s)2 dsdx	J YI(X)2 dx, 

/ z

2 (x)dx < / ZI(X)2 dx. 

Taking this into account we deduce from (*) 

(( Y )z 	\ ZJ/H 

= / (!

	+z(x)2)dx+J (lyl(x)2 +2y'(x)z(x) +zl(x)2)dx 

> (( Y ) '() ) H	
J (y'(x)+2z(x))2dx 

(y 
\ z) ' zA1
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The latter relation proves that A 1 :-:^' 1. At the same time, assuming that 

A( Yz)=( Y),  z 

we obtain y'(z) = —2z(x). From here and from the equality y'(x) - z"(x) + z(x) = z(x) 
it follows that

z"(x) + 2z(x) = 0. 
Since z(0) = 0, z'(l)	0 that leads to

	

Z(X) 0. 

Then y'(x) = O,y(0) = 0 and, therefore, y(x) 0. Thus, A = 1 is not an eigenvalue of 
A. This completes the proof I 

We introduce functions
y1(x)= y(x) 

Y2(x) = y' (x) 

Y3( x ) = z(x) 
y4 (x) = z' (x) 

and rewrite (2.6),. - (2.6) b in the form 

((x)\	
( 
0 1	0	0 \ (i(X) 

i	- —A 0	0	—1	
'o	 '2 7\ y(x) J.	0	0	0	1 J ( y3 (x)	 .	1) 

\y(x)J \ 0 1 1—A 0 / \y4(x) 

and
Th(0)=Y3(0)=O ) 

Y2( l)+y3(1)0	.	(2.7)6


J4 (1) = 0. J 
Let us rewrite (2.7)a in the form 

	

y(x) = Cy(x)	(x E (0,1)). 

In order to determine the general solution of this system we need the eigenvalues of C 
which are given by

2	 P 3 =—A_,	Y4f3 
and corresponding eigenvectors which are given by 

/	1 1 /1 1 
I	' P1 1P3 

Pi P2 = '	d = (	\/,—\ ) - 
I	i p, I	P3 P3
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The general solution of (2.7)a therefore reads 

	

Y(X) = C1 e1 z p i +C2e	xp2 +C3 ell ' p3 +C4 e_ 3z p4	(x E [0,1]) 

where C1 ,C2 ,C3 ,C4 E Care variable constants. The boundary conditions (2.7)b lead 
to the conditions 

C 1	+	C2	+	C3	+	C4	= 0 

	

- C 1 +	C2	+	C3 -	C4	= 0 

	

—--e''C 1 +	.eThC2 -	-eC3 +	e'' C4 = 0)At ,Us

-	Ci - 'e -'A'C2 +	C3 + v'e - C4 = 0. 

A necessary and sufficient condition for this system to have a non-trivial solution is that 

/	1	1	1	1 
- 

i	I	Lj	 l3	 - uei	--a-	I c'	--a-	-- e13	-0. 
JA I	MI	 As	Ma 

\ /eM' _4e—M1	/XeM3 V'ie 

This is equivalent to 

8 /1 1 A3 + (p 1 + p3 ) 2 ( e ll '	+ e') - (jz 1 - p3)?( ell 3 +	0.	(2.8) 

By Lemma 2.1 we know that A> 1, hence A > v'X and 

P1 = iai,	a1 =	p3 =za3 ,	a3 = 

If we put u = a3 - oi and v = 03 + o, then (2.8) turns out to be equivalent to 

u2 (1 + COS u) = v 2 (1 + COS v).	(2.9) 

On defining =/ (> 1)we obtain v=v'w2+w+Vw2_w, hence v2=22+ 
2V'w 4 --w2 which implies v4 = 4 2 ( v2 - 1). This leads to 

V2 =	_____ .	 (2.10) 
2V'v 2 -1 

	

Since A > 1, it follows that v >	so that (2.10) defines a bijection between	no)

and (1,00) which allows to find w E (1, no) for every v € ( / ,00). We also note that 

- when v - no. 
Further, we have u = /w 2 + w v'w2 - w, hence u 2 = 2(c 2 -	- w 2 ). Substi-




tuting w from (2.10) we obtain 

u2=2 4( 2_
V^6_,2 -1) 2 4(v2_)


	

/	v4 

	

1 / v 4	v2(v2 -2)) 
2v2_1	v2-1  

V2 
= V 2 - 1•
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Therefore
V	

as v — oo. 
- 1 

Substituting u = u(v) into the spectral equation (2.9) we obtain 

	

1+ Cos( V:l)=(V2_1)(1+ COS V).	 (2.11) 

Conclusion. Each eigenvalue of (2.6)a - (2.6)b can be found as 

A
- 4(v 2 - 1) 

where v >	is a solution of (2.11) 
Next we show the following two statements: 

(1) For every k > 2 there exist two solutions v	E [2(k - 1)ir, (2k - 1)7r) and V2
k) E 

((2k - 1)7r, 2k7r] of (2.11). 

(2) limt ....	[(2k - 1)7r - vJ = lim.00 [v ' - (2k - i)irj = 0. 
For the proof we rewrite (2.11) in the form

1+cos 
v=(v)= Ii+  1+cosv	 (2.12)


In order to prove (1) we notice the following: 

(a) (2k7r) < /1 +	 Y = V2- < ir for k E N. 
(b) The function p(v) is continuous on the intervals [(2k - 2)7r, (2k - 1)7r) and 

((2k - 1)7r,2k7r] (k > 2). 
(c) (v) -4 - as v - (2k - 1)7r (k E N). 

Hence (2.12) or equivalently (2.11) has at least one solution on each interval [2(k - 
1)7r, (2k - 1)7r) and ((2k - 1)7r,2k7r] fork EN. 

In order to prove (2) we notice that the inequality 

(v)<F
1 -2
 

<2(k - 1)ir <v -1+cosv 

holds true when 

v E [2(k - 1), arccos	2 
((2(k - 1)) 2 - 1 - i) + (2k - 2)) 

and

V E ( arccos ((2(k - 1)) 2 —1 - i) + 2kw, 2k]
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for k > 2. So the roots v	belong to the interval

2 
=arccos((2(k -	)2 —1) + (2k - 2), 2k - arccos 

(2(k - 1)) 2
 —1 - i) 

for k > 2. Since

	

(2(k -	
- 1 - i) .:	if k .' 00, arccos (	2 

the length of Ak tends to 0 when k - oc. This completes the proof of (2). 
One can also prove the uniqueness of the solutions v and v21 of (2.12) or equiva- 

lently (2.11) in (2(k - 1)7r, (2k - 1)7r) and ((2k - 1)7r, 2k7r], respectively, as a result of 
more complicated arguments. Summarizing we obtain 

Lemma 2.2. The eigenvalues \k of (2.6)a - (2.6)6 for large k are of the form 

{U(2k_1)_c_']2 ifn=2k-1 
An -
	E(2k— 1)lr+62k] 2	ifn=2k 

where 0< E2k_1, E2k and	 0. 

3. On the solution of the problem of controllability 
From (2.4) and (2.5) it follows that the end conditions (1.5) are equivalent to 

aj f sin	(T - t)ö(t)dt = 0 

and	 (j E N)	 (3.1) 

aj J cos	 (T_ t)ö(t)dt = 0 

where

a2 = _ J(, +x)i(x)dx+)zi(x)dx.	 (3.2) 

The end conditions (1.4) are equivalent to 

J t)dt = 0	and	I t o(t) dt = —9T .	 (3.3) 

Now let us consider the following
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Moment Problem. Find u E L'(0, T) such that 

Tu(t)di = 0 

It U(t) dt = 

Icos V'-A—j t u(t) dt =0 

Jsin	 tu(t)dt =0.

(j E N)	 (3.4) 

If u E L 2 (0, T) is a solution of (3.4), then 9(t) = v..(T—t) (t E [0, T]) solves (3.1),(3.3) 
and 0(t) = f(t - - s)ds (t E [0,T]) solves the problem of controllability. 
Therefore, in order to find a solution of the problem of controllability we have to find a 
solution u E L2 (0, T) of the moment problem (3.4). 

We shall show later that, if T > 4, the function 1(t) = t (t E (0, T]) does not belong 
to the closure of the span of 

{ i, COS /t, sin/7t t E (o,r], j E N} 

which we denote by W. This implies that there is exactly one function ti E W such 
that

0 < 11Zb - fllL 2 (O,T)	11- - fIlL 2 (OT)	for all w E W 

which is characterized by 

J(1( t ) - (t)) w(t) di =0	(w E W). 

This implies

Icos	t(f(t) - t(t))dt =0	( E N) 

fsin	t(f(t) - th(t))dt =0
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and
T f (f( t ) — (t))f(t) dt = lw — I IIL 2 (O,T) > 

0 

If we define
OT U(t) = —	 2	(1(t) — i(t))	(t € [0, T]), 

11 w — .11IL2(O,7') 

then u E L2 (0, T) and solves the moment problem (3.4). Thus the problem of control-
lability is solvable, if T > 4. 

In order to show that f W, if T> 4, we make use of [3: Theorem 1.2.17] which 
reads as follows: 

If

lim sup lim sup d(x+y)—d(x)	T— 
r—oo Y—CO	 y	 27r 

where, for every x > 0, d(x) = max{k € N I /Xj < x}, then the system 

1, t, sinVfA k t, cosVA k t It € 10,Tj,k € N} 

is minimal in L2 (0,T) which implies that f V W. 

Let x > 1 be large. Then /X < x implies n < + + 1 where a > 0 is a constant 
ff	7r 

with lekI < a for all k € N. This implies 

2x a	 2(x+y) a 
d(x) < — + — + 1	hence	d(x + y) <	+ — + 1 It	it	 it 

for all x > 1 and y > 0. 

	

Let again x > 1 be given sufficiently large. Then we put n =	- ] (7r— 
and conclude	< . (nir+co) <x, hence - —1< d(x). For every y >0 we then 
obtain

d(x+y)—d(x) 
Y	 it	ylr 

This implies

	

d(x+y)—d(x) 2	T lim sup lim sup	 <— < - 

	

Y	- it	2ir 

if T > 4. Summarizing we have the 

Theorem 3.1. If T > 4, then the problem of controllability is solvable.
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4. Concluding remarks 

In a forthcoming paper it will be shown that all the a 3 's defined by (3.2) and appearing 
in (3.1) are unequal to zero unless the radius of the disk is of the form 

- a a 1 sin 1 - a3 sin a3 
T - /(cosa3 - COS ai) 

with 27rk < 0'3 + a 1 < ir + 27rk, in which case r is called singular. 
If r is singular, then a3 = 0 for at least one j e N and for initial states which are 

not positions of rest even approximate controllability to a state of rest is impossible. 
If r is non-singular, then approximate controllability from an initial state of finite 

energy to the states of rest is guaranteed for T > 4. This is also a consequence of the 
minimality of the system 11, I, sin./Xt, cos/t, I i E [0, T], k E N} in L2 (0, T) for 
T >4. 
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