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Abstract. In this paper we consider the following fractional differentiation problem: given 
noisy data f e L 2 (R) to f, approximate the fractional derivative u = Dpf E L 2 (R) for fi > 0, 
which is the solution of the integral equation of first kind (Au)(x) —f,. 

(s_,)i	= AX). 
Assuming Ill - f6 llL 2 (R) < 5 and 1 u 11, < E (where lIp denotes the usual Sobolcv norm of 
order p > 0)- we answer the question concerning the best possible accuracy for identifying u 
from the noisy data f6. Furthermore, we discuss special regularization methods which realize 
this best possible accuracy. 
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1. Introduction 

Fractional differentiation problems arise in several contexts and have important appli-
cations in science and engineering (cf., e.g., [61), and various aspects of it have been 
treated in the literature of which we cannot give here an exhaustive survey, but let us 
quote [3, 4, 5, 8, 9, 14 - 16, 23). In this paper we consider the problem of fractional 
differentiation in L 2 (R), i.e., the problem of the numerical computation of the fractional 
derivative

I 
1	d''	f(t)dt u(x) : (Dflf)(x) = F(n + 
1 -,3)	 f ) dx''	(x - 

of a function I given in L 2 (R), where /3 > 0, n is a non-negative integer satisfying 
n < /3 < n + 1 and r( . ) is the Euler gamma function. Our main emphasis is on 
optimality of error estimates in regularization. It is well known that the problem of 
fractional differentiation is equivalent to the problem of solving the integral equation of 
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the first kind 

(Au)(x) :	 = f(x), A,9:  D(A) C L(R)	L2 (R)	(1.1) 

with domain
D(A#)	U € L(R) I sIU( s ) € L(R)} 

where U	.Fu denotes the Fourier transform of u (cf. (1.3)). Equation (1.1) is an

Abel integral equation for 0 < j3 < 1. Note that for integer fl-values there holds u(x) = 
do f(x). As a comprehensive reference for fractional differentiation and integration we 

recommend [16]. 
We observe that the operator Afi : L2 (R) — L2 (R) is densely defined, injective, 

normal, unbounded, closed and not compact. In addition, the inverse operator A 1 is 
unbounded and the range R(A) of the operator A, is non-closed in L2 (R), consequently, 
problem (1.1) is ill-posed. Problem (1.1) does not have a solution for arbitrary f € 
L2 (R). Furthermore, the solution u of problem (1.1) (if it exists) does not depend 
continuously on the data 1. For general background on ill-posed problems and their 
regularization we refer to [1, 2, 7, 10, 12, 22, 251. 

Let us illustrate the properties that both Afi and A' are unbounded, by the fol-
lowing proposition. 

Proposition 1.1. For every pair (u,f) for which Au = f holds there exist se-
quences (u,,) and (f,,) such that (a) and (b) hold: 

(a) A 19 u = f,,, u,, —* u and f,, 74 f = A,jtz. 

(b) A fl u = f,,, f,, — f = Ajsu and U fl 74 u. 

Proof. Since Ap is linear it is sufficient to verify the statements (a) and (b) for 
f = 0, u = 0. We sketch the proof for the special case 3 = 1. In order to verify (a) we 
choose

= 1/4 (1 + IxI(3n+1)/(2n)) 

Then the equation Au = f,, with /3 = 1 has the (unique) solution 

1 — n.±1.IzI(3n+1)/(2n) 2n u(x) =	=	(i + IxI(3n+1)/(2)2 

and both f,, and u,, are in L 2 (R). Now it can be shown that 

IIfnhIL2()	
1/4 __+ oo	and	IkLnhIL2()	

-1/4 — 0 

for n — oo, which verifies (a). In order to prove (b) we choose f,, = ez2. Then the 
equation AUn = f,, with 3 = 1 has the (unique) solution u,, = f,', = —2nxe" 2 and 
both f,, and u,, are in L2 (R). Since 

iT	 1/4 \ 
IIfnhIL 2 () =	I	—* 0	and	jtLnhIL2(R) = (--) 

1/4 - 

°° '.2n I 

for n — cc we obtain (b) I
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Since the data f in problem (1.1) are generally based on (physical) observations 
and not known with complete accuracy (the available noisy data are f6 E L 2 (R) with 
Ill - 16 II L 2( ) 5), for a stable numerical approximation of the solution u of problem 
(1.1) some regularization technique has to be applied, which provides a sequence of 
approximations u = R0 f6 with u -* u as S -* 0 under proper choice of the regular-
ization parameter a. Hence, regularized solutions u ,6, depend continuously on the data. 
However, as is typical for ill-posed problems, the convergence of u6 to u can be arbitrar-
ily slow if we do not impose additional a priori restrictions on the unknown solution u 
(or on the 'exact' data f, respectively). Quantitative a priori restrictions that will work 
in different ill-posed problems (and enable us to overcome the ill-posedness) consist in 
imposing a bound E on the (unknown) solution and a finite number of its derivatives. 

Let us describe our quantitative a priori information concerning u in more detail. 
We introduce the Sobolev scale (H T ) T E + of positive real order r (cf. [11]) according to 

H° H = L2(IR)
	and	H' = { v E H III V IIr < oo} 

where

V Ilr = 1(1 + s 2 )V(s)II L 2 (R) = Cf( 1 + s2 ) r IV(s)I 2 ds)	(r E R)
	

(1.2) 

is the norm in H' and V = Fv denotes the Fourier transform of v given by 

+00 

V(s) = (v)(s) = ---- I v(x)e3zdx	(s E R).	 (1.3) 

In working with the Fourier transform we will consistently use s for the transform 
variable, and for transforms of functions we will use the corresponding capital letters, 
e.g., F = .Tf. By 11 . and (,) we denote the norm and the inner product in H° = 
H = L2 (R), respectively. Let us mention here one further important convention for 
this paper: If we work with certain densely defined operators A and NA, respectively, 
and if we write down elements Au and i,b(A*A)v with certain operator functions 
then consistently we will assume in these cases that u E D(A) and v E D(i,b(AA)), 
respectively, without mention this restriction explicitly. 

Now we require for problem (1.1) the a priori smoothness condition concerning the 
unknown solution u according to 

U E M,E = {u E H ill u lI	E}	 (1.4) 

where p > 0. In the case p = 1 condition (1.4) means that h u ll1 = { hI u 11 2 + hlu z 11 2 1 1 , ' 2 < 
E, which follows from Parseval's relation 11vil = II V II and the differentiation theorem 
for the Fourier transform. Likewise the set M,E for p > 0 an integer consists of those 
functions for which the derivatives of order less or equal p are bounded in the L2 (R)- 
norm. The, larger p, the more restrictive is assumption (1.4).
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Any operator R: H - H can be considered as a special method for identifying the 
solution u of problem (1.1) from noisy data f6 E H; the approximate solution is then 
given by RI 6 . We introduce the worst case error i.(ö, R) for identifying u from f6 11 
under the conditions Ill - 1 6 11 6 and u E M,E by 

A(6, R) = sup {ll Rf  - u II u E M E, P E H, JjA fl u - f 6 11 o}. (1.5) 

This worst case error characterizes the maximal error of an arbitrary method R if the 
solution u varies in the set M,E given in (1.4). Now we ask the question concerning 
the magnitude of the worst case error (6, R) for 'optimal' methods R : H - H that 
minimize the worst case error (1.5) over all methods R H -* H. In Section 2 we 
discuss a general formula for the best possible worst case error 

Lo (8)	inf A (5,R)	 (1.6)
R 

which shows us in which kind this best possible worst case error depends on the noise 
level 6. In Section 3 we apply this general optimality result to the problem of fractional 
differentiation and prove that for 6 -* 0 

w(8)= Eb6f(1+o(1)) 

In Section 4 we discuss special regularization methods for the problem of fractional 
differentiation. We construct regularized approximations u = Rf 6 to the unknown 
u that guarantee 'optimal' error bounds Il u - u ll w(5). Hence, the constructed 
approximations u are as accurate as possible in terms of the given information IIf-

6 and (1.4). These constructed approximations require the knowledge of the 
smoothness parameter p, the a priori bound E and the noise level 6. In Section 5 we 
generalize the results of Sections 3 and 4. We prove that 

w,(6) = Ep+s6	(1 +o(1)) 

is the best possible worst case error with respect to the	and we construct

regularization methods that guarantee the optimal error bound II u - u 

2. Optimal error bounds and regularization methods 

In this section we consider an arbitrary ill-posed inverse problem 

Au = I
	

(2.1) 

where A H, - H2 is a linear injective, not necessarily bounded, but densely defined 
and closed operator between infinite dimensional Hilbert spaces H, and H2 . We assume 
throughout this section that the inverse operator A' is unbounded, hence, the range 
R(A) of A is non-closed. Furthermore, we assume that f6 E H2 are the available noisy 
data with Ill - 1 6 11 < 6. Any operator R : H2 - H, can be considered as a special
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method for 'approximately' solving (2.1). The approximate solution to (2.1) is then 
given by Rf6. 

Let M C H 1 be an arbitrary set. We introduce the worst case error (8, R) for 
identifying u from f 6 E H2 under the assumptions 1 1f - P11 :^ 5 and u E M according 
to

A (6, R) = sup {II Rf -	u E M, j6 E H2 , II Au - f	o}.	(2.2) 

This worst case error characterizes the maximal error of the method R if the solution u 
of problem (2.1) varies in the set M. Parameter dependent methods R = R5 are called 

(i) optimal on the set M if (5, R5 ) = iflfR:H 2 -.H, L(5, R) 

(ii) order optimal on the set M if L(5, Ro) C jnf R:H2_H, z(5, R) with c > 1. 

For a general discussion of optimality Of parameter dependent regularization methods 
Ro in the special case that the operator A is bounded and that the set M is given by 

M = 11 E H 1 I u = (AA)v, j jvjj <E, p> o} 

we refer to [12, 17, 18, 24, 25]; concerning order optimality we refer to [1, 2, 12, 25]. 

In this section we discuss some optimality results if the set M is given by 

	

M,E = {U E H 1 u = ja(AA)]v, j jvjj E}	 (2.3)


where the operator function W(AA) is well defined via the spectral representation 

(A' A) = 
f 

V (A) dEx 

Here A * A = f0a AdE,, is the spectral decomposition of A * A, {E,,} denotes the spectral 
family of the operator A'A and a is a constant satisfying II AAII a, with a = 00 if 
AA is unbounded. In the case that A : L 2 (R) - L2 (R) is a multiplication operator, 
Au(s) = a(s)u(s), the operator function p(AA) attains the form 

(p(AA)u(s) = co(Ia(s)12)u(s). 

The optimality results which will be discussed in the sequel of this chapter have 
been obtained in the case of bounded operators A in [19]. If A is densely defined and 
closed, the same properties are valid for the adjoint A, and for the operator A*A there 
exists a unique spectral decomposition. Since the proofs for the optimality results in 
[19] are based on spectral theory, they can be extended with small modifications to the 
case of operator equations (2.1) with (unbounded) densely defined and closed operators 
A and will be omitted here. 

Let us motivate the practical relevance of restricting attention to the general source 
set (2.3). In various ill-posed problems (2.1) additional quantitative a priori restriction
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is given by a certain smoothness of the unknown solution u E H1 . Such smoothness con-
ditions can be reformulated into equivalent conditions u E M,E with certain functions 
(p which generally are not of the form '() = .X P . Hence, the set M,E does not coincide 
with the above set M in general, and the general optimality results known for the above 
set M cannot be applied. Examples where W differs from the standard form p(A) - 
arise, e.g., in heat equation problems backward in time (cf. [19]), in non-characteristic 
Cauchy problems for elliptic partial differential equations (cf. [20]) or in sideways heat 
equation problems (cf. [21]). For our fractional differentiation problem of Section 1 we 
will see in Section 3 that the specific a priori restriction (1.4) concerning the unknown 
solution can be reformulated into an equivalent condition (2.3) with a special function 
ço. This reformulation enables us to apply optimality results which we discuss in the 
sequel of this section. 

In order to derive explicit (best possible) error bounds for the worst case error 
(8, R) defined in (2.2) and in order to obtain optimality results for special regulariza-

tion methods we assume that the function W in (2.3) satisfies the following assumption. 
Assumption 2.1. The function ç : (0, a) - (0, ) in (2.3) (where a is a constant 

with IIAAI < a) is continuous and satisfies following properties: 
(I) lim.\ ...o (,O(.X) = 0. 

(ii) p(A) is strictly monotonically increasing on (0,a]. 
(iii) p(A) = A(A) : (0,p(a)] - (0,a ' (a)] is convex. 
The following theorem gives us a general formula for the best possible worst case 

error inf H R). The proof of this formula can be found in [19] for the special case 
of bounded operators A and follows some ideas given in [13: Theorem 2.10) and [24], 
where the case (A) = A" (p > 0) is treated. 

Theorem 2.2. Let M,E be given by (2.3), let Assumption 2.1 be satisfied and 
let 82 /E2 E cr(A*Aco(A*A)) where o(A*A) denotes the spectrum of the operator AA. 
Then

infz(, R) = E ../p-1(62/E2)	 (2.4) 

Note that the condition 62 /E2 e a(At Ap(A"A)) can only hold (for sufficiently small 
) if the problem (2.1) is ill-posed. For well-posed problems (2.1) condition 82 /E2 E cy(A*Aco(A*A)) can never hold for sufficiently small 5, hence this condition excludes the 

class of well-posed problems. 

Furthermore, in [19] special regularization methods have been constructed which 
realize the error bound given on the right-hand side of (2.4) in the case of bounded 
operators A. These results can also be extended to the case of (unbounded) densely 
defined and closed operators. In the following considerations we discuss three special 
methods, a special variant of the method of generalized Tikhonov regularization and 
two variants of the method of generalized spectral decomposition. 

In our method of generalized Tikhonov regularization a regularized approximation 
U6 is determined by solving the minimization problem 

min J(u),	.J(u) = II Au - f6 11 2 + II[p(A*A)]_uII 2 .	(2.5) uEH,
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Due to Assumption 2.1, Morozov's complementation condition (cf., e.g. [21) 

IIAuII2 + lI[(A*A))_uII 2 ^ iIuii 

is satisfied with y > 0. Consequently, problem (2.5) has a unique solution which is given 
by

u = A (AA* + a[(AA)]')' f .	 (2.6) 

This method appears to be optimal on the set M,,E given by (2.3) provided the regu-
larization parameter a is chosen properly. 

Theorem 2.3 Let M,E be given by (2.3), let Assumption 2.1 be satisfied,	= 
(A) be twice differentiable, p = p(A) be strictly convex and 8 2 /E2	a(a). If the


regularization parameter a is chosen optimally as 

	

a 
=l(A)'(A)) ( E' )2

	
with A 0 = p' (s),	

(2.7) 

then for the Tikhonov regularized solution u = Raf8 defined by (2.5) the error estimate 

(2.8) 

holds, which is optimal in case 5 2 /E2 E a(A*Ap(A*A)). 

Proof. Let us sketch the ideas of proof. From [24: Lemma 2.2] we have

I 
= inf	-(I - Ra A)ça(AA)(I - R0A)* + j7RcR
o<<1 

< inf sup l E2 a2 A)	2AA) 
- °<< A>0	[A(A) + a]2	(1— )[A(A) + a]2 I 

Now we search for a stationary point (a,,.,, A,) of the expression { ... } as a function of 
a, and A and find a, as given in (2.7) and , = E2 a,/(S2 + E2 a,). We substitute a, 
and , into the expression {... } and prove that the remaining expression as a function 
of A > 0 is bounded by E,/p'(621E2)U 
- Now we discuss two different spectral methods which are both optimal on the set 
M, E given by (2.3) provided the regularization parameter a is chosen properly: 

The first spectral method is characterized by

i 
= Ag,,(AA)f	with g0 (A)

forA>a
 =	-	(2.9) 
; for A<a. 

-For-this method the following optimality result can be established (see [19] for the 
special case of bounded operators A), where the ideas of proof are similar to those for 
proving Theorem 2.3.
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Theorem 2.4. Let ME be given by (2.3), let Assumption 2.1 be satisfied, 
(A) be twice differentiable, p = p(A) be strictly convex and 52 /E2 < a(a). If the 

regularization parameter a is chosen optimally as 

(Ao) + Aoço1(Ao)	
with Ao(A0)= (-) ,	 (2.10) a =

	(\) 

then for the regularized solution u = Raf6 defined by (2.9) the error estimate (2.8) 
holds. This error estimate is optimal in the case 82 /E2 E o(A*Acp(A*A)). 

In the second spectral method a regularized approximation x6 is determined by 

(1	for A>a 

	

u = Aga (AA)f 6	with g(A) =	 -	 (2.11)
for A < a. 

For this method the following optimality result holds (see [19} for the special case of 
bounded operators A). The ideas of proof are similar to those used in the proof of 
Theorem 2.3. 

Theorem 2.5. Let M,E be given by (2.3), let Assumption 2.1 be satisfied,	=

2(A) be twice differentiable, 6 2 /E2 < a(a) and let 

p(A)p'(A) + 2A(A)p"(A) - 3A[coA)] 2 <0	 (2.12)


hold. If the regularization parameter a is chosen optimally as 

1

(0) 

+ Ao(Ao))2	
with A0(A0) = (

5)2 
a	 (2.13) = -  

A0	p'(Ao) 

then for the regularized solution u, = Rc,,f 6 defined by (2.11) the error estimate (2.8) 
holds. This error estimate is optimal in the case 52 /E2 E a(AAp(AA)). 

3. Optimal error bounds for fractional differentiation 

In this section we consider the fractional differentiation problem (1.1) and treat the 
question concerning the best possibe worst case error (1.6) for identifying u from noisy 
data f' E H = L2 (R) provided Ill - f S and u E M, E hold where M,E is given by 
(1.4). Let us consider the operator equation (1.1) with the linear operator A H - H. 
Obviously, this equation is equivalent to the operator equation 

	

AU=F	with Ap=jAj'	 (3.1) 

where JP7 : L2 (R) - L2 (IR) is the (unitary) Fourier operator (cf. (1.3)) that maps any 
L2 (R)-function v = v(x) into it's Fourier transform V = V(s). Transforming problem 
(1.1) we obtain

(is)U(s)	F(s)	 (3.2)
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(cf., e.g., [6]), consequently,

	

= (is)	= si	 f	 (33) 

which shows us that Ap H —+ H in problem (3.1) is a linear, injective, normal and 
unbounded operator (multiplication operator), where also the inverse A. I is unbounded. 
Since	= IsI_$etgh1(s) f1. we have

	

= AflA = I s I 2 ,	 (3.4) 

hence the spectrum of this operator is given by cr(AA) = (0, no). Since	tends

to zero as Isl tends to infinity we realize that problem (3.1) is ill-posed. We call problem 
(3.1)

mildly ill-posed for 0 </3 1 and 
moderately ill-posed for 1 < 0 < no. 

Obviously, the ill-posedness becomes worse as /3 increases. High frequency perturbations 
of the data will be blown up more and more for increasing 3 and the corresponding 
solutions	F6 (if they exist) will indicate strong and undesired oscillations. 

The smoothness condition (1.4) can also be transformed into an equivalent condition 
in the frequency domain. From (1.2) we have that condition (1.4) is equivalent to the 
condition

U E	= {u E HI 11( 1 + .2 ) P UII	E}	 (3.5) 

where dot replaces the variable s. This condition can be reformulated into an equivalent 
condition with a set of the structure (2.3). 

Proposition 3.1. Consider the operator equation (3.1). Then the set M,E given 
in (3.5) is equivalent to the general source set 

= {u E H	 15 E}	 (3.6) 

where = W is given (in parameter representation) by 

1 

+
(0 <r <no).	 (3.7) 

	

(p = (1 r)	J 
Proof. We compare (3.5) and (3.6) and obtain 

	

= (1 + S2)-p.	 (3.8)


From this representation and (3.4) we obtain that p is given (in parameter represen-
tation) by A = I s I 2 , p = ( 1 +	(s E R). We substitute s 2 = r and obtain 
(3.7)1 

In our following considerations we discuss properties of the function (p = p(A) (A E 
(0, no)) which is given (in parameter representation) by (3.7).
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Proposition 3.2. The function p defined by (3.7) is continuous and satisfies the 
following properties: 

(i) lim A .....o p(A) = 0. 

(ii) p is strictly monotonically increasing. 

(iii) p(A) = )p'(A) is strictly monotonically increasing as well as strictly convex 
and possesses the parameter representation 

A = (1 + r)" 

	

=(l+ryP}	(0 <r <oo).	 (3.9)
p r  

(iv) p	is strictly monotonically increasing and possesses the parameter represen-
tation

A = r(1 +

	

(0 <r <oo).	 (3.10) 
p=(1+r)-	J 

(v) For the inverse function p	of p, 

p(A) = A+7 (1 + o(1))	for A - 0	 (3.11) 

holds. 

Proof. Since the function A(r) from (3.7) is strictly monotonically decreasing with 
limr... A(r) = 0 we have lim....o (A) = limr.... p(r) = 0, hence (i) is proved. Since 
A(r) < 0 and (r) < 0 we have '(A) =	> 0 which gives (ii). From (i) and (ii) 
it follows that p — '(A) is strictly monotonically increasing, consequently, p(A) is strictly 
monotonically increasing, where (3.9) follows from the parameter representation of 
which is given by

A = (1 +

	

J	
(0<r<oo). 

Now let us discuss the convexity of p. From p" = [A - A]/A 3 and A < 0 we obtain 
that p" > 0 is equivalent to jiA < ,ÔA. By elementary calculations it can be shown that 
this inequality is satisfied provided p > 0 and /3 > 0 hold, hence, p is strictly convex. 
Now (iv) is a direct consequence of (iii), and (v) follows from (iv) I 

Now we are in a position to formulate our main result of this section concerning 
the best possible worst case error ,(6) defined in (1.6) for identifying the solution u 
of problem (1.1) from noisy data f6 E L2 (R) under the conditions Ilf - 16 11 6 and 
u E M,E where the set M,E is given by (1.4). 

Theorem 3.3. Let 62 /E2 <oc, p> 0 and /3 > 0. Then the stability result 

w(ö) = E(1 +ro) 

= E+W 6(1 + o(1))	for ö _ 0	
(3.12)
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holds (H5lder stability) where r0 is the (unique) solution of the equation 

5 
r(1 + r) = (i).

2	
(3.13) 

Proof. Since the Fourier operator F is unitary (i.e. F = FS) we have for the 
worst case error (1.6) 

	

w(5) = i(5) := inf sup {IIF6 — U II I F6 e H, J IF - F6 II -.!^ 5, U E MP E}.	(3.14) 

Now we apply Theorem 2.2 to our problem (3.1). Due to (3.14), formulae (3.12) and 
(3.13) follow from (3.10) and (3.11) provided Assumption 2.1 with A = ifl and W given 
by (3.7) as well as

-	52 
() E a(AAp(AAp))	 (3.15) 

hold. Assumption 2.1 is verified by Proposition 3.2. In order to verify (3.15) we use 
(3.4) and (3.8) and obtain that

= o(IsI_ 2 (1 + s2)_) = [0, 00) 

holds. Consequently, (3.15) reduces to 52 /E2 < 00, and the proof is complete I 

4. Optimal regularization methods 

In Section 3 we have proved that the best possible worst case error for identifying u 
in equation (1.1) from noisy data f6 E L2 (R) under the conditions If - lo ll < 5 and 

E Mp,E (with M,E given by (1.4)) is given by (3.12). From this result we conclude 
that under the above conditions there do not exist any methods R : H —* H which 
guarantee an error bound for II Rf° — u lI which is smaller than that given on the right-
hand side of (3.12). 

In this section we consider the method of generalized Tikhonov regularization and 
two variants of the method of generalized spectral decomposition, apply these methods 
to the problem of fractional differentiation and show how to choose the regularization 
parameter such that all three methods guarantee the optimal error bound given by 
(3.12). These optimality results will be obtained by applying Theorems 2.3 - 2.5 to our 
transformed problem (3.1). All three theorems yield 'optimal' regularized approxima-
tions Ug in the frequency domain, and due to the Parseval relation II U — U = II u — ulI 
it follows that the elements = F'U are then 'optimal' regularized approximations 
in the original domain. 

For the problem of fractional differentiation we obtain together with (3.3) and (3.8) 
that the method of generalized Tikhonov regularization (2.5) applied to our problem 
(3.1) in the frequency domain consists in the determination of a regularized approxima-
tionU = U 6 (s) by solving the minimization problem 

mm J(U),	JaW) = II(Y	— F°M2 + M(' + . 2 )UI 2	(4.1) UEH
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where again the dot is place-holder for the variable s. Hence, in the frequency domain 
the Tikhonov regularized solution U, can be written in the form 

t

	

	
(4.2)
F =	 6(s). Ut(s) 

1 + a(1 +	 Pfl 
The second summand in the denominator of (4.2) has a regularizing effect and damps 
high frequencies. The numerical computation of the regularized approximation u = or 
.F— 'U' can, for example, be done by discrete Fourier transforms. 

By comparing (4.2) and (3.3) we see that ul is the solution of the operator equation 
(1.1) with 'smoothed' data f = f where 

F(s) =	
1	

F6 (s),	 (4.3) or	1 + a(1 + s2)P1s120 
hence, a second way for the computation of u, consists in executing the following steps: 

(i) Given noisy data f, compute 'smoothed' data f, = F— 'F,6, by using discrete 
Fourier transforms where F,,6 is given by (4.3). 

(ii) Given 'smoothed' data f from step (i), solve problem (1.1) with 'smoothed' 
data f = f,6, to obtain ut,. 

In this way high frequency components in the data f6 are filtered out properly. A similar 
regularization idea has been used in [8] where the data smoothing step (i) has been 
done by mollification techniques, and where order optimality has been achieved. In our 
following theorem we answer the question how to choose the regularization parameter a 
in (4.1) - (4.3), respectively, such that the Tikhonov regularized solution u = Y7-1 Ua6 

is 'optimal' on the set ME given by (4.1). 
Theorem 4.1. The Tikhonov regularized solution u = F - 'U6 with U, given by 

(4.2) is 'optimal' on the set M,E provided the regularization parameter a is chosen 
optimally by

(1+ro) fS\2 
a0 =	p	

(4.4)

pro 

 

where r0 is the (unique) solution of equation (3.13). For 8 —+ 0, 

ao = ( 8)2 + o(i)) 

holds. Furthermore, the optimal error estimate II u - u II	w(6) holds where w(6) is

given by (3.12). 

Proof. From Theorem 2.3 it follows that the optimal regularization parameter 
a is given by (2.7) where is given by (3.7). For functions W given in parameter 
representation A = 01(r), p = 02(r) (0 r < ) formula (2.7) attains the form 

01(ro)02(ro) i6 2 
I(ro)2(ro) 

where r0 is the (unique) solution of the equation ?1I(r)2(r) = 82 /E2 . Using the special 
parameter representation (3.7) we obtain (4.4) and (3.13). The asymptotical expression 
for a0 follows directly from (4.4) and (3.13), and the optimal error estimate follows from 
Theorem 2.31
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In the second part of this section we consider the spectral method (2.9), apply it 
to problem (3.1) and show by applying Theorem 2.4 how to choose the regularization 
parameter such that this method is optimal on the set M,E. 

For our fractional differentiation problem we obtain together with (3.3) and (3.4) 
that the spectral method (2.9) applied to problem (3.1) consists in the determination 
of a regularized approximation U according to 

I IsI 0 e' fi 	fF5 (s)	for I s L 2 > a 
U(s) 

= 
is_setsgn	F6 (s) for 1 8 1 2$ < a a 

The regularized solution (4.5) can also be rewritten in the form U = A' F with


	

F(s)F6(s)	for IsI — '	a	 (4.6) 
= 1 I s L2F6 ( s ) for IsI 2 <a. a 

Consequently, the numerical computation of u = F— 'U,6, can also be carried out by 
the following two steps: 

(i) Compute 'smoothed' data f = 17— ' F,,  by using discrete Fourier transforms. 
(ii) Solve problem (1.1) with 'smoothed' data f = f. 

In our following theorem we answer the question how to choose the regularization pa-
rameter a in (4.5) or (4.6), respectively, such that the regularized solution u6 
is 'optimal' on the set M,E given by (4.1). 

Theorem 4.2. The regularized solution u, = 1'U with U given by (4.5) is 
'optimal' on the set M,E provided the regularization parameter a is chosen optimally 
by

i(1 + ro) +pro 

	

a0 =	 (4.7) 
pro 

where r0 is the (unique) solution of equation (3.13). For 8 - 0, 

# +P ()
	(1 ,+ 0(1)) a0 =

p 

holds. Furthermore, the optimal error estimate II u - u ll < w(8) holds with w() given 
by (3.12). 

• Proof. From Theorem 2.4 it follows that the optimal regularization parameter a 
is given by (2.10) with from (3.7). For functions W given in parameter representation 
A = t,b i (r), W = 2 (r) (r E R) formula (2.10) attains the form 

0(ro)02( ro) + 01(ro)02(ro) 

V12 (ro) 

where r0 is the (unique) solution of the equation 7 1 (r) 2 (r) = 62 /E2 . Using the 
special parameter representation (3.7) we obtain (4.7) and (3.13). Now the asymptotical 
expression for a0 follows from (4.7) together with (3.13), and the optimal error bound 
follows from Theorem 2.4 1
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In the third part of this section we consider the spectral method (2.11), apply it 
to problem (3.1) and show by applying Theorem 2.5 how to choose the regularization 
parameter such that this method is optimal on the set M,E. 

For our fractional differentiation problem (1.1) we obtain together with (3.3) and 
(3.4) that the spectral method (2.11) consists in the determination of a regularized 
approximation U6 according to Ck

i se'"() fF6 (s) for I s L 2	a  
U (s)

	

	 (4.8)

= *e'$5() fF6 (s) for IsL 2 < a. 

For this method we obtain the following optimality results whose proof follows from 
Theorem 2.5 and can be carried out according to that of Theorem 4.2. 

Theorem 4.3. The regularized solution u =	with U,6,, given by (4.8) is

'optimal' on the set M,E provided the regularization parameter a is chosen optimally 
by	

a0 =	+ro + pro ]2	
(4.9) pro 

where r0 is the (unique) solution of equation (3.13). For 6 - 0, 

S 
p ) ()	(1+o(1)) 

holds. Furthermore, the optimal error estimate II u 0 -	< w(6) holds with w(S) given 

by (3.12). 

5. Optimal approximations in Sobolev scales 

In this section we consider the fractional differentiation problem (1.1) of Section 1 and 
suppose as in the previous sections that the data and the (unknown) solution satisfy 
the two assumptions 

(Al) Ill - 1 6 11 < S 

(A2) 1jull p < E 

where 11 - 11 p is defined according to (1.2). In contrast to Sections 3 and 4 we are here 
interested in best possible error bounds not with respect to the H-norm, but with respect 
to the stronger (0 q <p). In addition, we are interested in the construction 
of special regularization methods that guarantee these best possible error bounds with 
respect to the	Hence, we will answer the following two questions: 

(Qi) Which best possible accuracy can be obtained (with respect to the 
0 <q <p) for identifying u from f6 under assumptions (Al) and (A2)? 

(Q2) In which way do we have to construct special regularization methods Rc. 
H - Hq such that the corresponding regularized approximations u = Raf6 guarantee 
this best possible accuracy with respect to the
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Let us start with the discussion of question (Qi). We formulate our fractional 
differentiation problem (1.1) as an operator equation 

Ap ,qu = 1	A,6,9: Hg —i H	 (5.1) 

where A g denotes the restriction of the operator A,6 to H. We introduce a Hilbert 
scale ( Hr ) rE + in the frequency domain according to 

	

0 = H = L2	fl (R),	r = H	 {v E RI IVI <} 

with
II"IIr = 11( 1 + s2 )

LV (s )IIL 2 (r)	(r E R)	 (5.2) 

as norm in H'. Furthermore, let us transform equation (5.1) into an equivalent operator 
equation

A,gU = F,	A,q H g —* H 

in the frequency domain. Then it is obvious that Aq,q = IsI_$e_s8(s) f (cf. (3.3)). 
Due to the relations 

( A , qVi ,V2 )o = ( vi , sI_fle$sgn(s) fv2)0 

= (VI, (1 +	 2 V2)g 

we obtain A q = (1 + s2)_s_fieI5h1(3) f. which shows us that AqA,q H  
is given by

= ( + s 2 )1s1 2$ .	 (5.3) 
This representation enables us to reformulate our quantitative a priori information (A2) 
into an equivalent condition in the frequency domain. We use (1.2) and (5.2), and obtain 
that (A2) is equivalent to the condition 

Ri + S2 Y9U( S )lI g E. (5.4) 

Consequently, using (5.3) and (5.4) we obtain that our quantitative a priori information 
(A2) can be rewritten in the equivalent form 

U E M,E = {u E	 E}	(5.5)


where is given (in parameter representation) by 

A = (1 +r)r 
+r)P	

(r E R).	 (5.6) 

	

p=(i 	J 

The function	given (in parameter representation) by (5.6) possesses the following 

properties which can be shown along the lines of the proof of Proposition 3.2.



464	U. Tautenhahn and R. Gorenflo 

Proposition 5.1. 110 < q < p, then the function defined by (5.6) is continuous 
and satisfies the following properties: 

(i) 1im... 0 (A) = 0. 
(ii) p is strictly monotonically increasing. 

(iii) p(A) = Acp(A) is strictly monotonically increasing as well as strictly convex 
and possesses the parameter representation 

A	(1 + r)' 

__(1+ryP}	
(0 r <00).	 (5.7)


p r  

(iv) is strictly monotonically increasing and possesses the parameter represen-
tation

A = r— fl(j  +
(0<r<oo). 

P -1 +r)  

(v) For the inverse function p of p, 

p'(A)=AT(1+o(l))	for A — O


holds. 

Now we are ready to discuss question (Qi) concerning the magnitude of the best 
possible worst case error 

wq (S) = inf sup {11R1 6 - UIq f E H, u E Mp,E, If - fII R: H - H 

with M,E given by (1.4) that shows us which best possible accuracy can be obtained 
(with respect to the Hnorm) for identifying u from f 6 under assumptions (Al) and 
(A2). We use the fact that Wq(S) = q (8) where 

q( S ) = _Jnf sup 1II.ñF 6 - UII q I F6 E H, U E Mca,E, J IF - F6 II ^ 

with M,E given by (5.5) and p given by (5.6), apply Theorem 2.2 with A : H1 - H2 
replaced by A ,q : H - H and Proposition 5.1, proceed according to the proof of 
Theorem 3.3 and obtain 

Theorem 5.2. Let 62 /E2 < co, 0 q <p and 8 > 0. Then the stability result 

= E(l + ro) 2	

(5.8) 1± £=i =E+'8'+(1+o(1))	for ö-0 

holds (Holder stability) where r 0 is the (unique) solution of equation (3.13). 

In the second part of this section we construct special regularization methods Ra 
H - that are 'optimal' in the sense that the corresponding regularized solutions 
U' , = R,,,J 6 guarantee 'optimal' error bounds II u - UII q -.5 wq (8) where wy (S) is given 
in Theorem 5.2. We apply Theorems 2.3 - 2.5, proceed along the lines of Section 4 and 
obtain the following results.
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Theorem 5.3. Let 62 /E2 < oo, 0 q < p and 6 > 0. Then the Tikhonov regu-
larized solution u = F'U with U,6, given by (4.2) satisfies the optimal error estimate 

q(ö) withwg (6) given by (5.8) provided the regularization parameter a = a0 
is chosen optimally by

/3(1  
ao	

+ ro) + qro / 6 \2 
=

(p— q)ro	E 
where r0 is the (unique) solution of equation (3.13). For S - 0 the asymptotical repre-
sentation

ao 

holds. 

	

Theorem 5.4. Let 62 /E 2 < oo, 0	q < p and 8 > 0. Then the regularized 
solution u =	with U,',, given by 

I IsI13e	) i F6 (s)	 for (1 + s 2)s 2 $ > a 
U., (S) 

= 1 k( 1 + s2)_s	 fF6(s) for (1 + s2)s-20 <a 

satisfies the optimal error estimate 1k4 - UIIq -q(b) with wq(S) given by (5.8) provided 
the regularization parameter a = a0 is chosen optimally by 

fi(1+ro)+pro 
13+1 (p - q)(1 + ro)r0 

where r0 is the (unique) solution of equation (3.13). For 6 - 0 the asymptotical repre-
sentation

$ + p/S \ ao=--)	(1+0(1)) 

holds. 

	

Theorem 5.5. Let 62 /E 2 < oo, 0	q < p and /3 > 0. Then the regularized

solution u = 'U with U,', given by 

	

I s 13 e 13 " (9) fF 6 (s)	 for (1 + s2 )IsI 213 > a 
U, (S) =	

*( + s 2 )_ 2IPSgfl() F6 (s) for (1 + s2 ) I s I 213 1<a 

satisfies the optimal error estimate ! I u - UII q	w9 (6) with w,(6) given by (5.8) provided

the regularization parameter a = a 0 is chosen optimally by 

	

-	f3 $(1+ro)+pro 2 
ao=(1+ro) r0

(p - q)ro 

where r0 is the (unique) solution of equation (3.13). For 6 -* 0 the asymptotical rèprc-
sent ation

0,0 
= (-

\p—q 
holds.

a0 =
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